
Further Remarks on P Systems

with Active Membranes,

Separation, Merging, and Release Rules

Linqiang PAN1,3, Artiom ALHAZOV2,3, Tseren-Onolt ISHDORJ3

1Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, People’s Republic of China
E-mail: lqpan@mail.hust.edu.cn

2Institute of Mathematics and Computer Science
Academy of Science of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

3Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
E-mail: {lp@fll,artiome.alhazov@estudiants,
tserenonolt.ishdorj@estudiants}.urv.es

Abstract. The P systems are a class of distributed parallel computing devices
of a biochemical type. In this note, we show that by using membrane separation
to obtain exponential workspace, SAT problem can be solved in linear time
in a uniform and confluent way by active P systems without polarizations.
This improves some results already obtained by A. Alhazov, Ts. Ishdorj. A
universality result related to membrane separation is also obtained.

1 Introduction

The P systems are a class of distributed parallel computing devices of a biochemical type,
introduced in [4], which can be seen as a general computing architecture where various
types of objects can be processed by various operations. The approach starts from the
observation that certain processes which take place in the complex structure of living
organisms can be considered as computations. For a motivation and detailed description
of various P system models we refer to [4], [5].

Informally speaking, in P systems with active membranes without polarizations one
uses six types of rules: (a0) multiset rewriting rules, (b0) rules for introducing objects
into membranes, (c0) rules for sending objects out of membranes, (d0) rules for dissolving
membranes, (e0) rules for dividing elementary membranes, and (f0) rules for dividing
non-elementary membranes, see [2]. In these rules, a single object participates during the

316

process. A few more types of rules are introduced in [1]: (g0) membrane merging rules,
(h0) membrane separation rules, (i0) membrane release rules in P systems with active
membranes without polarizations. A common feature of those rules is the use of multisets
of objects during the computation process.

By using membrane separation to obtain an exponential working space in a linear time,
it is shown in [1] that SAT problem can be solved in linear time in a semi-uniform and
confluent way by some particular combinations of types of rules in P systems with active
membranes. In this note, the results are improved in the uniform way. A result about
universality is also obtained.

2 P Systems with Active Membranes and New Membrane
Operations

We assume the reader to be familiar with basic elements of membrane computing, for
instance, from [5] (details and recent results from membrane computing can be found at
the web address http://psystems.disco.unimib.it). We only mention that RE denotes
the family of recursively enumerable languages, and that for a family of languages FL,
by PsFL we denote the family of Parikh sets of languages in FL; as usual, the Parikh
mapping associated with an alphabet V is denoted by ΨV .

The P systems with active membranes with some new operations (without polariza-
tion) of the form Π = (O, H, µ, w1, . . . , wm, R) were considered in [1], with the following
components: where:

1. m ≥ 1 is the initial degree of the system;

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. µ is a membrane structure, consisting of m membranes, labeled (not necessarily in a
one-to-one manner) with elements of H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the m
regions of µ;

6. R is a finite set of developmental rules, of the following forms:

(a0) [a → v]h, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label,
but not directly involving the membranes, in the sense that the membranes are
neither taking part in the application of these rules nor are they modified by
them);

(b0) a[]h → [b]h, for h ∈ H, a, b ∈ O
(communication rules; an object is introduced in the membrane during this
process);

(c0) [a]h → []hb, for h ∈ H, a, b ∈ O
(communication rules; an objects sent out of the membrane during this process);

317

(d0) [a]h → b, for h ∈ H, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e0) [a]h → [b]h[c]h, for h ∈ H, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label; the object specified
in the rule is replaced in the two new membranes by possibly new objects);

(g0) []h[]h → []h, for h ∈ H
(merging rules for elementary membranes; in reaction of two membranes, they
are merged into a single membrane; the objects of the former membranes are
put together in the new membrane);

(h0) [O]h → [U]h[O − U]h, for h ∈ H, U ⊂ O
(separation rules for elementary membranes; the membrane is separated into
two membranes with the same labels; the objects from U are placed in the first
membrane, those from U −O are placed in the other membrane);

(i0) [[O]h]h → []hO, for h ∈ H
(release rule; the objects in a membrane are released out of a membrane, sur-
rounding it, while the first membrane disappears).

