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Abstract. Two classes of tissue P systems based on evolution communication
rules are introduced, some results are proved, but many more are listed as
further research problems. A framework to develop population P systems is
defined and a number of variants formulated with a strong biological motiva-
tion.

1 Introduction

P systems represent a class of distributed and parallel computing devices of a biological
type that was introduced in [15]. Several variants of this model have been investigated
and the literature on the subject is now rapidly growing. The main results in this area
show that P systems are a very powerful and efficient computational model [16], [18], [13].

The main ingredient of a every P system is a membrane structure defined as a hierar-
chical arrangement of different membranes embedded in a unique main membrane, which
identify several distinct regions inside the system. Each region gets assigned a finite mul-
tiset of objects and a finite set of rules for modifying the objects or moving them from a
place to another one. The structure of a P system is usually represented as a tree. Tissue
P systems has been then proposed as a variant of membrane systems where the structure
of the system is defined as an arbitrary graph. Nodes in the graph represent membranes
that are able to communicate objects alongside the edges of the graph [16].

From a biological point of view, tissue P systems can be interpreted as a straight-
forward model of cell behaviour in multicellular organisms. In such organisms, cells are
specialized members of a multicellular community. They collaborate with each other to
form a multitude of different tissues, arranged into organs performing varied functions.
These important features of cell behaviour in tissues are shared by biological system at
various levels. In general, they may be regarded as composed from many individually
components that cooperate in a coherent way by interacting each other. This population
of individuals is usually far from being stable: mechanisms enabling new individuals to be
introduced, and mechanisms causing the removal of some individuals play a fundamental
role in the evolution of a biological system as a community of interacting/cooperating
components.
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The present paper deals with both aspects of cell communication in tissue P systems
and aspects of cell proliferation in population P systems. In section 2 we consider a variant
of tissue P systems that is inspired by the general mechanism of cell communication that is
based on signal molecules and receptor proteins. Section 3 presents a general framework
for population P systems, a class of P systems relying on cell division with a dynamic
structure of the underlying graph. Many variants are then derived from this framework
and research topic formulated.

All over the paper, the reader is supposed to be familiar with the basic knowledge of
membrane computing [16]. We just adopt a slight different terminology: the term mem-
brane is replaced by the term cell to denote the basic functional unit of a tissue P system
or a population P system. Furthermore, we will use the notion of matrix grammars with or
without appearance checking and the well-known hierarchy CF ⊂ MAT ⊂ MATac = RE
[8], where CF , MAT , MATac, and RE denote the family of context-free, matrix, matrix
with appearance checking, and recursively enumerable languages, respectively.

2 Cell Communication

Mechanisms enabling one cell to influence the behaviour of another one play a fundamen-
tal role in multicellular organisms where cells have to be able to coordinate their own
behaviour for the benefit of the organism as a whole. These communication mechanisms
depend heavily on extracellular signal molecules, which are produced by a cell to signal
their neighbours or cells that are further away. Most of these signal molecules are secreted
from the signaling cell into the extracellular space by diffusion through the plasma mem-
brane. Some signals remain instead tightly bound to signaling cell surface, and they are
able to influence cells that are in direct contact with the signaling cell. Cells can respond to
external signaling by means of some proteins called receptors; receptors are able to recog-
nise external signals by binding signal molecules to cell surface. Each receptor specifically
binds a signal molecule (or a class of signal molecules) and initiates a specific response
inside the target cell. In multicellular organisms, cells of different types are designed to
respond to different classes of signal molecules and have got assigned different classes of
receptor proteins. When a receptor binds a signal molecule, they form a single active unit
that generates a cascade of intra-cellular signals, that eventually alter a target protein in
a way that changes the behaviour of the cell [2].

From a P system point of view, cell communication based on signals and receptors
represents an interesting combination of communication (a signal object is produced in-
side a cell and reaches another cell identified as target cell) and evolution (the target cell
responds by altering its internal status). This leads to two reasonable interpretations for
the cell communication mechanism in the context of P systems: signals and receptors as
a mechanism to move objects from a cell to another one, or signals and receptors as a
mechanism to trigger particular transformations inside a cell once a signal has been recog-
nised by means of some receptor. In a sense, this latter interpretation can be related to
two common notions in membrane computing: the notion of catalyst (the transformation
of an object is mediated by a specific catalyst object) and the notion of promoter (the
application of some rules inside a region depends on the presence of particular objects
called promoters) (see [16]).

In the rest of this section, we want to explore both these possibilities by firstly con-
sidering an evolution-communication model where communication is mediated by special
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receptor objects, and then a variant of tissue P systems where signals are used for acti-
vating different sets of rules inside a cell.

2.1 Evolution-Communication Model

Evolution-communication P systems represent a class of P systems where objects are
transformed and communicated by means of two separate mechanisms, which are usually
expressed in terms of a finite set of transformation rules and a finite set of communication
rules. The term evolution-communication is mainly used to distinguish these systems
from purely communicative P systems (the objects can only be moved from one place to
another one without any chance of being modified) and from the basic model of membrane
systems (where communication is a consequence of transformation rules) [16]. Two main
variants of evolution-communication P systems have been considered so far: P systems
with boundary rules [5], and evolution-communication P systems with symport/antiport
as communication rules [6].

