
Towards a Programming Language

in Cellular Computing

Miguel Angel GUTIÉRREZ-NARANJO
Mario J. PÉREZ-JIMÉNEZ
Agust́ın RISCOS-NÚÑEZ

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {magutier, marper, ariscosn}@us.es

Abstract. Several solutions to hard numerical problems using P systems have
been presented recently, and strong similarities in their designs have been no-
ticed. In this paper we present a new solution, an effective one to the Partition
problem via a family of deterministic P systems with active membranes using
2-division. We intend to show that the idea of a cellular programming lan-
guage is possible, indicating some “subroutines” that can be used in a variety
of situations and therefore could be useful for attacking new problems in the
future.

1 Introduction

Cellular Computing is an emergent branch in the field of Natural Computing. Since Gh.
Păun introduced it (see [4]) much work has been done, from various points of view. Com-
puter scientists, biologists, formal linguists and complexity theoreticians have contributed
enriching the field with their different approaches.

The present paper is focused on the design of a family of P systems that solves a nu-
merical NP-complete problem, namely, the Partition problem. The design of this solution
is inspired in several previous works on other problems, mainly the Subset-Sum and the
Knapsack problems, but also the VALIDITY and SAT. The similarities between the design
introduced here and the solutions presented in [6], [7], [9] and [11] will be highlighted and
some conclusions will be extracted from them.

The paper is organized as follows: first some preliminary ideas about the framework
of Complexity classes are introduced in the next section; then, in section 3 a cellular
solution for the Partition problem is presented, and some comments about the possibility
of generalizing the design are given in section 4; and the conclusions and future work lines
are given in section 5.

247

2 Preliminaries

We assume that the reader is familiar with the general notion of P systems (a detailed
description can be found at [3]). However, we will comment some details about the specific
variant that we are using.

Recall that a decision problem, X, is a pair (IX , θX) such that IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean function
over IX . That is, the answer to each instance of the problem will be either TRUE or
FALSE. This is why we are interested in using a computing device that is able to receive
an input, process it, and deliver a boolean answer.

In our case, we have chosen the class of P systems with input and with external output
(special objects Y es and No will be used to implement the boolean answer). In order to
obtain a significant speed-up, we will work in the active membrane model, and so we are
allowed to use membrane division to obtain an exponential workspace in polynomial time.
We impose also some restrictions, for instance, we want the systems to be confluent (all
computations with the same input lead to the same output), also every computation must
be finite and, furthermore, we want that the answer is delivered in the last step of the
computation. These conditions, together with other considerations, are deeply studied in
[12], where a slightly different design (improving the efficiency) of the family of P systems
that solves the Partition problem is presented, in the framework of complexity classes in
P systems.

We will not get into details here, but please note that we will say that the family
of P systems presented solves the Partition problem according to the formal definition
presented in [12].

3 Solving the Partition Problem in Linear Time

The Partition problem can be stated as follows:

Given a set A of n elements, where each element has a “weight” wi ∈ N,
decide whether or not there exists a partition of A into two subsets such that
they have the same weight.

We will represent the instances of the problem using tuples of the kind (n, (w1, . . . , wn)),
where n is the size of the set A and (w1, . . . , wn) is the list of weights of the elements from
A. We can define in a natural way an additive function w that corresponds to the data in
the instance.

We will address the resolution of the problem via a brute force algorithm. The strategy
can be roughly split into the following subgoals:

• Generation stage: use membrane division to get one membrane for each subset.

• Calculation stage: compute in each membrane the weight of its associated subset
and the weight of its complementary.

• Checking stage: compare in each membrane w(B) with w(Bc), where B is the asso-
ciated subset.

• Output stage: the answer is delivered according to the results of the checkings.

248

The family presented here is

Π = {(Π(n), Σ(n), i(n)) : n ∈ N}.
For each element of the family, the input alphabet is Σ(n) = {x1, . . . , xn},

the input membrane is always the same, i(n) = e, and the P system Π(n) =
(Γ(n), {e, r, s}, µ,Me,Mr,Ms, R) is defined as follows:

• Working alphabet:

Γ(n) = {a0, a, b0, b, c, d0, d1, d2, e1, . . . , en, g, ḡ, ĝ, h0, h1, i1, i2, i4, i5,
p, p̄, q, x1, . . . , xn, Y es, No, No0, z1, . . . , z2n+1,#}.