The rules are applied non-deterministically, in the maximally parallel manner; among the
rules of types (b0), · · · , (i0) at most one can be applied to each membrane at each step. In
this way, we get transition from a configuration of the system to the next configuration.
A sequence of transitions is a computation. A computation is halting if no other rules can
be applied in its last configuration.

Rules of types (a0), (b0), (c0), (d0), and (e0) were introduced in [2], and (g0), (h0), and
(i0) introduced in [1], without polarizations of membranes, and without the capability of
changing the label of membranes they involve. Following the notation in [2] and [5], we use
the primed versions to indicate the fact that the labels of membranes can be changed. For
example, the primed versions of merging and separation rules are of the following forms:

(g′0) []h1
[]h2

→ []h3
, for h1, h2, h3 ∈ H.

(h′0) [O]h1
→ [U]h2

[O − U]h3
, for h1, h2, h3 ∈ H, U ⊂ O.

To understand the difference of uniform construction and semi-uniform construction
of P systems, we recall some notions about solving decidability problems in the membrane
computing framework. Given a decision question X, we say that it can be solved in poly-
nomial (linear) time by recognizing P systems in a uniform way, if, informally speaking, we
can construct in polynomial time a family of recognizing P systems Πn, n ∈ N, associated
with the sizes n of instances X(n) of the problem, such that the system Πn will always
stop in a polynomial (linear, respectively) number of steps, sending out the object yes
if the instance X(n) has a positive answer and the object no if the instance X(n) has a
negative answer. In [5], the complexity classes related to P systems are defined in the
semi-uniform way: P systems are constructed starting not from the size n, but from an in-
stance X(n). For a clearer description of the difference between uniform and semi-uniform
constructions, please refer to [6].

318

3 Efficiency

From [1] we know that P systems with rules of types (a0), (b0), (c0), and (h′0) can solve
SAT in linear time in a semi-uniform and confluent way. The following theorem improves
this result in a uniform way.

Theorem 3.1 A uniform family of P systems with rules of types (a0), (b0), (c0), (h′0) can
solve SAT in linear time in a confluent way.

Proof. Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β of SAT (to which the size (m,n) is associated) is encoded as a multiset over

V (〈n,m〉) = {xi,j,j , x̄i,j,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j,j represents the variable xj appearing in the clause Ci without negation,
and object x̄i,j,j represents the variable xj appearing in the clause Ci with negation. Thus,
the input multiset is

w = {xi,j,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x̄i,j,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

For given (n,m) ∈ N2, we construct a recognizing P system (Π(〈n,m〉), V (〈n, m〉), 2) with:

Π(〈n,m〉) = (O(〈n,m〉),H, µ, w0, w1, ws, R),
O(〈n,m〉) = {xi,t,j , x̄i,t,j , | 1 ≤ i ≤ m, 0 ≤ t ≤ j, 1 ≤ j ≤ n}

∪ {x′i,t,j , x̄′i,t,j , | 1 ≤ i ≤ m, 0 ≤ t ≤ j − 1, 1 ≤ j ≤ n}
∪ {ci,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1} ∪ {c′i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {di | 0 ≤ i ≤ n + m + 7} ∪ {d′i | 1 ≤ i ≤ n + 1}
∪ {t, λ, yes, no},

µ = [[]0[]1]s,
ws = λ,

w0 = d0,

w1 = d0,

H = {s, 0, 1, · · · ,m + 2},

and the following rules (we also give explanations about the use of these rules):

Generation phase:

G1. [O]1 → [U]1[O − U]1,
U = {x′i,t,j , x̄′i,t,j | 1 ≤ i ≤ m, 0 ≤ t ≤ j − 1, 1 ≤ j ≤ n}
∪ {c′i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {d′i | 1 ≤ i ≤ n + 1}.