We introduce here a variant of tissue P systems where transformation rules are usual
rewriting rules on multisets of objects whereas, communication among cells is mediated by
special receptor objects. A receptor is represented as an object x̄ where x is a finite multiset
of objects that stands for the multiset recognised by that receptor . This notation is used
to specify that a receptor x̄ acts as a single unit with respect to the objects in x, which are
therefore received in lumps. Communication among cells is then achieved by allowing a
multiset x to move from a cell to another one if and only if, the selected target cell contains
a receptor x̄. This target cell is chosen in a non-deterministic way among those that are
in direct contact with the cell that contains the multiset x. Furthermore, we assume that
a receptor is immediately destroyed after having been used for some communication. New
receptors can be created by using transformation rules that, besides standard objects, are
able to produce receptors as well. An example is pictorially described in Figure 1 that
shows how communication among cells is achieved by means of receptors.

From a biological point of view, these features of receptors reflect the fact that there
is a continuous turnover of molecules at cell surface level, and in many cases, the binding
of a signal molecule to a receptor modifies the receptor conformation, which need then to
be replaced in order to initiate a new response.

Remark 2.1. The communication model based on receptors we are considering here
has evident similarities with some of the notions already considered in the area of mem-
brane computing: symport/antiport rules with promoters [16], boundary rules [5], and
the so-called one-way communication model mainly considered in the context of P au-
tomata [7], [9]. In those variants, one can in fact express communication rules of the
form x [i y → [i xy where x, y are arbitrary multisets of arbitrary sizes. Rules of this form
specify that a multiset x can enter a membrane i if and only if, membrane i contains a
multiset y; that is, the multiset y acts as a receptor for the multiset x. In this respect, one
can easily reconsider boundary rules in the context of tissue P systems by adopting for
instance communication rules of the form x ]j [i y →]j [i xy. This is to say that a multiset x
can be moved from a cell j to a cell i if and only if, cell i contains a multiset y. Notice that
in this case, communication is no longer one-way as the mechanism turns to be symmetric
(i.e., objects can enter a cell and can exit a cell as well). However, the mechanism based
on receptors is more restrictive in what concerns the following aspects:
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Figure 1: The multiset ab is moved into cell 3 from cell 1 by means of the receptor āb;
the object b is moved into cell 3 from cell 1 by means of the receptor b̄. The receptors in
cell 3 are destroyed whereas, a receptor b̄ remains in cell 2 as it has not been used in any
communication.

• a receptor is meant to be very specific for a particular multiset of objects: it can be
used only in communications that involve that particular multiset;

• a receptor is immediately destroyed after having been used for some communication;

• the target cell is chosen in a non-deterministic way.

In other words, we are considering communication rules of the form

x ]i [ x̄ →]i [ x, (1)

where: the receptor x̄ is consumed by the rule; the receptor x̄ can only appear in com-
munication rules like (1) specifically coupled with the multiset x and vice versa; a second
label is not specified as the target cell is non-deterministically chosen.

We are now ready to give a formal definition for tissue P systems with receptors.

Definition 2.1. A tissue P system with receptors is a construct

T = (V, γ, C1, C2, . . . , Cn, cO)

where:

1. V is a finite alphabet of symbols called objects;

2. γ = ({1, 2, . . . n}, A), is a finite undirected graph that defines the structure of the
system where A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n };

3. Ci = (wi, ρi, Ri), for each 1 ≤ i ≤ n, with:

• wi ∈ V ∗ a finite multiset of objects,

• ρi ∈ { ū |u ∈ V ∗ }∗ a finite multiset of receptors,

• Ri is a finite set of evolution rules of the forms x → yz for z ∈ { ū |u ∈ V ∗ }∗,
x, y ∈ V ∗, and (x, out), with x ∈ V ∗;
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4. cO is the output cell.

A tissue P system with receptors T is defined by a finite undirected graph γ where
each node is labeled by a value in {1, 2, . . . , n} and corresponds in one-to-one manner to
a cell Ci. The edges in the graph γ define the bonds that exist among the cells and they
define the structure of the P system T . An edge is represented as an unordered pair {i, j},
with 1 ≤ i 6= j ≤ n.

Each cell Ci represents a basic functional unit of the system that is characterised by: a
finite multiset of objects wi that defines the initial content of the cell Ci, a finite multiset of
receptors ρi that are initially assigned to the cell Ci, and a finite set of evolution rules Ri.

Each set of rules Ri contains evolutions rules of the form x → yz where x and y are finite
multisets of objects whereas z is a finite multiset of receptors. A rule of this form specifies
that a multiset x can be consumed inside a cell i in order to produce a new multiset
of objects y and a new multiset of receptors z. Moreover, we consider communication
rules of the form (x, out) that allow a cell to release a multiset x in the environment.
This is mainly to simplify the operation of removing objects from the system. In fact,
objects that are sent out from the cells are considered as being lost because, as usual in
evolution-communication P systems, we do not provide any specific notion of environment.

A computation is then defined in the usual way by saying that, by starting from the
initial configuration, a tissue P system with receptors evolves by applying the rules in a
non-deterministic maximal parallel manner. Specifically, in each step of a computation,
in each cell i:

• a multiset of objects x can be either transformed by a rule Ri or communicated to
a cell j by means of some receptor associated with that cell j; a multiset x can be
moved from a cell i to a cell j non-deterministically chosen if and only if, there exists
an edge {i, j} in γ and cell j contains a receptor x̄;

• all the receptors that have been used for some communication purposes are removed
from cell i, and all the new receptors produced by rules in Ri are added to cell i;

Notice that here the number of objects that can be communicated in a single step of
communication is bounded by the overall size of the receptors that are currently assigned
to the cells. In other words, receptors act as communication channels of finite capacity
that can be used just once in a single step of computation and then they need to be
replaced.