• Membrane structure: µ = [[]e []r]s.

• Initial multisets: Me = e0g; Mr = b0h0 and Ms = z1.

• The set of evolution rules, R, consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 0, . . . , n,
[ei]+e → [ei+1]0e[ei+1]+e , for i = 0, . . . , n− 1.

The goal of these rules is to generate one membrane for each subset of A. Indeed,
exactly the same two schemes of rules are used for the generation stages in the Subset-Sum
and the Knapsack case. Here is how these rules work: in each step (according to the index
of ei), we consider an element of A and either we add it to the subset associated with the
membrane, B, or we put it in the complementary subset, Bc. Note that a membrane can
proceed to the checking stage only after it gets a negative charge; a positively charged
membrane where the object en appears will get blocked (it will be dissolved, see rules in
(i)).

(b) [x0 → a0]0e, [x0 → p̄]+e ,
[xi → xi−1]+e , for i = 1, . . . , n,
[xi → p̄]−e , for i = 1, . . . , n.

At the beginning, the multiplicities of the objects xj (with 1 ≤ j ≤ n) encode the
weights of the corresponding elements of A. They are not present in the definition of the
system, but they are inserted as input in the membrane labelled by e before starting the
computation: for each aj ∈ A, wj copies of xj have to be added to the input membrane.
During the computation, at the same time as elements are added to the subset associated
with a membrane, objects a0 and p̄ are generated to store the weight of such subset and of
its complementary. Again, these schemes of rules are almost identical to the ones used for
the calculation stages of the Subset-Sum and Knapsack, the only difference is that here
the weight of the complementary is kept, and there it was just removed.

It is worth noticing that the index-rotation technique was already used in [9] and [11]
to deal with the set of variables in an ordered manner, even though there was no weight
calculation there.

(c) [q → i1]−e , [p̄ → p]−e , [a0 → a]−e .

When a membrane gets negatively charged, the two first stages (i.e. generation and
calculation stages) end, and then some transition rules are applied. Objects a0 and
p̄, whose multiplicities encode the weights of the associated subset, w(B), and of its
complementary, w(Bc), are renamed for the next stage, when their multiplicities are

249

compared. Similar renaming rules can be found in the designs of the Subset-Sum and
Knapsack solutions; they are useful to avoid conflicts between rules from the checking
stage and rules from the generation and calculation stages.

(d) [a]−e → []0e#, [p]0e → []−e #.

These rules implement the comparison above mentioned (that is, they check whether
w(B) = w(Bc) holds or not). They work as a loop that erases objects a and p one by one
alternatively, changing the charge of the membrane in each step. Exactly the same method
can be used to compare the multiplicities of whatever two objects of the working alpha-
bet, so again we find rules that might be re-used when attacking other numerical problems.

(e) [i1 → i2]−e , [i2 → i1]0e.

A marker that controls the previous loop is described here. The index of ij and the
electric charge of the membrane give enough information to point out if the number of
objects a is greater than (less than or equal to) the number of objects p.

Here we find the first important difference in the design with respect to the ones for
Subset-Sum and Knapsack. There counters were used, and the schemes of rules depended
on the number of steps that the checking was going to last. But now the number of
steps depends on the total weight of the set A, and we cannot use this information if we
want an uniform design. However, there are good news: the rules used here can be used
also in general, so new versions of the solutions to Subset-Sum and Knapsack using this
subroutine can be given.

(f) [i1]0e → []+e No.

This rule, together with the ones in the next item, take care of the result of the
checking. If a subset B ⊆ A verifies that w(B) > w(Bc), then at the end of the calculation
stage there will be less objects p than a inside the membrane associated with it. This
forces the loop described in (e) to halt: the moment will come when there are no objects
p left, and then the rule [i2 → i1]−e will be applied but it will not be possible to apply the
rule [p]0e → []−e # at the same time. Thus, an object i1 will be present in the membrane
and the latter will be neutrally charged, so the rule (f) will be applied ending the checking
stage with a negative result.

