
Maximum Search Using P Systems

Federico FONTANA, Giuditta FRANCO

University of Verona
Department of Computer Science

strada Le Grazie, 14
37134 Verona, Italy

E-mail: {fontana,franco}@sci.univr.it

Abstract. Several algorithms of maximum search are investigated and eval-
uated in different types of P systems, namely using priorities, multiple nested
membranes and linked transport. The proposed solutions are expected to find
application in a wide range of problems. In particular, the authors are cur-
rently working on modeling an algorithm for DNA sequence alignment using
P systems.

1 Introduction

The capability of P systems to execute in polynomial time programs that, otherwise,
need exponential time when executed using traditional computing resources, makes these
systems especially eligible for dealing with NP-complete problems [10, 9].

This is the case of the algorithms for aligning sequences of symbols. Such algorithms
must deal with the pair and multiple sequence alignment problem [4]. At an abstract
level they can be seen as procedures for finding the optimal alignment between a pair
or a multiple set of strings [7]. Though, at an application level, they have found major
diffusion among the most popular biological database search programs [8, 2].

In principle it is easy to figure out the best alignment: it is sufficient to construct and
then score all possible gapped alignments between two (or more) DNA sequences. This
corresponds to generate the entire tree of the alignments, then to label every leaf with the
related score: the higher the score, the better the alignment [5].

The procedure of sequence alignment becomes much more parsimonious, if the opti-
mality is dynamically checked out step by step. Instead of generating all possible gapped
alignments between two or more sequences and, finally, determining the best one, the
dynamic approach asks to evaluate at every time step some (partial) highest scoring
alignments, possibly leading to the (final) optimal score: this approach, corresponding
to pruning the tree of the alignments, dramatically reduces the number of computations
needed to achieve the final, optimal gapped alignment.

P systems can be in principle accommodated for generating the whole tree of the
alignments in polynomial time. Though, exploiting the parsimony coming from the dy-
namic programming strategy results in a more efficient use of the resources provided by
the membranes. The key point of this strategy consists in computing the maximum score
between several partial alignments competing to form the final optimal one: only the

152

x x x x x x x x
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Figure 1: “Horizontal” and “vertical” approach to the maximum search.

highest-scoring of them will be eligible to be included in the final alignment. A similar
problem has been dealt with in the context of rectangular pictures tiling using P systems
[3].

From the point of view of membrane computing, we can model this stage of the pro-
cedure as a search for the greatest multiplicity of N symbols. Literature concerned with
a similar issue includes the modeling of sorting algorithms [1]. This paper, then, focuses
on the problem of maximum search using membrane systems, and leaves the modeling of
the rest of the DNA sequence alignment procedure to a forthcoming research.

2 Non Deterministic, Maximally Parallel Maximum Search

It is known that the maximum search between N numbers can be easily carried out in
linear time on a serial machine, by performing successive comparisons of value pairs [4].
If multiple (parallel) computing resources come into play, then at every computation step
we can compare more than one pair simultaneously–though, in principle our processing
unit might be able to test triples or n-uples. Whatever the number of processing units and
their capability to perform multiple tests simultaneously, at the end of every computation
step we will have several relative maxima at hand. At this point the maximum must be
searched again on a reduced set of numbers, until reducing this set to a single value. We
call this kind of approach to the problem horizontal.

Alternatively, we should be able to count at least up to the maximum: during this
counting up, we should evaluate the input values (possibly all of them at the same time)
just until they become smaller or equal than the value counted out. This value (i.e., the
maximum) should finally be sent to the output. We call this second kind of approach to
the problem vertical.

We can cast the above considerations in the framework of a P system containing N
symbols, that selects the symbol having the largest number of occurrences and sends out
this number (thus solving a problem of maximum search) possibly along with the symbol
itself (thus solving, in addition, a problem of maximum value search).

The horizontal approach calls for a procedure that works on the symbols, whereas
the vertical approach calls for a procedure working on the symbol occurrences (refer to
figure 1). We will model both the horizontal and vertical maximum search, and discuss
the efficiency and complexity of the procedure under several types of membrane systems,

153

namely using multiple priorities on rules, multiple membranes, and linked transport. In
the following, we will indicate with |x| the number of copies of x.

