
Extending SNP Systems Asynchronous
Simulation Modes in P-Lingua

Luis F. Maćıas-Ramos1, Tao Song2, Linqiang Pan2,⋆, Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
lfmaciasr@us.es, marper@us.es

2 Key Laboratory of Image Information Processing and Intelligent Control
School of Automation
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
taosong@hust.edu.cn, lqpan@mail.hust.edu.cn

Summary. Spiking neural P systems (SN P systems for short) is a developing field
within the P systems world. Inspired by the neurophysiological structure of the brain,
these systems have been subjected to many extensions in recent years, many of
them intended to “somewhat” incorporate more and more features inspired by the
functioning of the living neural cells. Although when first introduced in [8] SN P systems
were considered to work in synchronous mode, it became clear that considering non-
synchronized systems would be rather natural both from both from a mathematical and
neuro-biological point of view. Asynchronous variants of these systems were introduced
in [4], setting up a scenario where even if a neuron had enabled rules ready to fire,
such rules non-deterministically could be not applied. Once new theoretical variants are
defined, providing simulation software tools enables experimental study and validation of
the proposed models. One more than promising developing branch comprises the use of
parallel architectures, concretely GPUs, that provide efficient implementations [1, 2, 7, 3].
One drawback of this approach, due to the inherent constraints of the GPUs programming
model, is a relatively long development cycle to extend existing variants. At the expense of
sacrificing efficiency for expressivity, other alternatives involving sequential approaches
can be considered. Within this trend, P–Lingua [5, 6, 15] offers the high flexibility of
the Java programming language as well as a general acceptance within the Membrane
computing community. P–Lingua affords a standard language for the definition of P
systems. Part of the same software project, pLinguaCore library provides particular
implementations of parsers and simulators for the models specified in P–Lingua. Support
for simulating SN P systems in P–Lingua was introduced in [9]. In that version all
(synchronous and asynchronous) “working modes” considered in [14] were implemented.
Since then, new asynchronous variants have appeared. In this paper we present a brand

⋆ Corresponding author.

262 L.F. Maćıas-Ramos et al.

new extension of P–Lingua related to asynchronous SN P systems, in order to incorporate
simulation capabilities for limited asynchronous SN P systems, introduced in [12], and
asynchronous SN P systems with local introduced respectively in [16].

1 Introduction

SN P systems were introduced in [8] in the framework of Membrane computing [13]
as a new class of computing devices which are inspired by the neurophysiological
behaviour of neurons sending electrical impulses (spikes) along axons to other
neurons.

An SN P system consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between them, i.e. rules assigned to a neuron allow it to send
spikes to its neighbouring neurons. SN P systems usually work in a synchronous
mode, where a global clock is assumed. In each time unit, for each neuron, only one
of the applicable rules is non-deterministically selected to be executed. Execution
of rules takes place in parallel amongst all neurons of the system. Nevertheless both
from a mathematical and neurological point of view, it is rather natural to consider
non-synchronized systems, where the use of rules is not obligatory. If a neuron has
an enabled rule in a given time unit, the neuron chooses non-deterministically
whether to fire (or not) the rule. Of course, new spikes can come into the neuron
when the rule is not fired, rendering it non-applicable. If the rule is still applicable
through successive time instants, it can fire at any time, independently of how
much time has passed since it first became applicable. Asynchronous SN P systems
(ASNPS for short) were introduced in [4] and, as described in [14], the validity of
a computation in these systems can be restricted by specifying pre-defined values
over the number of spikes for the neurons in the system at halting time. If the
computation is considered invalid the output of the system is discarded.

In the systems mentioned above any neuron works asynchronously, in a
independent way with respect to the others, such that there is no restriction with
respect to the number of successive time instants that the neuron can hold firing
of an enabled rule. These two characteristics of the “asynchronous mode” can
be overridden. In [12], limited asynchronous SN P systems (LASNPS for short)
are introduced. In this variant, a global bound b ≥ 2 (equal for all neurons) is
defined and determines the maximum number of computation steps that a neuron
can choose not to fire an enabled rule. On the other hand, in [16] asynchronous
SN P systems with local synchronization (ASNPSLS for short) are introduced.
In this variant, independence amongst neurons is dropped. Local synchronization
enables pre-defining a collection of local synchronizing sets contained in the power
set of neurons of the system. When a neuron fires (after deciding not to fire an
unbounded number of steps) all the neurons placed in the same local synchronizing
set fire immediately.