(g) [i2 → i4c]−e ,
[c]−e → []0e#, [i4 → i5]0e,
[i5]0e → []+e Y es, [i5]−e → []+e No.

If, on the contrary, w(B) ≤ w(Bc) holds, then the objects a will be exhausted before
the objects p. It is important to distinguish between the cases where the multiplicity
of p is strictly greater than the multiplicity of a and the cases where both multiplicities
coincide. This is why object c gives again neutral charge to the membrane and then
object i5 checks if a rule [p]0e → []−e # is applied or not.

(h) [p → #]+e , [a → #]+e .

If after the checking loop of rules in (d) has finished there are still some objects p or
a in the membrane, then they can be erased (just for “cleaning” purposes).

(i) [en]+e → #,
[a0 → #]0s, [p̄ → #]0s, [g → #]0s.

250

These rules also perform a “cleaning” task, dissolving the membranes that are not
meaningful and erasing the contents that these dissolutions spill in the skin membrane.
This is not essential in the design, but it is helpful.

(j) [zi → zi+1]0s, for i = 1, . . . , 2n,
[zi → d0d1]0s,
[d1]0s → []+s d1.

Before the answer is sent out, the system has to make sure that all the relevant
membranes have finished their checking stages. To do this, first we wait for 2n + 1 steps
and then we activate the process. This needs to be done in order to make sure that the
division process is over, and thus we know that from this moment on, the membranes
that finish their checking stage will have a positive charge, and only them (see the rules
in (f) and (g) for the end of the checking and note that we get rid of the spare membranes
via the rules in (i)).

(k) [g]−e → []−e ḡ,
[ḡ → ĝ]+s ,
ĝ[]+e → [ĝ]0e.

As we said before, we need to check if all the relevant membranes have finished their
checking stages. This is done using the objects g that are present in the skin and the
auxiliary membrane labelled by r (see the next set of rules). There must be 2n copies of
g, because each relevant membrane sends one, and there is one relevant membrane for
each subset of A, that is 2n in all.

(l) d0[]0r → [d0]−r ,
[h0 → h1]−r , [h1 → h0]+r ,
[b0]−r → [r]+r b, ĝ[]+r → [ĝ]−r ,
b[]−r → [rb0]+r , [ĝ]+r → []−r ĝ,
[h0]+r → []+r d2, [d2]+s → []0sd2.

The membrane labelled by r is present in the initial configuration, but remains
inactive until an object d0 “wakes it up”. The purpose of the membrane is to perform
a loop where the objects ĝ are involved, in such a way that if there are no objects ĝ
available in the skin, then the loop will halt. Thus, we can detect if there are no objects
ĝ present in the skin region. This fact will mean that all the relevant membranes have
finished their checking stage, and that the system is ready to send out the answer (Y es
or No).

(m) [No → No0]−s ,
[Y es]−s → []0sY es,
[No0]−s → []0sNo.

Finally, the output process is activated. The skin membrane needs to be negatively
charged before the answer is sent out. Object d2 takes care of this (see the previous set of
rules) and then, if the answer is affirmative, an object Y es will be sent out recovering the
neutral charge for the skin. Note that the answer Y es has some priority over the negative
answer, in the sense that we first check if there is any object Y es and then, if it is not
the case, the answer No will be sent out. This little trick of changing the electrical charge
of the skin membrane and using the auxiliary object No0 is also used in the other two
designs, so hopefully this feature can be also saved for future designs.

251

4 Generalizing the Rules

In this section we will present an overview of the computation, commenting how the rules
work and sketching the first instructions that could be added to the library of subroutines
that we intend to create.