A configuration of a tissue P system T is defined as a tuple Σ = (C ′
1, C

′
2, . . . , C

′
n),

with C ′
i = (w′i, ρ

′
i) the current status of the cell i in terms of objects and receptors. A

computation in T is said to be successful if it reaches a configuration Σf where no more
rules can be applied and no more receptors can be used. The configuration Σf is called a
halting one. The result of a successful computation is the Parikh vector associated with
the multiset of objects that is contained in the output cell cO in the halting configuration.
The set of Parikh vectors generated by all the successful computations in T is denoted
by Ps(T ).

We denote by PsOTPn,p(e, recr, outh), for e ∈ {nCoo, Coo}, n, p, r, h ≥ 1 the family
of sets of Parikh vectors that are generated by tissue P systems with at most n cells and
where, in each step of any computation, in each cell, the number of receptors is less than or
equal to p. Furthermore, e specifies the type of evolution rules that are used (cooperative
or non-cooperative), r specifies the maximal size for the receptors that are used inside the
cells, and h specifies the maximal size for the multisets that appear in output rules. The

78



parameter p has been specifically introduced in order to bound the number of receptors
that can be assigned to the cell-surfaces as, for each cell, this surface is supposed to be of
a finite capacity. On the other hand, here we do not care about the number of different
types of receptors that are used in the cells; this might represent a further research topic.
As well as this, we are not concerned with the form of the graph that defines the structure
of the system.

The first natural problem we have to look at regards the generative capacity of tissue
P systems with a bounded number of cells and a bounded number of receptors. Here we
provide some partial answers that result from this preliminary investigation.

We know from the result obtained for the basic model of P systems [16] that P systems
with cooperative evolution rules and one membrane are computationally complete. This
result can be immediately transferred to tissue P systems with receptors.

Theorem 2.1. PsOTP1,1(Coo, rec1, out1) = PsRE.

More interesting is the case of systems with non-cooperative rules.

Theorem 2.2. PsMAT ⊆ PsOTP3,∗(nCoo, rec1, out1)

Proof. Consider a matrix grammar without appearance checking in binary normal
form where all the matrices of the form (X → Y,A → x1x2), with x1, x2 ∈ N2 ∪ T ∪ {λ},
Y ∈ N1, are labeled in a one-to-one manner with values 1 to k for some k ≥ 1. Here,
N1, N2 denote two separate alphabets of non-terminal symbols whereas, T denotes an
alphabet of terminal symbols.

We construct a tissue P system T that contains 3 cells where: C1 = (XA, λ), for
(S → XA) the initial matrix of the matrix grammar to be simulated, C2 = ($, λ), for $ a
new special symbols, and C3 = (λ, f̄), for f another new special symbol. The structure of
the system T is then given by the finite undirected graph γ = ({1, 2, 3}, {{1, 2}, {1, 3}}).

Then, for each matrix i : (X → Y, A → x1x2), 1 ≤ i ≤ k, and for each 1 ≤ j ≤ k, we
consider the following sets of rules associated with the cells:

R1 : X → piq̄i,
pj → #,
# → #,
qj → †̄j ,
†i → x′1x

′
2Y

′$
s′ → s for each s ∈ (N1 ∪N2 ∪ T ).

R2 : $ → p̄j ,

pi → †iĀ$̄,
†j → †j ,
A → q̄j .

The simulation of a matrix i : (X → Y, A → x1x2) is performed in the following way. In
cell 1, the symbol X is replaced by an object pi and a receptor q̄i. At the same time,
the object $ is replaced in cell 2 by a receptor p̄j . Now, if i 6= j then we are forced to
apply in cell 1 the rule pj → #, which introduces the symbol # that generates an infinite
computation. Otherwise, if i = j, we can move the object pi from cell 1 to cell 2; here, the
object pi is replaced by an object †i, a receptor Ā, and a receptor $̄. Next, if cell 1 does
not contain any object A then the simulation of the matrix i stops but the computation
does not halt because of the rule †i → †i. Otherwise, an object A is moved from cell 1 to
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cell 2, where it is replaced by an object qj . Yet again, if i 6= j then we obtain an infinite
computation for the rule †i → †i. If we have instead produced an object qi then, this can
be moved from cell 2 to cell 1 by using the receptor q̄i. Here we obtain a receptor †̄i that
is used to remove the object †i from cell 2. The simulation of the matrix i is completed
in two further steps of computation: first we use the rule †i → x′1x

′
2Y

′$ in cell 1, then we
move the object $ from cell 1 to cell 2 and we use a rule s′ → s for each symbol s′ that is
present in cell 1.

In a similar way, we simulate matrices of the form (X → λ,A → x1x2), with x1, x2 ∈ T
that are used to finish a derivation in the grammar. Specifically, this is done by considering
in cell 1 a rule †i → f instead of a rule †i → x′1x

′
2Y

′$. The object f once produced is
immediately moved from cell 1 to cell 3; this cell in fact contains by definition a receptor f̄ .
In cell 3, we consider the rule f → Ā1 . . . Ār, for N2 = {A1, . . . , Ar}, and the rules
A → A, for each A ∈ N2. These are used to check whether cell 1 still contains some
non-terminal symbols or not. If that is the case then, the computation halts by having
correctly simulated a derivation in the matrix grammar.