Extending SNP Systems Simulation Modes in P-Lingua 263

There exists biological motivation for considering these variants, thus also
making them a suitable target to be implemented within a simulation framework
like P–Lingua. With respect to LASNPS, in a biological system, if a long enough
time interval is given, an enabled chemical reaction will conclude within the
given time interval. So it is natural to impose a bound on the time interval in
which a spiking rule remains unused. With respect to ASNPSLS, in a biological
neural system, motifs with 4-5 neurons and communities with 12-15 neurons,
associated with some specific functioning are rather common. Neurons from the
same motif or community will work synchronously to cooperate with each other.
That is, in a biological system, neurons work globally in an asynchronous way, but
synchronously at a local level. Said level is represented by the local synchronizing
sets.

In this paper a new extension of SN P systems simulator included in the
P–Lingua framework is presented which enables simulation for LASNPS and
ASNPSLS. The paper is structured as follows. Section 2 is devoted to introducing
background concepts: specifications of SN P systems working in synchronous and
asynchronous (normal, limited and local) modes are introduced in an informal way.
Section 3 covers the P–Lingua syntax for the new introduced modes. Section 4
presents some P–Lingua files which exemplifies how to define the different models
in P–Lingua specification language. Finally, Section 5 shows the corresponding
simulation algorithms for the aforementioned models. Section 6 covers conclusions
and future work.

2 Preliminaries

In this section we introduce, in an informal way, SN P systems model in
their original synchronous form and, subsequently, asynchronous extensions
corresponding to limited asynchronous SN P systems, introduced in [12], and
asynchronous SN P systems with local synchronization, introduced in [16].

2.1 Spiking neural P systems

SN P systems can be considered a variant of P systems, corresponding to a
shift from cell-like to neural-like architectures. In these systems, cells (also called
neurons) are placed in the nodes of a directed graph, called the synapse graph.
Contents of each neuron consist of a number of copies of a single object type, called
the spike. Every neuron may also contain a number of firing rules and forgetting
rules. Firing rules allow a neuron to send information to other neurons in the
form of electrical impulses, spikes, which are accumulated at the target neuron,
consuming some of their own spikes (in a quantity at least equal to the number of
spikes fired). Forgetting rules imply only consuming spikes, while no one is sent to
the neighbouring neurons.

The applicability of each rule is determined by checking the contents of the
neuron against a regular set associated with the rule. In each time unit, if a neuron

264 L.F. Maćıas-Ramos et al.

can use one of its rules, then one of such rules must be used. If two or more rules
can be applied, then only one of them is non-deterministically chosen. Thus, the
rules are used in a sequential way in each neuron, but neurons function in parallel
with respect to each other. Let us notice that, as it usually happens in Membrane
Computing, a global clock is assumed, marking the time for the whole system, and
hence the functioning of the system is synchronized. Also asynchronous scenarios
can be considered as shown in [14] and discussed below.

When a cell sends out spikes it becomes “closed” (inactive) for a specified
period of time. During this period, the neuron does not accept new inputs and
cannot “fire” (that is, cannot emit spikes). The lapse of time required for the rule
to be fired is called the “delay” of the rule, which can be any natural number d ≥ 0.
Only firing rules can have a non-negative delay, while forgetting rules have always
a delay zero. Let us notice that when d = 0, the neuron immediately becomes
“open” (active) after firing, being able to send and receive spikes again, thus never
being “really closed”.

The configuration of the system is described by its topological structure (which
is constant along computations when not considering division or budding rules)
and the number of spikes associated with each neuron. Using the rules as described
above, it is possible to define transitions among configurations. Any (maximal)
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used.

Further reading about this model, along with a formal specification, can be
found in [8].

2.2 Asynchronous SN P systems

In asynchronous SN P systems even if a neuron has a rule enabled in a given
time unit, this rule is not obligatorily used. The neuron may choose to remain
unfired, maybe receiving spikes from the neighbouring neurons. The unused rule
may be used later, as long as it stays enabled, without any restriction on the
interval during which it has remained unused. If the new spikes made the rule
non-applicable, then the computation continues in the new circumstances (maybe
other rules are enabled now).

Further reading about these systems, along with a discussion on their power
can be found in [4].

2.3 Limited asynchronous SN P systems

In asynchronous SN P systems an enabled rule not used at a certain instant may
be used later, as long as it stays enabled, without any restriction on the interval
during which it has remained unused. Nevertheless, from the biological point of
view it is convenient to consider a boundary on the number of time units that such
rule remains unfired, since in nature given a long enough time interval, an enabled

Extending SNP Systems Simulation Modes in P-Lingua 265

chemical reaction will conclude within such interval. Following this, in limited
asynchronous SN P systems, a single global upper bound b ≥ 2 (equal for all
neurons) is defined on time intervals. If a rule in neuron σi is enabled at step t and
neuron σi receives no spike from step t to step t+b−2, then this rule can and must
be applied at a step in the next time interval b (that is, at a non-deterministically
chosen step from t to t+ b−1). If the enabled rule in neuron σi is not applied, and
neuron σi receives new spikes, making the rule non-applicable, then computation
continues in the new circumstance (maybe other rules are enabled now).