3 Maximum Search with Priority

In the most simple case we can determine the maximum between two symbols x1 and x2,
each one present in the skin membrane with its own number of copies, by considering the
following construct [11]:

V = {x1, x2, x
′}, T = {x′}, w = x1x2,

R = {r1 : x1x2 → x′out, r2 : x1 → x′out, x2 → x′out}, ρ = {r1 > r2}

It is straightforward to see that the number of copies of symbols x′ coming out from
this simple membrane system is the maximum between |x1| and |x2|, but the information
on the maximum value is lost.

To preserve the information on the maximum value it is sufficient to change the rules
having priority r2 in x1 → x1

′
out, x2 → x2

′
out, after substitution of x′ with x′1, x

′
2 in V and

T . After this change the maximum is figured out as |x′1|+ |x′2| and the presence of x′2 in
the environment signals that it is |x′2| > |x′1|.

In general, we can extend the same reasoning to N symbols by repeatedly comparing
pairs of symbols until the final one goes out of the skin membrane. For the sake of simplicity
we can consider N to be a power of 2—it is anyway possible to add “ghost” symbols in
one copy in the membrane to achieve this condition, the maximum being unaffected by
this operation.

The corresponding construct is the following one:

V = {x1, x2, . . . , xN , x′1, x
′
2, . . . , x

′
N/2, x′′1, x

′′
2, . . . , x

′′
N/4, . . . , x(log N)},

T = {x(log N)}, w = x1x2 . . . xN ,

R =





r1 : x1x2 → x′1, x3x4 → x′2, . . . xN−1xN → x′N/2,

r2 : x1 → x′1, x3 → x′2, . . . xN−1 → x′N/2,

x2 → x′1, x4 → x′2, . . . xN → x′N/2,

r′1 : x′1x
′
2 → x′′1, x′3x

′
4 → x′′2, . . . x′N/2−1x

′
N/2 → x′′N/4,

r′2 : x′1 → x′′1, x′3 → x′′2, . . . x′N/2−1 → x′′N/4,

x′2 → x′′1, x′4 → x′′2, . . . x′N/2 → x′′N/4,

· · ·

r
(log N−1)
1 : x

(log N−1)
1 x

(log N−1)
2 → x

(log N)
out ,

r
(log N−1)
2 : x

(log N−1)
1 → x

(log N)
out ,

x
(log N−1)
2 → x

(log N)
out





, (1)

ρ = {r1 > r2 > r′1 > r′2 > . . . > r
(log N−1)
1 > r

(log N−1)
2 }

where log is the logarithm with basis 2.
The system behaves as follows: rules having priority r1 consume all the symbol pairs

x1x2, x3x4 and so on, that are initially present in the membrane, producing symbols

154

x′1, x
′
2, . . . , x

′
N/2. At the following time step such rules cannot be applied, and rules with

priority r2 turn all the remaining initial symbols (actually, those which cannot take part
in a couple) into symbols of type x′i. At the third time step rules having priority r1 and r2

cannot be applied any longer (all the initial symbols have disappeared), so the rules with
priority r′1 are applied to the new pairs x′1x

′
2, x′3x

′
4 and so on. Rules having priority r′2 are

applied at the fourth time step to the symbols of type x′i that cannot be paired, and so
on until the last symbol is sent out of the skin in a way that

|x(log N)| = max{x1, x2, . . . , xN}

The number of symbols in the multiset is halved every two time steps, after the application
of the rules with priority r

(i)
1 and r

(i)
2 . Then, the proposed system computes the maximum

in 2 log N time steps making use of

N + N/2 + N/4 + . . . + 2 + 1 = 2N − 1

symbols,

(N/2 + N) + (N/4 + N/2) + . . . + (1 + 2) = (N − 1) + (2N − 2) = 3N − 3

rules, and 2 log N priorities. That is, the maximum search is computed in logarithmic
time using one membrane with priorities. This system then requires a linear number of
symbols and rules.