Notice that the number of receptors cannot be bounded because, in order to make sure
that the computation correctly halts, we need to produce in cell 3 a number of receptors
that depends on the size of the alphabet N2 in the matrix grammar to be simulated. 2

This result shows that tissue P systems with receptors of size 1 and non-cooperative
rules are at least as powerful as matrix grammars without appearance checking. Finding
an upper bound for the power of this particular family of tissue P systems remains an
open problem as well as investigating the generative capacity of systems with a bounded
number of receptors. On the other hand, we expect the universality to be proved for tissue
P systems that use receptor of size 2.

Conjecture 2.1. PsOTPn,∗(nCoo, rec2, out1) = PsRE, for some n ≥ 1.

Obviously, the exact number of membrane has to be determined and possibly an upper
bound on the number of receptors has to be found.

Remark 2.2. [i x ]i → [j y ]j In Remark 2.1 we have already pointed out the similarities
between tissue P systems with receptors and other existing models of P systems. In this
respect, one may notice an obvious link between the results presented here and the results
already obtained in the area of P systems, where, in order to obtain the universality,
symport rules of size 2 or promoter of size 2 are always used [16], [18], [13]. However, if
Conjecture 2.1 was proved then, we would get an universality result for tissue P systems
with rules of size 2 even in this restricted framework based on the notion of receptors
as specified in Remark 2.1. On the other hand, one can always think of getting rid
of receptors and considering generalised boundary rules of the form x ]i [ y →]i [ xy as
indicated in Remark 2.1 (i.e., a multiset x can be moved from a cell i to another one
non-deterministically chosen among those that contact cell i and contain a multiset y). It
would be then interesting to investigate the power of these communication rules especially
in the minimal case where |x| = 1, and |y| = 1 for each communication rule in the system.

2.2 Rules Activated by Signals

Let us reverse the perspective and look at signals as special objects that are produced in-
side a cell to influence the behaviour of its neighbouring cells. We have already mentioned
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possible analogies between the signaling mechanism and the well-known notion of promot-
ers: the possibility of using a rule inside a membrane heavily depends on the presence of
particular objects called promoters. In a similar way, signal molecules can be considered
as special objects that, after having been produced inside a cell, are immediately sent to
the neighbouring cells where they are responsible for the activation of new sets of rules.
From a biological point of view, this reflects the fact that when a receptor binds to signal
molecules, these two molecules become a single active unit that produces a burst of chemi-
cal activity inside the cell where several other molecules get involved. Moreover, there are
cases where the effect of a signal lasts for a while with the possibility of being reinforced
by increasing for instance the concentration of the signal molecule.

Thus, we introduce a variant of tissue P systems with signals where the rules that can
be used inside a cell at a time depend on the signals that have been recognized by the
cell at a previous time. To this aim, we identify two separate alphabets: an alphabet of
objects, and an alphabet of signals. Then, each cell gets assigned several sets of rules that
are coupled with different receptors; this is represented by considering pairs of the form
〈s,R〉, with s a signal and R a finite set of evolution rules. This is to specify that the cell is
always able to recognise a signal s, which is then responsible for the activation of the rules
in R. A signal s is recognised by a cell by adding to its content an occurrence of a object
s̄, and rules in R can be used inside that cell if and only if, that cell contains at least one
object s̄ (s̄ represents an active form of the signal s, which is able to initiate a response
inside the target cell). Every time rules in R are used an occurrence of the object s̄ is
consumed. In this way, we are able to take in account of the number of occurrences of the
signal s that has been produced at the same time. In fact, for each occurrence of the object
s that has been produced in a cell at a time, we introduce an occurrence of the object
s̄ in each cell that is in direct contact with the signaling cell. In other words, we adopt
a replicative model where an object s is replicated in the form s̄ in all the neighbouring
cells.

Formally, we give the following definition of tissue P systems with signals.

Definition 2.2. A tissue P system with signals is a construct:

T = (V, S, γ, C1, C2, . . . , Cn, cO)

where:

1. V is a finite alphabet of symbols called objects;

2. S is a finite alphabet of symbols called signals, such that S ∩ V = ∅;
3. γ = ({1, 2, . . . n}, A), is a finite undirected graph that defines the structure of the

system where A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n };

4. Ci = (wi, ρi, 〈s1, R
(1)
i 〉, 〈s2, R

(2)
i 〉, . . . , 〈sk, R

(k)
i 〉), with k ≥ 1, for each 1 ≤ i ≤ n,

with:

• wi ∈ V ∗ a finite multiset of objects,

• ρi ∈ { s̄ | s ∈ V ∗ }∗ a finite multiset of signals that has been initially recognised
by the cell i,

• for each 1 ≤ h ≤ k, sh ∈ S, and R
(k)
i is a finite set of evolution rules of the

forms x → y for x ∈ V ∗, y ∈ (V ∪ S)∗, and (x, out), with x ∈ V ∗;
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5. cO is the output cell.

As in definition 2.1, a tissue P system T with signals is defined as a collection of n ≥ 1
cells, which are associated in a one-to-one manner to the nodes of a finite undirected graph
γ that defines the structure of the system. For each 1 ≤ i ≤ n, the initial configuration
of each cell i is given by a multiset of objects wi and a multiset of signals ρi that are
supposed to have been already recognised by the cell i. Then, each cell i gets assigned
k ≥ 1 sets of evolution rules; each one of this set of rules is coupled with a specific signal
that is responsible for the activation of that set of rules. Rules are transformation rules of
the form x → y that allow a cell to consume a multiset of objects x in order to produce
a new multiset y that contains both objects in V and signals in S. Signals in S cannot
appear on the left side of any rule.