Further reading about these systems, along with a discussion on their
universality can be found in [12].

2.4 Asynchronous SN P systems with local synchronization

In asynchronous SN P systems an unused rule may be used later, without
any restriction with respect to the functioning (also asynchronous) of the other
neurons. Nevertheless, from the biological point of view it is convenient to
consider interrelation between neurons in terms of synchronicity. In a biological
neural system, small groups of neurons, associated with some specific functioning,
are rather common. Neurons within these communities work synchronously to
cooperate with each other, while globally working in an asynchronous way
with respect to “unrelated” neurons in the system. To model this behaviour
in neural-like systems, asynchronous SN P systems with local synchronization
are introduced. In these systems, a family of sets (called ls-sets) of locally
synchronous neurons Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}) is defined
(P({σ1, σ2, . . . , σm}) being the power set of {σ1, σ2, . . . , σm}).

Given neurons in the same ls-set locj , if one of these neurons fires, then all
neurons in locj that have enabled rules should fire. Of course, it is possible that
all neurons from locj remain unfired even if they have enabled rules. That is, all
neurons from locj may remain still, or all neurons from locj with enabled rules
fire at a same step (of course, neurons without enabled rules cannot fire). Hence,
neurons work asynchronously at the global level, while working synchronously
within each ls-set.

Further reading about these systems, along with a discussion on their
universality can be found in [16].

3 P–Lingua Syntax for LASNPS and ASNPSLS

In [6], a Java library called pLinguaCore was presented under GPL license. The
library provides parsers to handle input files, built–in simulators to generate P
System computations and it is able to export several output file formats that
represent P systems. pLinguaCore is not a closed product because developers
with knowledge of Java can add new components to the library, thus extending
it. Milestone releases can be downloaded from http://www.p-lingua.org while

266 L.F. Maćıas-Ramos et al.

releases containing latest developments can be found within the distribution of
MeCoSim (http://www.p-lingua.org/mecosim/). At the time of this writing,
the extensions related to the present paper have not been included in a milestone
release, so interested readers may refer to the MeCoSim distribution.

This section introduces several recently developed P–Lingua simulators for
SN P systems. Support for SN P systems in P–Lingua was introduced in [9],
covering the basic model along with neuron division and budding rules as well
as asynchronous mode, as originally introduced. Following this, in [10], partial
simulation of SN P systems with functional astrocytes (also defined in [10]) was
introduced. Finally, simulators for SN P systems with “hybrid” (excitatory and
inhibitory) astrocytes and SN P systems with anti-spikes were presented in [11].

In what follows, P–Lingua syntax for defining both LASNPS and ASNPLS is
shown. P–Lingua syntax for the other SN P system variants is not covered here,
but can be found in the cited papers.

3.1 P–Lingua syntax for limited asynchronous SN P systems

In LASNPS, a global upper bound b ≥ 2 is defined for all rules. Consequently,
a new instruction has been included into P–Lingua to define such upper bound,
extending the existing model specification framework for Spiking Neural P systems.
Thus, that instruction can be used only when the source P–Lingua files defining
the corresponding models begin with the following sentence:

@model<spiking_psystems>

while also requiring the right asynchronous mode to be set to with the following
sentence:

@masynch = 3;

The instruction to define the global upper bound is:

@mboundall = b;

where:

• b is the global upper bound, with b ≥ 2.

3.2 P–Lingua syntax for asynchronous SN P systems with local
synchronization

In ASNPLS, a local synchronizing set is defined, consisting of a collection of
sets (called ls-sets) that determines which neurons should fire synchronously.
Consequently, a new instruction has been included into P–Lingua to define such
set, extending the existing model specification framework for Spiking Neural P
systems. Thus, that instruction can be used only when the source P–Lingua files
defining the corresponding models begin with the following sentence:

Extending SNP Systems Simulation Modes in P-Lingua 267

@model<spiking_psystems>

while also requiring the right asynchronous mode to be set to with the following
sentence:

@masynch = 4;

The instruction to define the local synchronizing set is:

@mlocset = {ls-1, ls-2, ..., ls-h, ..., ls-m};

where:

• ls-h = {σh,1, . . . , σh,uh
} is each one of the ls-sets containing a non-empty

collection of membrane labels.