In the first step of the computation, the rule [ei]0e → [q]−e [ei]+e is applied, for i = 0.
From this moment on, the rest of division rules will be applied in turns, in such a way
that whenever a negatively charged membrane is created, it will not divide anymore. The
concept of subset associated with an internal membrane is an abstraction, because there
are no witness-objects in the membrane to encode it, but we can agree to “associate”
subsets with membranes following this definition:

• The subset associated with the initial membrane is the empty one.

• When an object ej appears in a neutrally charged membrane (with j < n), then the
j-th element of A is selected and added up to the previous associated subset. Once
the stage is over, the associated subset will not be modified anymore.

• When a division rule is applied, the two newborn membranes inherit the associated
subset from the original membrane.

As we already said, the rules in (a) are exactly repeated in the designs for Subset-Sum
and Knapsack. Thus, we could create a new instruction, valid to use it in the designs of
P systems, called for example

gen subsets(n)

This is nothing but a notation, whenever we find this in a design we should replace it by
the set of rules described in (a). We can also make use, if needed, of the semantic notion
of associated subset in further stages of the computation.

For instance, this is done in the calculation stage. The weights of the elements are
added only if the element is selected for the associated subset.

calc weight(n) ≡




[x0 → subs]0e,
[x0 → compl]+e ,
[xi → xi−1]+e , for i = 1, . . . , n
[xi → compl]−e , for i = 1, . . . , n




The object compl can be substituted by λ if we do not want information about the comple-
mentary, or by other objects, depending on the concrete problem that we are addressing
(maybe we could add a second variable that says if the weight of the complementary
should be computed or not). The object subs encodes with its multiplicity the weight of
the associated subset; we are free to use any object instead, it depends on our specific
notation. For instance, in the Knapsack problem, two functions have to be computed: the
weight and the value of the subset. Thus, we have to include twice the rules, using two
different sets of indexed objects, one for each function (for instance, in [7], xj and yj were
used, for j = 0, . . . , n).

The generation and calculation stages end in a membrane when it gets a negative
charge for the first time, and we have at our disposal a witness-object q that appears in
the membrane exactly in that moment. If we want to perform now the comparison between
the multiplicities of two objects, we need to rename all the objects in the membrane, to
make sure that there does not exist overlapping, i.e., we want to avoid nondeterminism.

252

The renaming step depends strongly on the problem, because the new objects that are
needed depend on how many stages we want to perform later on.

The next set of rules is (d). When these two rules are applied iteratively, a loop
is created. The charge of the membrane changes from negative to neutral and back to
negative in every loop, until one of the two objects that are being used is exhausted and
the loop halts.

check weight ≡
(

[obj1]−e → []0e#,
[obj2]0e → []−e #

)

Observe that this time the scheme of rules does not depend on n, we just compare
the number of occurrences of two objects, obj1 and obj2. The names of these objects can
be customized, as well as the two charges that are used. We can again recall the design
of the Knapsack as an example, because two checking stages were carried out there, with
different objects and different charges, but the same changing-charge-loop design.

Next, let us pay attention to the rules that take care of the result of the checking. As
we said before, instead of using a counter that increases its index in each step we use two
objects as markers, and this suffices to detect when the loop has halted. The evolution of
these markers is as rules from item (e) show.

[isame → idiff]−e , [idiff → isame]0e

Let us concentrate on the termination of the checking stage. First of all, if the multiplicity
of obj1 is greater than the multiplicity of obj2, then the moment will come when the rule
[obj1]−e → []0e# will be applied but its counterpart in the loop ([obj2]0e → []−e #) will
not be applied in the next step, and so the membrane will keep a neutral charge for two
consecutive evolution steps. This fact is detected by the marker and in the following step
the rule

[isame]0e → []+e zmore

will be applied, bringing the checking stage of this membrane to its end. In the case of the
Partition problem, the fact that there are more copies of object obj1 than of obj2 means
a negative answer, so we replace zmore by No, but in other problems it could be replaced
by Y es or by other special objects in order to activate further stages.