A tissue P system with signals T evolves by applying the rules in a non-deterministic
maximal parallel manner as usual, but with the following restriction imposed by the pres-
ence of signal objects: in each step, in a cell i, for each pair 〈sh, R

(h)
i 〉, rules in R

(h)
i can

be used in cell i if and only if, cell i contains at least an occurrence of the object s̄; the
use of rules in R

(h)
i always consumes an occurrence of s̄. As a consequence of these rules,

new objects and new signals can be produced inside cell i; objects that are not signals
remain inside cell i whereas, signals are immediately propagated to the neighbouring cells.
Specifically, in each step of a computation, for each signal s ∈ S that is produced inside a
cell i by means of some rule, an object s̄ is introduced in each cell j that contains at least
a pair 〈s,R〉 and such that there exists an edge {i, j} in γ.

Yet again we say that the result of a successful computation (i.e., a computation that
reaches a halting configuration) is the Parikh vector associated with the multiset of objects
in V that is contained in the output cell cO in the halting configuration. The set of Parikh
vectors generated by all the successful computation in T is denoted by Ps(T ). Then, we
denote by PsOTPn,s,k(f), with n, s, k ≥ 1, f ∈ {Coo, nCoo}, the family of Parikh vectors
of natural numbers generated by tissue P systems with signals where: n is the number of
cells, s is the cardinality of the alphabet S, and k is the maximum number of different
sets of rules that are associated to a cell.

In order to clarify the notion of tissue P system with signals, we present an example of
system with 2 cells that provides a first insight into the power of this variant of P systems.

Example 2.1. Consider a tissue P system T = (V, S, γ, C1, C2, cO) where:

V = {a, b, c},
S = {s1, s2, s3},
γ = ({1, 2}, {{1, 2}})
C1 = (ab, λ, 〈s1, {a → aa, b → b s3}〉, 〈s2, {(b, out)}〉),
C2 = (c, s̄3, 〈s3, {c → c s1, c → s2}〉),
cO = 1.

A computation in T gets started in cell 2 where we can use either a rule c → c s1 or a
rule c → s2 by consuming the unique occurrence of the object s̄3. If we apply the rule
c → c s1 inside cell 2 then, we obtain an object c and a signal s1, which is immediately
recognised by cell 1 that gets assigned an object s̄1. In this way, the system T reaches a
configuration:

((ab, s̄1), (c, λ)).

At this point, we can use the rules a → aa, b → b s3 in cell 1 that produce the configuration:

((aab, λ), (c, s̄3)).
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Yet again, if we use the rule c → c s1 in cell 2 then we obtain the configuration:

((aab, s̄1), (c, λ)).

Next, we have to reuse the rules a → aa, b → b s3 in cell 1 by producing the configuration

((aaaab, λ), (c, s̄3)).

Now, it is obvious that this process can be iterated for an arbitrary number of times. At
any moment, we can stop a computation by using the rule c → s2 inside the cell 2, which
introduces in cell 1 an object s̄2. In presence of the object s̄2, we have to apply the rule
(b, out) in cell 1, and the computation halts.

Now it appears clearly that any successful computation in T halts in a configuration
where the output cell contains a multiset of the form (a, 2m), for some m ≥ 1.

At this point, we can investigate the generative capacity of tissue P systems with
signals. We know from [16] that P systems with promoters and non-cooperative rules
are computationally complete. Moreover, Example 2.1 shows that this variant of tissue P
systems with non cooperative rules are quite powerful: systems with 2 cells are able to
generate Parikh vectors that are not in PsMAT (it is known that all one-letter languages
in MAT are regular). Therefore, we expect the following conjecture to be proved:

Conjecture 2.2. PsOTP2,∗,∗(nCoo) = PsRE.

Obviously, we face the problem of finding a bound for the number of different signals
and a bound for the number of different sets of rules per cell. On the other hand, the
universality for systems with 2 cells and cooperative rules can be easily obtained as a
straightforward adaption of the universality of the basic model of P system when cooper-
ative rules are considered [16].

3 Population P Systems: Cell Division

Cell division is the fundamental mechanism of tissue renewal in multicellular organisms.
Cell division allows cells to reproduce by always generating two new cells from a single
cell. These cells can then be attached to the existing part of the tissue by means of both
cell movement and bond making (two cells get in touch somehow and tightly adhere each
other). The importance of cell division in multicellular organisms is much more evident
during the process of embryo-genesis when a functionally complete organism is developed
by starting from a single cell. During this process, cells proliferate and become specialized
in many different ways. Cells differentiation leads to specialized cells that will remain
different thereafter and will perform distinct functions in distinct tissues.

More insights on cell behaviour in tissues are provided by the work done in [19] where a
first simulation model for the activity of cells in the epidermis is proposed. In that model,
various types of cells are identified that can appear in the system in different states at
different stages. Typically, a population of stem cells is initially specified, which are able
to produce cells that can divide only for a finite number of times producing offsprings;
these cells will then divide as many times as they can and eventually they will differentiate
into specialized cells that are not able to divide anymore.

Here, we want to consider for P systems some of these basic features of cell behaviour
in tissues by introducing a notion of population P systems with cell division where the
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structure of the system dynamically changes. In fact, cell division is defined as an operation
that allows new cells to be introduced in the system, which can then form new links with
the existing ones; this operation modifies the graph that defines the structure of the system
by inserting new nodes and altering the sets of edges in the graph. As well as this, an
operation of cell differentiation and one of terminal cell differentiation are considered,
which make possible to change the type of the cells in the system by varying in this way
the set of rules that can be used by a given cell.