4 Examples

This section is devoted to consider examples dealing with both LASNPS and
ASNPSLS. Two sets of examples are presented, one per variant. For each set, a
formal specification is presented, followed by a link to the corresponding P–Lingua
code. To conclude, an analysis of the functioning of the systems is shown, along
with statistical data referred to the output of the systems after several simulations
within MeCoSim are performed.

4.1 Asynchronous SN P systems with local synchronization

Consider an asynchronous SN P system with local synchronization Π shown in
Figure 1.

a
a → a

1
a

a → a

2

a → λ
a2 → a

3

a → a
a2 → a
a3 → a

4

a∗/a → a

out

Fig. 1. An example of an asynchronous SN P system with local synchronization Π

268 L.F. Maćıas-Ramos et al.

The system Π consists of five neurons with labels 1, 2, 3, 4 and out. Initially,
neurons σ1 and σ2 have one spike inside, and other neurons contain no spike. The
formal definition of system Π is as follows:

Π = ({a}, σ1, σ2, σ3, σ4, σout, Loc, syn), where

• σ1 = (1, R1) with R1 = {a → a};
• σ2 = (1, R2) with R2 = {a → a};
• σ3 = (0, R3) with R3 = {a → λ, a2 → a};
• σ4 = (0, R3) with R4 = {a → a, a2 → a, a3 → a};
• σout = (0, Rout) with Rout = {a∗/a → a};
• Loc is the family of sets of locally synchronous neurons;
• syn = {(1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, out), (4, out)};
• out indicates the output neuron.

To complete the definition of the system, specifying Loc is required. Four cases
are considered:

a) Loc = ∅
b) Loc = {{σ1, σ2}}
c) Loc = {{σ1, σ3}}
d) Loc = {{σ1, σ2}, {σ3, σ4}}

The P–Lingua code corresponding to this system can be found at:
http://www.p-lingua.org/examples/SNPSLocalSynch.pli.

This code is parameterised, allowing execution of each one of the four Π system
variants depending on parameter c.

Next, we are going to analyse functioning of system Π for each one of the
aforementioned cases.

Case a) Loc = ∅.
In this case, neurons can fire at any time when having enable rules. Output of

the system is {1, 2, 3, 4}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 39%

2 20%

3 36%

4 5%

Table 1. Ratio of output spikes for case a)

Case b) Loc = {{σ1, σ2}}.
In this case, neurons σ1, σ2 fire at the same moment due to local

synchronization. After any of the former neurons fires, neuron σ1 contains 1 spike,

Extending SNP Systems Simulation Modes in P-Lingua 269

while neurons σ3, σ4 contain 2 spikes each. From this point, we have the following
cases:

1. Neuron σ1 fires before neurons σ3, σ4. After this, neuron σ3 contains 3 spikes,
so cannot fire, while neuron σ4 also containing 3 spikes will eventually send
out 1 spike. Thus, the output of the system in this case is {1}.

2. Neuron σ3 fires before neurons σ1, σ4. Spike from neuron σ3 reaches σout. From
here, any spike passing through σ3 will be lost, with either 1 or 2 spikes getting
to σout from neuron σ4. Consequently, the output of the system will be {2, 3}.

3. Neuron σ4 fires before neurons σ1, σ3. Thus, 1 spike reaches neuron σout from
σ4. If σ1 fires before σ3, this neuron becomes blocked and cannot fire any more,
with 1 spike more coming to neuron σout from σ4. In any other case, σ3 sends
another spike to σout and loses the next spike that receives, while σ4 getting
1 spike that will be sent to σout eventually. Consequently, the output of the
system will be {2, 3}.

4. Neurons σ1, σ3 fire together before σ4. In this case, σ3 sends 1 spike to σout,
while the next spike coming from σ1 will be lost. Finally, σ4 consumes 3 spikes
and sends 1 spike to σout. Consequently, the output of the system will be {2}.

5. Neurons σ1, σ4 fire together before σ3. In this case, 1 spike reaches σout from
σ4, while σ3, containing 3 spikes, gets blocked. Finally, σ4 sends 1 spike to
σout. Consequently, the output of the system will be {2}.

6. Neurons σ3, σ4 fire together before σ1. In this case, 2 spikes reach σout from
σ3, σ4 each. Following this σ1 fires 1 spike that reaches σ3, σ4. Spike in σ3 will
be lost while the one in σ4 will reach σout. Consequently, the output of the
system will be {3}.