If, on the contrary, the multiplicity of obj1 is smaller than or equal to the multiplicity
of obj2, then the membrane will have a negative charge for two consecutive steps, but we
need to check if any object obj2 is still present in the membrane. This can be checked
using the rules

[idiff → aux1c]−e , [c]−e → []0e#

then, in the next step the rule [aux1 → aux2]0e will be applied, and the charge will change
if and only if there are some objects obj2 left (via the rule [obj2]0e → []−e #). Finally, we
differentiate the results depending on the electrical charge:

[aux2]0e → []+e zequal, [aux2]−e → []+e zless

Again, in our problem we have customized zequal to be Y es and zless to be No, but this
depends on the condition that we are checking. Maybe in some problems instead of using
objects No we are interested in blocking the membrane, and this can be done simply
removing the corresponding rule.

253

are there
objects g

in the skin?
d 0 h negd 0

r
b

d 0d 0 h neg

r

b

b

d 0 h neg

r

gd 0 h neg

YES

NO

r

h pos

r
b d 2

b
r

gb

Figure 1: Membrane r detection loop

marker eq ≡




[isame → idiff]−e , [idiff → isame]0e,
[isame]0e → []+e No,
[idiff → aux1c]−e , [c]−e → []0e#,
[aux1 → aux2]0e,
[aux2]0e → []+e Y es, [aux2]−e → []+e No




The corresponding variants marker leq and marker geq can be defined if we consider
that the successful result of the checking is to detect that the number of objects obj1 is
less than (or greater than, respectively) the number of obj2.

It is time now to comment how the answer process is managed. It was already hinted
in the previous section that there is a membrane, labelled by r, that plays a central role.
Let us explain the process step by step (see Figure 1 for a graphical description of the
detection loop).

We need to check if 2n membranes have finished their checking stages, and to do this it
seems a good idea to use 2n objects, in order to make use of the parallelism of the model.
To generate these objects we include an object g in the initial configuration and we use
the rule [g]−e → []−e ḡ. The object g is replicated every time the membrane divides, and
this rule is applied when the membrane ends the generation and calculation stages and
before starting the checking. We know that 2n copies of ḡ will be sent to the skin in some
moment of the computation, but not simultaneously.

The idea is to make these objects return back to their membranes when the checkings
are over. In order to avoid interferences with some checking stages that last longer than
others, we add a counter and a renaming rule, and the process of counting how many
membranes have finished their checking stage does not start until an object d1 is sent out
to the environment and the skin gets a negative charge.

In the same step, an object d0 enters the membrane r and activates the loop described
by the rules in (l) and depicted in Figure 1. The idea is that membrane r tries to fish any
object ĝ present in the skin: the object b plays the role of bait, because it gives positive
charge to the membrane allowing thus the rule ĝ[]+r → [ĝ]−r to apply (it is clear that if
there are no objects ĝ in the skin, then the rule cannot be applied). There is a marker
inside the membrane that controls if any object actually entered the membrane, and in
negative case, an object d2 will be sent to the skin in order to finish the answer stage.

254

detector ≡




d0[]0r → [d0]−r ,
[hneg → hpos]−r , [hpos → hneg]+r ,
[b]−r → [r]+r b, ĝ[]+r → [ĝ]−r , b[]−r → [rb0]+r , [ĝ]+r → []−r ĝ,
[hneg]+r → []+r d2,
[d2]+s → []0sd2




After that, we just let the system output the answer, giving one step of advantage to
object Y es, in such a way that when we obtain in the environment an object Y es or an
object No we know that the system has halted (the computation has finished) and that
the object answers correctly the instance of the problem that we were considering.

answer ≡



[No → No0]−s
[Y es]−s → []0sY es
[No0]−s → []0sNo




5 Final Remarks

Up to now, the idea of a programming language has not been deeply discussed in the
community of researchers in Membrane Computing, but actually it is not hard to find
some similarities between different designs conceived for different purposes: the use of the
changes in the polarization, the technique of working with indexed objects and making
a rotation on the indexes, the use of renaming rules in order to inhibit the evolution of
an object until a specific instant in the computation, and of course the use of counters
(an indexed object that increases its index up to a certain value and then transforms into
something different), among others. It is worth mentioning as an example of applying
these strategies the design for the multidimensional Knapsack problem presented in [2].