We can save resources if we do not make use of symbols other than the initial ones.
In this case we can maintain the correct evolution in the system by producing a different
symbol from each pair. The new rules are contained in the following set:

R =





r1 : x1x2 → x1, x3x4 → x3, . . . xN−1xN → xN−1,
r2 : x2 → x1, x4 → x3, . . . xN → xN−1,

r′1 : x1x3 → x1, x5x7 → x5, . . . xN−3xN−1 → xN−3,
r′2 : x3 → x1, x7 → x5, . . . xN−1 → xN−3,

· · ·

r
(i)
1 : x1x2i+1 → x1, · · · xN−2i+1+1xN−2i+1 → xN−2i+1+1,

r
(i)
2 : x2i+1 → x1, · · · xN−2i+1 → xN−2i+1+1,

· · ·

r
(log N−1)
1 : x1xN/2+1 → x1 out,

r
(log N−1)
2 : xN/2+1 → x1 out





(2)

using the same priority set ρ seen in (1). Now we make use of N symbols and 2N − 1
rules, again with 2 log N priorities (and consequent computation steps).

We now wonder whether increasing the parallelism in the comparisons improves the
system performance or not. The answer is that it does not, as long as we have to compare
every possible combination of symbols during the production of new symbols. To have an

155

idea of it, consider the case of three symbols to compare. In that case we can define the
following construct:

V = {x1, x2, x3, x
′}, T = {x′}, w = x1x2x3,

R =





r1 : x1x2x3 → x′out,
r2 : x1x2 → x′out, x2x3 → x′out, x1x3 → x′out,
r3 : x1 → x′out, x2 → x′out, x3 → x′out



 , (3)

ρ = {r1 > r2 > r3}

From this it descends that if we have N symbols, with N being a power of 3, then 3 log3 N
steps are needed to find the maximum. More in general, we will need K logK N time steps
to maximize between N symbols using K-symbol parallel comparisons (again providing
N to be a power of K, eventually adding “ghost” symbols).

The function K logK N has an absolute minimum in correspondence of K = e. In
practice, simple and efficient implementations of the algorithm can be in principle realized
by setting K = 2 or K = 3. It is interesting to calculate the figures of complexity in the
case when one N -symbol comparison is performed by the system at once. This means
that we have to consider all possible combinations of N, N − 1, . . . , 2, 1 symbols. In this
case the maximum is searched in N logN N = N steps, using N + 1 symbols (or N if we
prefer to send out one of the initial symbols at our choice, hence avoiding the use of x′),
provided the existence of

N∑

i=1

(
N

i

)
= 2N − 1 (4)

rules.
On the other hand, N -symbol comparisons allow for a straightforward implementation

of a maximum value search algorithm. In this case it is sufficient to substitute the lowest
priority rules with the following ones:

rN : x1 → x1 out, x2 → x2 out, . . . , xN → xN out

in a way that the presence of the symbol xi outside the skin membrane signals that it has
maximal numeracy, and the maximum is equal to |x′|+ |xi|. If we want to account for the
more general case of multiple maximum values then a more elaborate strategy must be
implemented, for example by sending out at every computation, along with x′, additional
symbols related to the tuples being processed during that computation.

4 Maximum Search with Multiple Membranes

Similarly to what we have done with priorities we can define a construct analogous to (1)
using the rules expressed by (2), this time using logK N nested membranes when K-symbol
parallel comparison is implemented. In the case K = 2 we have the following construct
(in an attempt to simplify the notation, we have labeled the membranes using a reverse
order instead of increasing their numerical value while moving from the outside toward

156

the inside):

V = {x1, x2, . . . , xN}, T = {x1},
µ = [log N [log N−1 . . . [2[1]1]2 . . .] log N−1] log N ,

w1 = x1x2 . . . xN , wi = λ , i = 2, . . . log N,

Ri =





r1 : x1x2i−1+1 → x1 · · · xN−2i+1xN−2i−1+1 → xN−2i+1

r2 : x1 → x1δ, · · · xN−2i+1 → xN−2i+1δ
x2i−1+1 → x1δ, · · · xN−2i−1+1 → xN−2i+1δ



 , (5)

i = 1, 2, . . . , log N − 1

Rlog N =





r1 : x1xN/2+1 → x1 out

r2 : x1 → x1 out

xN/2+1 → x1 out



 ,

ρi = {r1 > r2}, i = 1, 2, . . . , log N

The evolution mechanism using this construct is the following:

• pairs x1x2, x3x4, . . . are consumed by the rules with priority r1 in membrane 1. After
the application, at the next time step, of the rules having priority r2, membrane 1
dissolves setting the symbols x1, x3, . . . free to float in membrane 2. Each of those
symbols is present in a number of copies equal to the relative maximum related to
the pair the symbol itself comes from;

• the same operations happen in membrane 2, this time applied to the pairs
x1x3, x3x5, Half of the previous rules are needed to perform the same kind of
processing occurred in membrane 1, to select new relative maxima from the existing
pairs;

• an identical processing happens in membrane 3, 4, and so on. Finally, in the skin
membrane (labeled log N) the absolute maximum is computed, and sent out as |x1|.