7. Neurons σ1, σ3, σ4 fire together. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

As a result of all of this, output of the system in this case is {1, 2, 3}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 17%

2 38%

3 25%

4 0%

Table 2. Ratio of output spikes for case b)

Case c) Loc = {{σ1, σ3}}.
In this scenario, we can consider the following cases:

a) Neuron σ2 fires before σ1. In this case, after neuron σ2 fires, σ1 contains 2
spikes, being unable to continue working, neuron σ3 contains 1 spike, that will

270 L.F. Maćıas-Ramos et al.

be lost, and σ4 contains 1 spike, that will eventually reach σout. Thus, in this
case the output of the system is {1}.

b) Neurons σ1, σ2 fire at the same time. In this case, after the firing, σ1 contains
1 spike, while σ3, σ4 contain 2 spikes each. From here, we have the following
cases:

1. Neurons σ1, σ3 fire before σ4. In this case, neuron σout gets 1 spike from
σ3, while neuron σ1 sends 1 spike to σ3, that will be lost, and σ4. Having
3 spikes, σ4 sends 1 spike to σout. Consequently, the output of the system
will be {2}.

2. Neurons σ1, σ3 fire at the same time as σ4. This case is similar to the
previous one, with σout getting 2 spikes from σ4. Consequently, the output
of the system will be {3}.

3. Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

c) Neuron σ1 fires before σ2. In this case, after neuron σ1 fires, σ2, σ3, σ4 contain
only 1 spike each. We have the following cases from here:

1. Neuron σ2 fires before any other neuron. In this case, neuron σ1 gets 1
spike, while neurons σ3, σ4 contain 2 spikes each. As we showed before, the
output of the system will be {2, 3}.

2. Neuron σ3 fires before any other neuron. This spike is lost. From this point,
all the spikes passing through σ3 will be lost, with σ4 being able to fire up
to 3 times. Consequently, the output of the system will be {1, 3}.

3. Neuron σ4 fires before any other neuron. This spike reaches σout. At this
point, σ2, σ3 contain 1 spike each. From here:
– Neuron σ2 fires first. At this point, σ1, σ4 contain 1 spike each, while σ3

contains 2 spikes. The following cases are possible:
* Neurons σ1, σ3 fire before σ4. In this case, σ3 only sends 1 spike to

σout (others are lost), while σ4 consuming 2 spikes and sending 1
spike to σout. Consequently, the output of the system will be {3}.

* Neurons σ1, σ3 fire at the same time as σ4. This case is similar
to the previous one with σ4 sending an additional spike to σout.
Consequently, the output of the system will be {4}.

* Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {4}.

– Neuron σ3 fires first, resulting in 1 spike being lost. After neuron σ2

fires, σ1, σ3, σ4 contain 1 spike each. The following cases are possible:
* Neurons σ1, σ3 fire before σ4. In this case, all spikes involving σ3 are

lost, while σ4 ends consuming 2 spikes and sending 1 spike to σout.
Consequently, the output of the system will be {2}.

* Neurons σ1, σ3 fire at the same time as σ4. This case is similar
to the previous one with σ4 sending an additional spike to σout.
Consequently, the output of the system will be {3}.

* Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

Extending SNP Systems Simulation Modes in P-Lingua 271

– Neuron σ2, σ3 fire at the same time. This case similar to the previous
one. Consequently, the output of the system will be {2, 3}.

4. Neurons σ2, σ3 fire together and before σ4. Spike in σ3 is lost, while σ2

sends 1 spike to σ1, σ3, σ4, resulting in σ1, σ3 containing 1 spike each while
σ4 contains 2 spikes. The spike in σ3 will be lost in any case. If σ1, σ3 fire
before σ4, 2 spikes are stored in σ4, thus, only 1 spike is sent to σout. In
other case, 2 spikes reach σout. Consequently, the output of the system will
be {1, 2}.

5. Neurons σ2, σ4 fire together and before σ3. In this case, 1 spike reaches σout

from σ4, while the spike sent by σ2 results in σ1, σ4 containing 1 spike each
while σ3 contains 2 spikes. This case is analogous to the previous one taking
into account that the first rule applied in σ3 is the firing rule. Consequently,
the output of the system will be {3, 4}.

6. Neurons σ3, σ4 fire together and before σ2. Spike in σ3 is lost, while spike
in σ4 reaches σout. After σ2 fires, σ1, σ3, σ4 contain 1 spike each. Spikes
passing through σ3 will be lost and either another 1 or 2 spikes can get to
σout from σ4. Consequently, the output of the system will be {2, 3}.

7. Neurons σ2, σ3, σ4 fire together. This case is analogous to the previous one.
Consequently, the output of the system will be {2, 3}.