From a more general point of view, the operations considered here can be interpreted
in various ways. Cell division may be regarded as a generic operation that allows new
individuals to be introduced in the current population. Cell differentiation may be consid-
ered as a change in the role of an individual in the population that turns to perform new
tasks. Finally, terminal cell differentiation may be associated with an event that give some
advantage to an individual that will then remain in the system in a more stable form.

Formally, we give the following definition of population P systems with cell division.

Definition 3.1. A population P system with cell division is a construct:

P = (V, K, T, γ, C1, .., Cn, R, α)

where:

1. V is a finite alphabet of symbols called objects;

2. K is a finite alphabet of labels for the cells, which define different types of cells;

3. T is a finite alphabet of terminal labels such that, T ∩K = ∅;
4. γ = ({1, 2, . . . n}, A), is a finite undirected graph that defines the structure of the

system where A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n };
5. Cj = (wj , ij), for each 1 ≤ j ≤ n, with:

• wj ∈ V ∗ a finite multiset of objects,

• ij ∈ K a label that defines the type of the cell j,

6. R is a finite set of rules of the following forms:

(a) [i x → y ]i, with x ∈ V ∗, y ∈ (V ×{here, go, out})∗, and i ∈ K (evolution rules),

(b) [i x ]i → [i y ]i[i z ]i, with x, y, z ∈ V ∗, and i ∈ K (cell division rules),

(c) [i x ]i → [j y ]j , with x, y ∈ V ∗, and i 6= j ∈ K (cell differentiation rules),

(d) [i x ]i → [t y ]t, with x, y ∈ V ∗, t ∈ T , and t ∈ T (terminal cell differentiation
rules);

7. α ⊆ (V ∗ × K) × (V ∗ × K) is a binary relation that defines a notion of similarity
between two cells.

A population P system P with cell division is defined as an initial population of cells
where each cell gets assigned a finite multiset of objects and a label in K that defines
its type. Each cell corresponds in a one-to-one manner to a node in the graph γ that
defines the structure of the system by specifying the existing bonds among the cells. The
P system P evolves according to the rules in R, which contains rules for modifying and
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communicating the objects placed inside the cells, for dividing a cell, for differentiating
a cell by changing its label, and for terminally differentiating a cell by changing its label
into a terminal one.

Now, consider a configuration of a population P system P at a time, which is given by
a tuple

Σ = (C ′
1, C

′
2, . . . , C

′
m, γ′)

where C ′
1, C

′
2, . . . , C

′
m represents the current population of cells in the P system P, and

γ′ = ({1, 2, . . . m}, A), with A ⊆ {{i, j)} | 1 ≤ i 6= j ≤ m }, is the graph that defines the
current structure of the P system P, for some m ≥ 1. The meaning of the rules in R is
given below.

Evolution Rules. When a rule [i x → y ]i is used in a cell C ′
h of type i, the multiset x

is replaced by a multiset y of pairs (a, t) with a ∈ V , t ∈ {here, go, out}. The target
t is meant to specify the place where the object a has to be moved: here means the
object has to stay in cell C ′

h; go means the object has to be moved into one cell C ′
p non-

deterministically chosen such that there exists and edge {h, p} in γ′; out means the object
has to be removed from the system by releasing it in the extracellular space. As usual,
evolution rules are applied in maximal parallel non-deterministic manner. The objects
that are produced by means of these rules are immediately moved according to the corre-
sponding target and they will become available in the respective places by starting from
the next step. The objects that are released in the extracellular space are considered as
being lost.

Cell Division Rules. A cell C ′
h = (w, i) can be divided by means of a rule

[i x ]i → [i y ]i[i z ]i (2)

if and only if, it contains at least an occurrence of the multiset x. Thus, for each cell
C ′

h = (w, i) that divides by means of rules (2), the following holds:

• two new cells C ′
h′ = (w′, i), and C ′

h′′ = (w′′, i) are created where w′ and w′′ are the
same as w except for the multiset x, which is replaced in w′ by y, and in w′′ by z;
the node h in γ′ is replaced by two nodes h′ and h′′; for each edge of the form {h, r}
that is removed from the graph two new edges {h′, r}, {h′′, r} are introduced; an
edge {h′, h′′} is also created, which creates a bond among the two new cells; these
operations are performed in parallel at the same time for all the cells that divide in
the same step of a computation; thus, at the end of this stage, all the pairs of cells
that result from the division of a single cell will be bonded to all the cells (or to the
offspring of these cells) that formerly were bonded with the mother cell; we call this
new graph γ′′;

• for each node p in γ′′ that has been produced by cell division, we the subset of
edges Ep = { {p, r} | (C ′

p, C
′
r) ∈ α or (C ′

r, C
′
p) ∈ α } from γ′′; we remove then all the

edges {p, q} 6∈ Ep from γ′′ (i.e., a new cell will retain bonds with all the cells in its
neighbourhood that are similar to it according to the relation α).

• the nodes and the edges in the graph that results from the process of forming new
bonds are eventually renamed in a one-to one manner with labels in {1, 2, . . . ,m′},
where m′ is the number of nodes in the resulting graph.
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Cell Differentiation Rules. In presence of a particular multiset x a cell of type i can dif-
ferentiate into a cell of type j by means of a rule [i x ]i → [j y ]j , which changes the label
the cell gets assigned and replaces the multiset x with the multiset y.