Compared to the construct (1), the implementation using multiple membranes again
needs 3N − 3 rules with N symbols, to compute the result in 2 log N time steps. Imple-
menting a single N -symbol parallel comparison reduces the number of nested membranes
to one, hence leading to a P system that is identical to the one seen in the case of N -symbol
parallel comparison using multiple priorities on the rules.

5 Maximum Search with Linked Transport

Linked transport can realize the maximum search, provided that a sufficient amount of
substances are present in the environment in order to enable the needed exchange of
molecules (symbols) via antiport rules. Apart from this technical aspect, the algorithmic
mechanism of “vertical” symbol selection is the same as the one seen in the previous
sections.

In the easiest case the idea is to select symbols from pairs, by exchanging molecules with
the environment. Once the symbols that are present in fewer copies have been sent out,

157

the same selection is performed over new pairs until one symbol is left in the membrane.

V = {x1, x2, . . . , xN , x′1, x
′
2, . . . , x

′
N/2, x′′1, x

′′
2, . . . , x

′′
N/4, . . . , x(log N),

y1, y2, . . . , yN , y′1, y
′
2, . . . , y

′
N/2, y′′1 , y′′2 , . . . , y′′N/4, . . . , y

(log N−1)
1 , y

(log N−1)
2 ,

b1, . . . , bN/2, b
′
1, . . . , b

′
N/4, . . . , b

(log N−1)
1 , c1, . . . , cN/2, c

′
1, . . . , c

′
N/4, . . . , c

(log N−1)
1 ,

d1, . . . , dN/2, d
′
1, . . . , d

′
N/4, . . . , d

(log N−1)
1 , a′1, . . . , a

′
N/2, a

′′
1, . . . , a

′′
N/4, . . . , a

(log N)
1 }

T = {x(log N)}, w = x1x2 . . . xN , (6)

R =





(x1, out; b1y1, in) (x3, out; b2y3, in) . . . (xN−1, out; bN/2yN−1, in),
(x2, out; b1y2, in) (x4, out; b2y4, in) . . . (xN , out; bN/2yN , in),

(y1y2, out;x′1, in) (y3y4, out;x′2, in) . . . (yN−1yN , out;x′N/2, in),
(b1, out; c1d1, in) (b2, out; c2d2, in) . . . (bN/2, out; cN/2dN/2, in),

(c1y1, out;x′1, in) (c2y3, out;x′2, in) . . . (cN/2yN−1, out;x′N/2, in),
(c1y2, out;x′1, in) (c2y4, out;x′2, in) . . . (cN/2yN , out;x′N/2, in),
(d1, out; a′1, in) (d2, out; a′2, in) . . . (dN/2, out; a′N/2, in),

(a′1x
′
1, out; b′1y

′
1, in) (a′3x

′
3, out; b′2y

′
3, in) . . . (a′

N/2−1
x′

N/2−1
,out;b′

N/4
y′

N/2−1
,in),

(a′2x
′
2, out; b′1y

′
2, in) (a′4x

′
4, out; b′2y

′
4, in) . . . (a′N/2x

′
N/2, out; b′N/4y

′
N/2, in),

(y′1y
′
2, out;x′′1, in) (y′3y

′
4, out;x′′2, in) . . . (y′N/2−1y

′
N/2, out; x′′N/4, in),

(b′1, out; c′1d
′
1, in) (b′2, out; c′2d

′
2, in) . . . (b′N/4, out; c′N/4d

′
N/4, in),

(c′1y
′
1, out;x′′1, in) (c′2y

′
3, out;x′′2, in) . . . (c′N/4y

′
N/2−1, out;x′′N/4, in),

(c′1y
′
2, out;x′′1, in) (c′2y4, out;x′2, in) . . . (c′N/4y

′
N/2, out;x′′N/4, in),

(d′1, out; a′′1, in) (d′2, out; a′′2, in) . . . (d′N/4, out; a′′N/4, in),

· · ·

(a(log N−1)
1 x

(log N−1)
1 , out; b(log N−1)