As a result of all of this, output of the system in this case is {1, 2, 3, 4}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 35%

2 29%

3 33%

4 3%

Table 3. Ratio of output spikes for case c)

Case d) Loc = {{σ1, σ2}, {σ3, σ4}}.
Neurons σ1, σ2 will fire at the same moment (due to the local-synchronization)

sending 2 spikes to neurons σ3, σ4 respectively. At that moment, neuron σ1 receives
1 spike from neuron σ2. With 2 spikes inside, neurons σ3, σ4 will fire at the same
moment. If they fire before neuron σ1, then σout receives 2 spikes first, and then 1
spike more from σ4 (the spike in σ3 is lost), thus receiving in total 3 spikes. The
case in which all neurons fire at the same time is similar to the previous one. To
conclude, if neuron σ1 fires before neurons σ3, σ4, then neuron σ3 cannot fire, and
σ4 will consume 3 spikes and send 1 spike to σout.

Consequently, output of the system is {1, 3}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

272 L.F. Maćıas-Ramos et al.

spikes ratio

1 15%

2 0%

3 85%

4 0%

Table 4. Ratio of output spikes for case d)

Conclusion
The computation result of Π is {1, 2, 3, 4}.

4.2 Limited asynchronous SN P systems

Consider a limited asynchronous SN P system Π ′ shown in Figure 2.

a

a → a; 5

1

a
a → a

2

a → a

a
2
→ a

out

Fig. 2. An example of a limited asynchronous SN P system Π ′

The system Π consists of three neurons with labels 1, 2 and out. Initially,
neurons σ1 and σ2 have one spike inside with σout containing no spike. The formal
definition of system Π ′ is as follows:

Π = ({a}, σ1, σ2, σout, b, syn), where

• σ1 = (1, R1) with R1 = {a → a; 5};
• σ2 = (1, R2) with R2 = {a → a};
• σout = (0, Rout) with Rout = {a → a, a2 → a};
• b is a single upper bound on time intervals, valid for all rules;
• syn = {(1, out), (2, out)};
• out indicates the output neuron.

To complete the definition of the system, specifying upper bound b ≥ 2 is
required. Two cases are considered:

a) b = 2
a) b = 4

Extending SNP Systems Simulation Modes in P-Lingua 273

The P–Lingua code corresponding to this system can be found at:
http://www.p-lingua.org/examples/SNPSLimited.pli.

This code is parameterised, allowing execution of each one of the twoΠ ′ system
variants depending on parameter b.

Next, we are going to analyse functioning of system Π ′ for each one of the
aforementioned cases.

Case a) b = 2.
Initially, neurons σ1, σ2 have 1 spike inside. Neuron σ2 will fire no later than

step b = 2, sending 1 spike to neuron σout. With 1 spike inside, σout will fire before
step 2b = 4, sending 1 spike to the environment. Neuron σ1 can fire at step 1 or 2
(due to the fact that the interval bound b is 2), and sends 1 spike to neuron σout

at step 6 or 7. In this way, neuron σout will emit 2 spikes into the environment.
Consequently, output of the system is {2}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 0%

2 100%

3 0%

4 0%

Table 5. Ratio of output spikes for case a)

Case b) b = 4.
Initially, neurons σ1, σ2 have 1 spike and will fire at any step no later than step

b = 4. Following this, if neuron σ1 fires at step 1, it sends 1 spike to neuron σout

at step 6 and so on. On the other hand, if neuron σ2 fires at step 4, it sends 1 to
neuron σout at such step. In this case, after neuron σout receives the first spike at
step 4, it will fire at any step no later than step 8 (due to the fact that the upper
bound b is 4). As a result of all of this, we have to cases:

a) If σout stays inactive later than step 6, it will accumulate 2 spikes inside, and
send 1 spike into the environment.

b) If σout fires before step 6, it will send 2 spikes to the environment.

In this condition, The system can generate numbers 1 and 2. In a similar way
other computations of the system can be checked.

Consequently, output of the system is {1, 2}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.
Therefore, the computation result of Π ′ is {1, 2}.

274 L.F. Maćıas-Ramos et al.

spikes ratio

1 2%

2 98%

3 0%

4 0%

Table 6. Ratio of output spikes for case b)

5 Simulation Algorithm

In what follows a P–Lingua based simulation algorithm for LASNPS and
ASNPSLS is shown in pseudo-code form. This algorithm is a revision from the
one included in the foundational paper on simulating SN P systems in P–Lingua
[9]. Consequently, it generates one possible computation for a SN P system with
an initial configuration C0 containing n neurons m1, . . . ,mn. Let us recall that
when working with recognizer P systems all computations yield the same answer
(confluence).