319

G2. [xi,t,j → xi,t−1,jx
′
i,t−1,j]1,

[x̄i,t,j → x̄i,t−1,j x̄
′
i,j−1,j]1,

[x′i,t,j → xi,t−1,jx
′
i,t−1,j]1,

[x̄′i,t,j → x̄i,t−1,j x̄
′
i,t−1,j]1, 1 ≤ i ≤ m, 1 ≤ t ≤ j, 1 ≤ j ≤ n.

G3. [xi,0,j → ci,jc
′
i,j]1,

[x̄i,0,j → λ]1,
[x̄′i,0,j → ci,jc

′
i,j]1,

[x′i,0,j → λ]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

G4. [ci,j → ci,j+1c
′
i,j+1]1,

[c′i,j → ci,j+1c
′
i,j+1]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1.

G5. [ci,n → ci,n+1]1,
[c′i,n → ci,n+1]1, 1 ≤ i ≤ m.

G6. [di → di+1d
′
i+1]1, 0 ≤ i ≤ n.

[d′i → di+1d
′
i+1]1, 1 ≤ i ≤ n.

[dn+1 → dn+2]1.
[d′n+1 → dn+2]1.

In n + 1 steps, by rules of types G1–G4, 2n membranes with label 1 are created,
corresponding to the all possible 2n truth assignments of the variables x1, x2, ..., xn. During
this process, every object xi,j,j of the input evolves to xi,0,j and x′i,0,j in j steps. Then, they
evolve to ci,j in membranes where true value was chosen for xj (recall that xi,j,j = true
satisfies clause Ci) and are erased in membranes where false value was chosen for xj . In
the next n−j steps, ci,j evolves to ci,n or c′i,n. It takes one more step ci,n and c′i,n evolve to
ci,n+1 by rules of type G5, which means the system is ready for checking phase. Similarly,
x̄i,j,j changes to ci,n+1 if xj = false and is erased if xj = true. Note that at step n + 2,
each membrane with label 1 has the object dn+2.

Checking phase:

C1. [O] i → [U] i[O − U] i+1,
U = {ci,n+1}, 1 ≤ i ≤ m.

Starting with i = 1, in membranes with label i, objects ci,n+1 will be separated from
the other objects, and the label of the membrane with objects from O − {ci,n+1} will
become i + 1. The membranes which do not contain the objects ci+1,n+1 will never evolve
anymore. If all objects ci,n+1, 1 ≤ i ≤ m, are present in some membrane, then after m
steps this membrane will evolve into a membrane with label m+1, containing object dn+2,
by the rules of type C1.

C2. [dn+2]m+1 → []m+1dn+2.

C3. [dn+2 → tt]s.

If β has solutions, then at step n+m+3, every membrane corresponding to a solution
of β ejects dn+2 in the skin region, then they will all be rewritten into tt.

C4. t[]0 → [t]0.

320

C5. t[]m+1 → [t]m+1.

C6. [O]0 → [U ′]m+1[O − U ′]m+2,
U ′ = {t}.

C7. [di → di+1]0, 0 ≤ i ≤ n + m + 5.

C8. [dn+m+6 → dn+m+7]m+2.

At step n + m + 5, one copy of t enters the membrane with label 0, and (suppose β
has s solutions, 1 ≤ s ≤ 2n) s copies of t enter the s membranes with label m+1. At step
n + m + 6, s − 1 copies of t enter the membranes with label m + 1, or s − 2 copies of t
enter the s − 2 membranes with label m + 1, and 1 copy of t enters the membrane with
label 0. Using rule C6, membrane with label 0 is separated into two membranes, which
contain object t and object dn+m+6 or dn+m+7 respectively. If β has no solution, then no
object enters membrane labeled 0 and rule C6 is not applied.

Output phase:

O1. [t → λ]m+1.

O2. [dn+m+7]0 → []0no.

O3. [dn+m+7]m+2 → []m+2yes.

O4. [no]s → []sno.