1 y
(log N−1)
1 , in)

(a(log N−1)
2 x

(log N−1)
2 , out; b(log N−1)

1 y
(log N−1)
2 , in)

(y(log N−1)
1 y

(log N−1)
2 , out;x(log N), in)

(b(log N−1)
1 , out; c(log N−1)

1 d
(log N−1)
1 , in)

(c(log N−1)
1 y

(log N−1)
1 , out;x(log N), in)

(c(log N−1)
1 y

(log N−1)
2 , out;x(log N), in)

(d(log N−1)
1 , out; a(log N)

1 , in)

(a(log N)
1 x(log N), out)





Despite the number of rules, the system evolution is quite simple:

• the initial symbols xi are exchanged with identical numbers of copies of symbols yi,

158

respectively. Meanwhile, the “synchronization” symbols b1, . . . , bN/2 are imported
from the environment (note that |bi| = |xi|+ |xi+1| > max{|xi|, |xi+1|});

• the pairs x1x2, . . . , xN−1xN are exchanged with the symbols x′1, . . . , x
′
N/2. In parallel,

symbols bi are exchanged with new control symbols ci and di, respectively;

• for each i = 1, . . . , N/2, the symbols yi, yi+1 which could not be paired are carried
out by ci and exchanged with additional x′i. Now, x′i contains the information on
the relative maximum related to the pair (yi, yi+1). In parallel, the synchronization
symbol di is exchanged with a′i, which enables the processing of the new level of
pairs (i.e., x′1x

′
2, . . . , x

′
N/2−1x

′
N/2) to start.

The horizontal lines drawn between the braces of R separate the computation steps in
groups, each related to the parallel processing of a level of pairs. In the final step the
symbol x(log N) is sent out of the skin membrane, and the maximum can thus be read as
|x(log N)|.

The number of steps needed to figure out the result is 3 log N plus the last (symport)
transport. The symport/antiport rules involved in the process are 7(N/2 + N/4 + . . . +
1) + 1 = 7N − 6. The system needs (2N − 1) + (2N − 2) = 4N − 3 informative symbols
and 4(N/2 + N/4 + . . .) = 4N − 4 carrier and “synchronization” symbols.

Note that the process ends leaving a certain amount of “garbage”, in the form of
symbols of type a and c. In fact, the number of copies of such symbols left inside the
membrane does not equal the number of copies of the initial symbols. Strategies to get
rid of this garbage can be anyway implemented [?].

Once again, higher-degree parallel comparisons can be chosen [?]. In particular, we
give the construct performing N -symbol parallel comparison (again, horizontal lines in R
separate successive computation steps).

V = {x, x1, . . . , xN , y1, . . . , yN , a1, . . . , aN+1, b0, . . . , bN , A1, . . . , AN},
T = {x}, w = x1x2 . . . xN , (7)

R =





(x1, out; b0A1y1, in) (x2, out; b0A2y2, in) . . . (xN , out; b0ANyN , in),
(y1y2 . . . yN , out;x, in),

(b0, out; a1b1, in),
(a1y2 . . . yN , out;x, in) (a1y1y3 . . . yN , out;x, in) . . . (a1y1 . . . yN−1, out;x, in),

(b1, out; a2b2, in),
· · ·((

N
i

)
combinations of yi carried out by ai;x, in

)

(bi, out; ai+1bi+1, in),
· · ·

(aNA1y1, out;x, in) (aNA2y2, out;x, in) . . . (aNANyN , out;x, in),
(bN , out; aN+1, in),

(aN+1x, out)





The system first exchanges xi with yi respectively preserving the number of copies,
furthermore acquires the synchronizing symbol b0. Next it exchanges with x as many
N -uples of symbols yi as possible, meanwhile substituting b0 with b1 along with acquiring
the carrier symbol a1. All the remaining steps consist in exchanging (via the carrier)
combinations of symbols yi with x, meanwhile updating the sync and carrier symbols
through rules of the type (bi, out; ai+1bi+1, in). During the last step, all x’s are sent out

159

via a symport rule in a way that the maximum |x| can be read in the environment. As
before, garbage is left in the membrane.