The simulation algorithm is structured in six stages:
I. Initialization
In this stage the data structures needed to perform the simulation are initialized.
II. Selection of rules
In this stage the set of rules to be executed in the current step is calculated.
III. Build execution sets
In this stage the rules to be executed are split into different sets, according to their
kind.
IV. Execute division and budding rules
In this stage division and budding rules are executed. The execution is performed
in two phases: In the first one, new neurons are calculated out of existing neurons
by applying budding and division rules. In the second one additional synapses are
introduced according to the synapse dictionary.
V. Execute spiking rules
In this stage execution of spiking rules is performed.
VI. Ending
In this stage the current configuration is updated with the newly calculated one
and the halting condition is checked (no more rules are applicable).

The simulation algorithm follows.

I. Initialization

1. Let Ct be the current configuration
2. Let Msel ≡ ∅ be a set of membranes who are susceptible of executing a rule in

the current computation step
3. Let m0 be a virtual membrane (with label 0) representing the environment

II. Selection of rules

Extending SNP Systems Simulation Modes in P-Lingua 275

1. Each membrane mi stores the following elements:
- last rule ri selected to be executed in a previous step for that membrane (initially
the void rule)
- an integer decreasing-only counter di, that stores the number of steps left for
the membrane to open and fire in case ri is a firing rule (initially zero).
- an integer decreasing-only counter bi, that stores the number of steps left for
the membrane to decide if its current selected rule can be freely chosen to fire or
not (initially zero; if zero then it should fire in this step).
For each membrane mi, do
a) If mi is closed as a result of being involved in the execution of a budding or

division rule, then open mi (let di = 0) and clear its rule ri
b) If the simulator is working on limited asynchronous mode and each one of the

following statements is true
i. bi > 0
ii. ri is not void
iii. ri is active
iv. ri can be applied over mi

Then
i. Decrease the counter bi
ii. Add mi to Msel

iii. Go to process the next membrane
c) If mi is closed as a result of being involved in the execution of a firing rule

(thus ri is a firing rule) then
i. Decrease the counter di
ii. Add mi to Msel

iii. Go to process the next membrane
d) Let Si ≡ ∅ be the set of possible rules to be executed over mi

e) For each rule rj with label j do
i. If rj is active and can be executed over mi then add rj to Si

f) If Si is empty then
i. Set bi to zero
ii. Go to process the next membrane

g) Select non deterministically a rule rk from Si

h) Set rk as the new selected rule for mi

i) If rk is a firing rule, update the counter di accordingly
j) Restart the counter bi to the global upper bound b
k) Add mi to Msel

l) Clear Si

2. If Msel is not empty and the simulator operates in Sequential Mode then
a) Select a membrane ms from Msel according to the Sequential Mode
b) Clear Msel

c) Add ms to Msel

III. Build execution sets

276 L.F. Maćıas-Ramos et al.

1. Let Division ≡ ∅ be the set that stores the membranes having a division rule
selected to be executed in the current step

2. Let Budding ≡ ∅ be the set that stores the membranes having a budding rule
selected to be executed in the current step

3. Let Spiking ≡ ∅ be the set that stores the membranes having a spiking rule
selected to be executed in the current step (or susceptible to be executed in the
case of firing rules with delays)

4. Let Available ≡ ∅ be the set that stores the membranes having a rule selected to
be executed in the current step

5. Let toF ire ≡ ∅ be the set that stores the membranes having a rule that will be
fired in the current step

6. Let toF ireAux ≡ ∅ be an auxiliary set
7. Let locProc ≡ ∅ be the set that stores the membranes that have been processed

in terms of local synchronizing (that is, each one of their neighbours have been
marked to fire immediately and have been processed also)

8. For each membrane mi from Msel do
a) Let ri be the selected rule for mi

b) If ri is a division rule then add mi to Division
c) If ri is a budding rule then add mi to Budding
d) If ri is a spiking rule then add mi to Spiking
e) Addmi to toF ireAux if and only if the call to procedureDecideToF ire(mi, ri)

yields true.
f) If the simulator is operating in asynchronous mode with local synchronization

then add mi to Available
9. Add all membranes from toF ireAux into toF ire
10. If the simulator is operating in asynchronous mode with local synchronization then

for each membrane mi from toF ireAux do
a) Call the recursive procedure Process(mi, Available, locProc, toF ire)

Procedure DecideToF ire(mi, ri)

1. Let mi, ri be input/output arguments declared consistently as specified above
2. If ri is a budding rule or a division rule, then return the result of the call to

procedure DecideAsynch(mi, ri)
3. If ri is a firing rule or a forgetting rule, then

a) Let d be the delay associated to rule ri
b) Let s be the number of steps left for membrane mi to become open
c) If d = 0 then return the result of the call to procedure DecideAsynch(mi, ri)
d) Else

i. If d = s return the result of the call to procedure DecideAsynch(mi, ri)
ii. Else return true

Procedure DecideAsynch(mi)