Terminal Cell Differentiation Rules. In presence of a particular multiset x a cell of type
i can differentiate into a terminal one by means of a rule [i x ]i → [t y ]t, which turns the
label the cell gets assigned into a label in T and replaces the multiset x with the multiset
y. A cell that gets assigned a label in T cannot evolve anymore as these labels are not
involved in any rule.

Moreover, only one rule per cell that is either a division, a differentiation, or a terminal
differentiation one can be used in a step of a computation.

The result of a successful computation is the Parikh vector associated with the multiset
of objects situated in the terminal cells.

Thus, we have got a variant of population P systems where the graph defining the
structure of the system may change during a computation through the use of cell division
rules that introduce new cells in the system and new links among the cells in the system.
As well as this, the objects placed inside the cells can be modified and communicated from
a cell to another one by means of some evolution rules, and cells can change the labels
they get assigned by means of some differentiation rules. The use of differentiation rules
results in a change of the rules that can be applied in a cell. It appears clearly that the
rules considered here are inspired by what has been done so far in the framework of P
systems with active membranes [16]: a class of P systems where the membrane structure
is modified by an operation called membrane division.

Therefore, the first obvious challenge is to investigate the generative capacity of popula-
tion P systems with cell division by comparing it with the generative power of P systems
with active membranes; the efficiency of population P systems in solving NP complete
problems has to be investigated as well. Some variants of this model are presented in the
sequel.

Remark 3.1. As we have already said, the relation of similarity α is considered as being as
general as possible without any specific restrictions: one can express any sort of relation
between the content of two cells in terms of the forms of the multisets they contain.
For instance the version provided by Definition 3.1 may be replaced by a condition that
specifies that two cells Cp, Cq are similar if and only if, the strings that represent the
respective multisets of objects, wp, wq belong to a particular (infinite) language L1 × L2.
Some simpler specifications for the relation α may be of interest as well. In this respect,
an easy choice is to consider α as a finite set of connecting rules defined either by pairs
of labels or by pairs of finite multisets of objects. Furthermore, it may be interesting to
identify notions of similarity that bear some sort of biological inspiration or relevance.
For instance, the model proposed in [19] considers the process of forming new bonds as
depending on a value of probability that a cell gets assigned. Specifically, a random number
between 0 and 1 is generated and bonds will be formed with cells whose probability value
is greater than this number. The values of probability associated with cells are continually
updated.

Remark 3.2. Another variant of these systems may be considered by evaluating the
graph structure associated with after each computation step by adding or removing bonds
between any two cell components Cp, Cq depending on whether (Cp, Cq) ∈ α or Cp, Cq) /∈
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α, respectively. As well as this, a specific operation of cell death of the form [i x ]i → †
can be considered, which causes the removal of a cell of type i from the system.

Remark 3.3. Apart from membrane division, another important feature of P systems
with active membranes is membrane polarisation, which is specified as a further parame-
ter that is assigned to membranes. Such a feature is not considered in population P systems
with cell division according to Definition 3.1. In fact, this is coherent with the current
trend of research in P systems with active membranes of removing polarisation and fo-
cusing on the operation of changing the labels of the membranes [3], [17]. In particular,
it is shown in [3] that P systems with rules for changing the labels are as powerful as P
systems that use membrane polarisation: they are computationally complete. This im-
portant feature of changing the label is captured here by means of specific differentiation
rules, which are the unique rules that are allowed to do so. Thus, with respect to what
was done in [3], we consider for population P systems a more restrictive framework where
neither cell division rules nor communication rules are able to change the label of any cell.
Furthermore, population P systems with cell division adopt a weaker form of communi-
cation where the target cell for an object is always non-deterministically chosen. These
observations suggests a first research topic that concerns the power of P systems where
the operation of changing the labels is restricted to specific differentiation rules and where
a non-deterministic form of communication is adopted. As a first step in this direction,
we show here how to express the feature of membrane division for elementary membranes
in the context of population P systems with cell division.

Consider a population P system P where the graph γ is a tree. We place a distinct
object d inside each one of the cells that corresponds to nodes that have some leafs among
the children . Next, we assign an object d̄ to each cell that corresponds to a leaf. Then,
we consider cell division rules of the form:

[i d̄ a ]i → [i d̄ b ]i[i d̄ c ]i,

which specify that only cells that correspond to a leaf in the tree γ (i.e. elementary
membranes) can divide; these are the unique cells that contain some object d̄. For what
concerns the process of bond making, we can consider a simple relation α that states that
a cell C1 = (w1, i1) is similar to a cell C2 = (w2, i2) if and only if, w1 contains an object
d and w2 contains the corresponding object d̄, or vice versa. In this way, when a cell that
contains an object d̄ divides, this will always form a bond with a cell in its neighbourhood
that contains an object d; this cell is unique and corresponds to its parent node.

At this point, by going alongside this direction, we can conjecture that we can get for
tissue P systems with cell division the full power of P systems that use rules for changing
the labels and membrane division for elementary membranes. Moreover, this can be done
by considering α as defined by a finite set of pairs (a, b), with a, b ∈ V ; these specify that
two cells irrespective of their labels can be linked each other if they contain respectively
an object a and an object b.