Again, the N -symbol comparison allows to search the maximum value straightfor-
wardly. In the above implementation we have in fact added the symbols A1, . . . , AN that
enter the membrane during the first computation step and turn out to be useful in the
end of the computation: since at most one of the rules of the type (aNAiyi, out;x, in) will
be activated in practice, then Ai will signal that xi has the largest number of copies as
long as it is sent out of the membrane. As briefly discussed in section 3, the search for the
maximum value can be extended to the multiple case, by sending out additional symbols
in correspondence to each rule of the type (something, out;x, in).

The system implementing maximum search using linked transport with N -symbol
comparison computes the result in N steps, plus two additional steps needed to exchange
molecules respectively in the beginning and the end of the process. 2N + 1 informative
symbols and 2N +2 auxiliary symbols suffice, though—refer to (4)—(2N−1)+N +N +1 =
2N + 2N = O(2N) rules are present in the system. Additional N symbols are needed to
compute also the maximum value (if unique).

6 “Vertical” Approach to the Maximum Search

The vertical approach consists in a parallel counting of symbols with a sort of elimination
of those having a lower number of copies. The iteration of this process finally leaves a
membrane which is related to the symbol with maximum number of copies, and all these
copies are produced by the system and sent to the environment as output of the algorithm
for maximum search.

In order to compute the maximum number of copies among N given elements
a1, . . . , aN we consider the following P system, in which standard evolution rules and
few priorities are used.

V = {a1, . . . , aN , a′1, . . . , a
′
N , d1, . . . , dN}, T = {a1, . . . , aN}

µ = [s [1]1 [2]2 . . . [N]N]s, wi = a′ia
ki
i , ki = |ai|, i = 1, . . . , N

Ri =
{
r1 : a′ia

′
i → a′idi out, r2 : a′iai → a′iai out, r3 : a′i → a′iδ

}

ρi = {r1 > r2 > r3}, i = 1, . . . , N

Rs =





a′1a
′
2 . . . a′N−2a

′
N−1 → a′N inN

,

a′1a
′
2 . . . a′N−2a

′
N → a′N−1 inN−1

...
a′1a

′
3 . . . a′N−1a

′
N → a′2 in2

a′2a
′
3 . . . a′N−1a

′
N → a′1 in1

d1a1 → d1a1 out

d2a2 → d2a2 out
...

dNaN → dNaN out





(8)

The system evolution can be described by the following steps:

160

• Initially, we have N membranes floating in the skin region; each of them, labeled i,
with i = 1, . . . , N , contains all copies of symbol ai and one copy of a′i.

• In the first time step only r2 rules are applied (with maximum parallelism) inside
each membrane, until membrane j with the minimum number of elements contains
only its primed symbol. Since no rules with higher priority can be applied, then r3

(with lower priority) is applied and membrane j is dissolved. Consequently, a′j will
pass in the skin region.

• The previous step is performed until N − 1 different primed symbols are present in
the skin region, that is, until N − 1 membranes (containing at every ‘dissolution
step’ the minimum number of elements) have been dissolved. In fact, in this case
one of the first N rules of Rs—see (8)—is applied, and the presence of two copies of
a primed symbol in a membrane blocks the application of the second rule (just for
one step), because the first one with major priority has to be applied.

• If ai is the symbol with maximum number of copies, say m, at this point a process
of ‘exit’ from the skin membrane of the copies ai is triggered. In fact, the (N + i)th
rule of Rs is applied while also r2 is applied inside the membrane i. When r2 is
no longer applicable (that is, all copies of ai are out of the membrane), the rule r3

provides to eliminate the last internal membrane.

• As usual, the process halts when there are no rules left to apply; in this system
the final configuration is µ = [sak1

1 . . . a
ki−1

i−1 a
ki+1

i+1 . . . akN
N di]s, and all and only the m

copies of ai are sent by the system to the environment.

Differently from the other approaches the number of computational steps here depends
on the initial values of the multiplicities (and in particular on the maximum). In fact,
initially a number of steps equal to the second greater multiplicity, say m1, is performed,
and then, in further m steps, the m copies of ‘maximum-symbol’ are produced externally.