O5. [yes]s → []syes.

If β has solutions, then at step n + m + 8, object dn+m+7 in the membrane with label
m + 2 ejects yes into skin and then into the environment. If β has no solution, then after
n + m + 8 steps object dn+m+7 ejects object no into skin and then into the environment.

From the previous explanation of the use of rules, one can easily see how the P system
designed in the above proof works, and it halts at step n + m + 9. It is easy to prove
that the designed P system is uniform. If β has at least two solutions, then the behavior
of this system is not deterministic: at step n + m + 6 either one of the rules of types C4
and C6 can be applied to the membrane with label 0 (applying C4 in step 2n + 2m + 6
results in one extra copy of t in membrane with label 0 and one copy of t missing in some
membrane with label m + 1). However, the system is confluent: in either case mentioned
above, after three further steps, the system produces the output yes and halts in the same
configuration (in the membranes with label m + 1, the objects t are erased). 2

The following two theorems improve the corresponding theorems in [1], which are not
difficult to be proved by using the generation phase in the proof of Theorem 3.1 and the
proofs in Theorem 2 and 3 in [1]. So, here we omit the proofs.

Theorem 3.2 A uniform family of P systems with rules of types (a0), (c0), (g0), (h′0) can
solve SAT in linear time in a confluent way.

Theorem 3.3 A uniform family of P systems with rules of types (a0), (g0), (h′0), (i0) can
solve SAT in linear time in a confluent way.

321

4 Universality

Because the notion of a matrix grammar will be used below, we introduce it here in its
general form.

A matrix grammar with appearance checking is a construct G = (N, T, S,M, F), where
N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1,
. . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪ T)∗, in all
cases), and F is a set of occurrences of rules in M (N is the nonterminal alphabet, T is
the terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in
M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all
1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T)∗, or wi = wi+1,

Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a matrix are
applied in order, possibly skipping the rules in F if they cannot be applied – therefore we
say that these rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family
of languages of this form is denoted by MATac. It is known that MATac = RE.

A matrix grammar G = (N,T, S, M,F) is said to be in the binary normal form if
N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,

3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,

4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in the form
(S → XinitAinit), in order to fix the symbols X,A present in it), and F consists exactly
of all rules A → # appearing in matrices of type 3; # is a trap-symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last step of
a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary normal
form. Details can be found in [3].

The following theorem shows that by using membrane separation rule to change the
labels of the membranes, the universality can be reached. Here Ps(Π) denotes the set of
vectors of natural numbers describing the multiplicity of objects expelled into the envi-
ronment by the various halting computations in system Π; by PsOP (a0, c0, h

′
0) we denote

the family of sets Ps(Π) computed by P systems using the types of rules a0, c0, and h′0.

Theorem 4.1 PsOP (a0, c0, h
′
0) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S, M, F) with appearance checking, in
the binary normal form, hence with N = N1 ∪N2 ∪ {S, #} and with the matrices of the
four forms introduced above. Assume that all matrices of forms 2, 3, and 4 are injectively
labeled with elements of a set B (without loss of generality, suppose 0 6∈ B), B = B1∪B2,
B1 for the matrices of forms 2 and 4, and B2 for the matrices of form 3. Replace the rule
X → λ from matrices of type 4 by X → f , where f is a new symbol.

322

We construct the P system of degree 2

Π = (O, H, [[]Xinit
]1, w1 = λ,wXinit = c0Ainit, R),

O = T ∪N2 ∪ {Am | A ∈ N2,m ∈ B1}
∪ {dm, d′m | m ∈ B} ∪ {cm | m ∈ B2} ∪ {c0, #, λ},

H = N1 ∪ {Xm | X ∈ N1,m ∈ B} ∪ {0, 1, f},

and the set R containing the following rules. We present them in blocks as used for
simulating matrices of G, thus also having clear the way the system Π works.