In this paper a first informal approach is made to state some “macro-rules” that may
be used in a variety of situations. Of course, it is possible to define other subroutines for
other variants of P systems, and also much more work can be done in this field, increasing
the list of instructions of this, so to say, programming language.

As an example of the usefulness of the subroutines outlined in the previous section,
let us see how the design of the solutions for the Subset-Sum, Knapsack and Partition
would look like:

SUBSET-SUM
gen subsets (n)
calc weight (n)

rename
check weight
marker eq
counter (n)

clean dissolve
detector
answer

KNAPSACK
gen subsets (n)
calc weight1 (n)
calc weight2 (n)

rename
check weight1
marker leq

rename
check weight2
marker geq
counter (n)

clean dissolve
detector
answer

PARTITION
gen subsets (n)

calc weightcompl (n)
rename

check weight
marker eq
counter (n)

clean dissolve
detector
answer

255

Also the solutions for SAT and VALIDITY problems could be rewritten in this form
(we refer to [10] for the exhaustive description of the rules and of the similarities between
the two designs).

gen assignments(n)
calc satisfied clauses(n,m)

synchronization
check truth value(n,m)

counter(n,m)
answer

In this case, a division process is carried out at the beginning of the process to generate
one membrane for each possible truth assignment of the n variables appearing in the
formula. There, the electrical charges of the membranes in each step are meaningful,
because they determine whether a variable will be assigned a TRUE value or a FALSE
value. This strategy is very close to the one used in our generation stage.

In parallel with the division process, inside each membrane some objects keep track of
which of the m clauses is (are) satisfied whenever we assign a truth value to a variable.
This is somehow a weight calculation process, if the clause i gets a value of TRUE with
the current assignment of variable j, then we add the “witness” of the clause, otherwise,
we skip to the next variable. The technique of rotating the indexes is used here.

Concerning the checking process, the situation is different, because we need to check
that all the clauses are satisfied, instead of comparing the multiplicities of two objects.
However, the method that is used to control when the checking stage ends is a counter in
the skin, and this is also used for the numerical problems. Also the answering process is
very similar, the object Y es gets some priority over the object No by means of a counter
and of the electric charge of the skin membrane.

Acknowledgements. The support of this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds, is gratefully acknowledged.

References

[1] Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. Sancho-Caparrini,
F.: A Prolog simulator for deterministic P systems with active membranes, New
Generation Computing, to appear.

[2] Pan, L., Mart́ın-Vide, C.: Solving multidimensional 0-1 Knapsack problem by P
systems with input and active membranes, in the present volume.

[3] Păun, Gh.: Membrane Computing. An introduction, Springer-Verlag, Berlin, 2002.

[4] Păun, Gh.: Computing with membranes, Journal of Computer and System Sciences,
61(1), 2000, 108–143.

[5] Păun, Gh., Rozenberg, G.: A guide to membrane computing, Theoretical Computer
Sciences, 287, 2002, 73–100.

256

[6] Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active
membranes,New Generation Computing, to appear.

[7] Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear solution for the Knapsack problem
using active membranes, in C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg and
A. Salomaa (eds.), Membrane Computing. Lecture Notes in Computer Science, vol.
2933, 2004, 250–268.

[8] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Teoŕıa de la Com-
plejidad en modelos de computatión celular con membranes, Editorial Kronos, Sevilla,
2002.

[9] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division,Proceedings of the 5th Workshop
on Descriptional Complexity of Formal Systems, Budapest, Hungary.

[10] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes
in P systems,Meeting of the European Molecular Computing Consortium. Volume of
abstracts, Turku, Finland, May 15-17, 2003, p. 18.

[11] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Solving VALIDITY
problem by active membranes with input, Proceedings of the Brainstorming Week
on Membrane Computing, M. Cavalieri, C. Mart́ın-Vide, Gh. Păun (eds.), Report
GRLMC 26/03, 2003, 279–290.

[12] Riscos-Núñez, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: An efficient cellular
solution for the Partition problem, in this volume.

257