In general the total number of computational steps is thus O(m), but this complexity
can be reduced by increasing the number of primed symbols entering the membrane con-
taining the maximum and, hence, the occurrences of the carrier d. This can be done by
changing the rules in the skin region into:

Rs =





a′1a
′
2 . . . a′N−2a

′
N−1 → a′hN inN

,

a′1a2
′ . . . a′N−2a

′
N → a′hN inN

...
a′1a

′
3 . . . a′N−1a

′
N → a′h2 in2

a′2a
′
3 . . . a′N−1a

′
N → a′h1 in1

d1a1 → d1a1 out

d2a2 → d2a2 out
...

dNaN → dNaN out





If h is equal to 2m1 then, by means of the carrier, the system sends out m1 copies of
the maximum symbol in the first step, and the total number of computation steps becomes
exactly m.

161

system computation number of number of number of number of
configuration steps symbols membranes rules priorities

P/2-SPC O(log2 N) O(N) O(1) O(N) O(log2 N)
P/N -SPC O(N) O(N) O(1) O(2N) O(N)
NM/2-SPC O(log2 N) O(N) O(log2 N) O(N) O(1)
NM/N -SPC O(N) O(N) O(1) O(2N) O(N)
LT/2-SPC O(log2 N) O(N) O(1) O(N) —
LT/N -SPC O(N) O(N) O(1) O(2N) —

P/V O(max) O(N) O(N) O(N) O(1)

Table 1: Figures of performance for maximum search under different membrane systems
(P: priorities; NM: nested membranes; LT: linked transport; 2-SPC: 2-symbol parallel
comparison; N -SPC: N -symbol parallel comparison), V: vertical approach.

The vertical approach is effective when we have a lot of objects with low multiplic-
ity. Likewise, strategies for searching the maximum value can be set up avoiding the
exponential explosion of the resources as it happens with the horizontal approach.

7 Summary

Starting from the idea of modeling a dynamical sequence alignment algorithm using P
systems, we have finally focused on a specific point of it, that is, the maximum search
between elements in a set. The investigation we have conducted is nevertheless valid per
se, given the wide range of contexts where the maximum search problem must be dealt
with. In particular, we have evaluated the performance of several search algorithms based
on two orthogonal approaches to the problem, and different P-systems. This performance
is summarized in table 1 in terms of computational time and resources needed to figure
out the solution.

The overall investigation on sequence alignment might reveal unexpected links between
membrane systems and DNA computing paradigms, due to the close relationship existing
between dynamical sequence alignment and several DNA processes. The work to do now
deals with a strategy to model the growing of a DNA sequence using P systems, and it is
actually in progress.

The authors want to acknowledge in particular Agust́ın Riscos-Núñez, Rodica Ceterchi
and Gheorghe Pǎun for the fruitful discussions taken at the Second Brainstorming Week
on Membrane Computing held on February 2-7 in Seville, Spain.

Acknowledgements. The authors want to acknowledge in particular Agust́ın Riscos-
Núñez, Rodica Ceterchi, and Gheorghe Păun for the fruitful discussions taken at the
Second Brainstorming Week on Membrane Computing held on February 2-7 in Sevilla,
Spain.

References

[1] A. Alhazov and D. Sburlan, Static Sorting Algorithms for P Systems, Proc. Work-
shop on Membrane Computing (A. Alhazov, C. Mart́ın-Vide, and G. Păun, eds.),

162

Tarragona, July 2003, 17–40.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic Local Alignment
Search Tool, J. Molecular Biology, 215 (1990), 403–410.

[3] R. Ceterchi, R. Gramatovici, and N. Jonoska, P Systems for Tiling Rectangular
Pictures, Proc. Workshop on Membrane Computing (A. Alhazov, C. Mart́ın-Vide,
and G. Păun, eds.), Tarragona, July 2003, 133–144.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-
Hill, New York, 1990.

[5] R.A. Dwyer, Genomic Perl, Cambridge University Press, New York, 2003.

[6] F. Fontana, G. Franco, and V. Manca, P Systems in Bio Systems, in Applications on
Membrane Systems (G. Ciobanu, G. Păun, and M.J. Pérez-Jiménez, eds.), Springer,
2004 (in progress).

[7] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, New York, 1997.

[8] D.J. Lipman and W.R. Pearson, Rapid and Sensitive Protein Similarity Searches,
Science, 227 (1985), 1435–1441.

[9] C. Mart́ın-Vide, V. Mitrana, and G. Păun, On the Power of P Systems with Valua-
tions, Computacion Sistemas, 5 (2001), 120–127.

[10] G. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

[11] G. Păun and G. Rozenberg, A Guide to Membrane Computing, Theoretical Computer
Science, 287 (2002), 73–100.

163