The simulation of a matrix m : (X → Y,A → x), with X ∈ N1, Y ∈ N1 ∪ {f}, A ∈ N2

and x ∈ (N2 ∪ T)∗, |x| ≤ 2, is done in two steps, using the next rules:

1. [A → Amdm]X ,
[O]X → [U]0[O − U]Ym

, U = {dm},
[c0 → cndn]X , n ∈ B2,

2. [Am → xd′m]Ym
,

[O]Ym
→ [U]0[O − U]Y , U = {d′m},

[cn → c0]Ym
, n ∈ B2,

[dn → λ]Ym
, n ∈ B2.

The first rule of the matrix is simulated by the change of the label of the inner mem-
brane by separation rule (the “dummy” objects dm, d′m, and membrane 0 play no further
role), and the correctness of this operation is obvious (one cannot simulate one rule of the
matrix without simulating the other rule).

The simulation of a matrix m : (X → Y, A → #), with X, Y ∈ N1 and A ∈ N2, is
done also in two steps, using the next rules:

3. [c0 → cmdm]X ,
[O]X → [U]0[O − U]Ym

, U = {dm},
[A → Andn]X , n ∈ B1,

4. [cm → c0d
′
m]Ym

,
[O]Ym

→ [U]0[O − U]Y , U = {d′m},
[An → #]Ym

, n ∈ B1,
[A → #]Ym

,
[dn → λ]Ym

, n ∈ B1.

While the membrane with label X is separated, if any copy of A is present, then it
can remain the same at this step (i.e., not evolving) and in the next step evolve to the
trap-object # (this is the case if A does not appear in the matrices of type 2 and 4),
or it evolves to Andn, in the next step the object An introduces the trap-object # and
the computation never stops. If no A is present, then the objects cm evolve, returning
the label of the membrane to Y and introducing the auxiliary object c0, for iterating the
procedure.

We also consider the following rules:

5. [A → #]f , for all A ∈ N2,

6. [# → #]h, for all h ∈ H,

323

7. [a]f → []fa, for all a ∈ T ,

8. [a]1 → []1a, for all a ∈ T .

The equality ΨT (L(G)) = Ps(Π) easily follows from the above explanations. 2

Remark 4.1 In the above proof, the rules of type (c0) are only used for sending the result
of a computation out of the system. Therefore, rules of types (a0) and (h′0) are sufficient
to reach universality for membrane systems with internal output.

5 Final Remark

This note shows that using membrane separation to obtain exponential workspace in a
linear time, SAT problem can be solved in linear time in a uniform and confluent way by
active P systems with membrane separation rules. In general, it is still open whether any
semi-uniform solution to a problem can be modified to a uniform solution. By a direct
proof, the universality related to separation rule is reached. In [2] by using division to
change the labels of the membranes, we also have PsOP (a0, c0, e

′
0) = PsRE. But it

remains open using P systems with separation rules to simulate P systems with division
rules.

Acknowledgements. The authors acknowledge IST-2001-32008 project “Mol-
CoNet”. The first author (he is also the corresponding author) is also supported by grant
DGU-SB2001-0092 from Spanish Ministry of Education, Culture, and Sport, National
Natural Science Foundation of China (Grant No. 60373089), and Huazhong University of
Science and Technology Foundation. The second author acknowledges also the Moldovan
Research and Development Association (MRDA) and the U.S. Civilian Research and De-
velopment Foundation (CRDF), Award No. MM2-3034 for providing a challenging and
fruitful framework for cooperation. The third author acknowledges The State Training
Fund of the Ministry of Science, Technology, Education and Culture of Mongolia.

References

[1] A. Alhazov, Ts. Ishdorj, Membrane Operations in P Systems with Active Membranes,
in the present volume.

[2] A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations for Labels in P Systems with
Active Membranes, submitted 2003.

[3] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

[4] Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and TUCS Research Report 208, 1998 (http://www.tucs.fi).

[5] Gh. Păun, Membrane Computing: An Introduction, Springer, Heidelberg, 2002.

[6] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity Classes
in Models of Cellular Computing with Membranes, Natural Computing, 2(3) (2003),
265–285.

324