Remark 3.4. An alternative way of getting an output from P systems where the structure
changes during a computation has been considered in [4] where, instead of considering the
output of a computation as a single entity, the output is given by catenating the content
or the labels of each region of the whole configuration reached by the system at the end of
a computation. Specifically, three output modes have been considered in [4] for generating
languages by means of P systems with active membranes: visiting the tree associated with
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the membrane structure, sending out the objects, and collecting the traveller traces. Now,
it appears clearly that there exists the possibility of reconsidering this approach in the
context of population P systems with cell division where the structure of the system is
defined as an arbitrary graph. Moreover, we have introduced in definition 3.1 a distinct
alphabet of terminal labels T that are used to identify cells that result from the application
of terminal differentiation rules; cells that get assigned a label in T cannot evolve anymore
by means of any rule. This feature of population P systems might be used to get a
specific output from a computation by considering for instance the labels of terminally
differentiated cells in the order they are produced. In a similar way, we can think of using
the traces of the traveller but restricted to the case of terminal labels. We again face the
challenge of reconsidering the results previously obtained in [4] in this framework based
on population P systems.

Remark 3.5 (The Gradient Rule). As we have already mentioned, cell division plays
a fundamental role in the process of developing a multicellular organism from a single
cell as well as cell differentiation that allows cells to specialise in many different ways.
The process of cell differentiation can be regarded as a switching process where some
genes become active and others become inactive. This regulation mechanism of the gene
expression is heavily dependent on interactions and cooperations among different cells
that make possible variations on the concentration of chemicals inside the cells while the
organism is developing from the embryo. In this way, cells tend to become regionally
determined: different regions are formed where cells obtain different concentrations of
specific chemicals and follow separate differentiating paths [2]. In some important cases,
one can observe the formation of chemical gradients where special signal molecules diffuse
out from a localised source and their concentration increase as one moves away from the
source. Cell at different distances from the source are thus driven to behave in different
ways according to the concentration of the signal molecules. A typical example is given
by the development of Drosophila where chemical gradients were recognised for the first
time as being responsible for the initial segmentation of the body into head, thorax and
abdominal region as well as the dorsal-ventral axis determination. [11].

In Natural Computing area, developmental biology has been constituting a major
source of inspiration for the definition and implementation of shape languages and visu-
alising tools for systems with a dynamical structure, such as, L systems approaches [12],
MGS language [10], and Amorphous Computing [1], [14]. In this latter approach, there
is an interest in understanding how global shapes can be generated by means of local
interactions at the level of simple computational units. More precisely, a system is defined
as a collection of cells that are able to interact locally by means of various primitives.
Among these, specific primitives for manipulating gradient values have been identified.
Each cell can create a gradient, communicate a gradient value to its neighbours, and re-
ceive a gradient value from its neighbours. A cell always stores the gradient with the
minimal value among those it has received. In this way, the gradient value is used to have
a rough estimation of the distance from a possible source of information.

Here, we present a straightforward model of chemical gradient for population P systems
with cell division that is based on varying the number of occurrences of a special object
g inside the cell. Specifically, let P be a tissue P system with cell division. We identify
in the graph γ that defines the structure of the system a subset of source cells that will
not contain any occurrence of the object g. Each cell of type i that can be reached in n
steps from a source cell of type i through the graph γ gets assigned a multiset gn; if a cell
can be reached from several different sources then, we assign to the cell the multiset with
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Figure 2: A source cell of type i divides by using either a rule (a) [i d ]i → [i ]i [i d g ]i, or
a rule (b) [i d ]i → [i d ]i [i g ]i, or a rule (c) [i d ]i → [i d ]i [i d g ]i; (a) the new cell with the
greatest gradient value is given the chance to divide (i.e., the system develops alongside
a line); (b) the new cell with the lowest gradient value is given the chance to divide (i.e.,
cells irradiate from a common origin point); (c) both the new cells are given the chance of
dividing.

the minimal number of occurrences of g. Next, we consider cell division rules of the form
[i x ]i → [i y ]i[i z g ]i, with |x|g = |y|g = |z|g = 0 (i.e., a cell that divides increases by 1 the
number of objects g in one of the daughter cell). As well as this, we specify the object g
can never be modified by any rule.

At this point, we can state the gradient rule that drives the process of bond making:
a cell of type i that contains a multiset gn can form bonds only with cells of type i that
contain either a multiset gn−1 or a multiset gn+1. This is the way the relation α is defined.
Figure 2 illustrates an example of two division steps that are obtained by starting from a
single source cell.

Cases where the operation of cell differentiation is used are more problematic because
a cell of type i can differentiate into a cell of type j, which may be the first cell of type j in
the system. In that case, when the cell of type j divides, the new cells cannot form bonds
with any of the preexisting cells and the graph will result to be unconnected. In order to
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avoid this, one can think of refining the relation α in such a way that specifies how to relate
cells of different types. Moreover, the gradient value can be only modified by cell division
rules and cells that stop dividing cannot have their gradient value changed anymore even
the surrounding context changes. For instance, if a source cell of type i disappears then,
the other cells lose all the information about the distance from the source. Anyway, we can
only formulate as an interesting research topic to look at how the gradient rule emerges
from interactions among cells and how a full-developed P system can be produced by
starting from an initial population of few cells.

4 Final Remarks

This paper, mostly reporting work under development, refers to tissue P systems and
proposes two variants of this model using, in the framework of an evolution-communication
paradigm, receptors and signal objects. The last part introduces a population P system
model which relies on cell division and involves a dynamic structure of the considered
skeleton framework which evolves according to some prescribed rules. A list of various
problems is mentioned and a strong biological motivation is provided. A number of results
are still under scrutiny and many more could emerge later on. In a forthcoming paper we
have to address in more depth the problems related to tissue P systems using receptors
and signals and later on the wealth of variants that may be considered in relationship with
yet very crude concept of population P systems.
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