1. Let mi be input/output argument declared consistently as specified above
2. Return true if and only if one of the following statements is true

Extending SNP Systems Simulation Modes in P-Lingua 277

a) the simulator is operating in synchronous mode
b) the simulator is operating in “Standard” asynchronous mode and the truth

value “true” is obtained with a probability equal to 0.5
c) the simulator is operating in limited asynchronous mode and either

c.1)the counter bi associated to mi is equal to zero
c.2)otherwise the truth value “true” is obtained with a probability equal to 0.5

and, subsequently, the counter bi associated to mi is set to zero
d) the simulator is operating in asynchronous mode with local synchronization

and the truth value “true” is obtained with a probability equal to 0.5

Recursive procedure Process(mi, Available, locProc, toF ire)

1. Let mi, Available, locProc, toF ire be input/output arguments declared consis-
tently as specified above

2. If mi ∈ locProc then exit
3. Else

a) Add mi into locProc
b) If mi ∈ Available then

i. Add mi into toF ire
ii. Let Affected be the set containing all the membranes that should

immediately fire in case mi fires
iii. For each membrane mj ∈ Affected, do

A. Call the recursive procedure Process(mj , Available, locProc, toF ire)

IV. Execute division and budding rules

1. Let Div ≡ ∅ be the set that stores the membranes that are generated as a result
of applying a division rule in the current step

2. Let Bud ≡ ∅ be the set that stores the membranes that are generated as a result
of applying a budding rule in the current step

3. For each membrane mi from Division do
a) If mi /∈ toF ire then go to process the next membrane
b) Let ri be the selected rule for mi: [E]i → []j ||[]k
c) Relabel mi with the j label, thus from now on we refer to mj

d) Create a new membrane mk and close it
e) For each incoming edge from some membrane mp to mj create a new edge

from mp to mk

f) For each outgoing edge from mj to some membrane mp create a new edge
from mk to mp

g) Add mj and mk to Div
4. For each membrane mi from Budding do

a) If mi /∈ toF ire then go to process the next membrane
b) Let ri the selected rule for mi: [E]i → []i/[]j
c) Create a new membrane mj and close it
d) For each outgoing edge from mi to some membrane mp do

i. Create a new edge from mj to mp

278 L.F. Maćıas-Ramos et al.

ii. Remove the edge from mi to mp

e) Create a new edge from mi to mj

f) Add mj to Bud
5. For each membrane mi from Div create new edges involving mi according to the

synapse dictionary if necessary
6. For each membrane mi from Bud create new edges involving mi according to the

synapse dictionary if necessary

V. Execute spiking rules

1. For each membrane mi from Spiking do
a) If mi /∈ toF ire then go to process the next membrane
b) If mi is closed then go to process the next membrane
c) Let ri be the selected rule for mi

d) If ri is a firing rule of the form [E/ac → ap; d]i then
i. Remove c spikes from the multiset of mi

ii. For each membrane mj connected to mi by an edge going from mi to
mj , add p spikes to the multiset of mj if and only if mj is open

e) If ri is a forgetting rule of the form [E/ac → λ]i then remove c spikes from
the multiset of mi

VI. Ending

1. Let Ct+1 = Ct

2. If Msel is not empty then goto I

6 Conclusions and Future Work

In this paper we have shown very recent developments in the field of simulators
for SN P systems, concretely P–Lingua based ones. New variants are presented,
integrating limited and locally synchronized asynchronous modes. In this sense,
a new release of P–Lingua, that extends the previous SN P systems simulator
has been developed, incorporating the ability to work with the new implemented
models. This new simulator has been included into the library pLinguaCore and
tested by simulating selected examples provided by experts and referred in Section
4.

At the moment, an extension to incorporate fuzzy reasoning SN P systems is
in development. Once this work is done, a desirable feature would be to provide
a mechanism for defining arbitrary computable functions, thus fully simulating
SNPSFA. Additional elements such as weights might also be incorporated. Also
connecting pLinguaCore with existing CUDA-based simulators in being considered
at present.

Extending SNP Systems Simulation Modes in P-Lingua 279

Acknowledgements

The authors acknowledge the support of the project TIN2012–37434 of the
Ministerio de Ciencia e Innovación of Spain, cofinanced by FEDER funds. T.
Song an L. Pan were supported by National Natural Science Foundation of China
(61033003, 91130034, and 61320106005).

References

1. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A.: Simulating spiking neural
P Systems without delays using GPUs. IJNCR 2(2), 19–31 (2011)

2. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A., Pérez-Jiménez, M.J.:
Spiking neural P System simulations on a high performance GPU plat-
form. Lecture Notes in Computer Science 7017, 99–108 (10/2011 2011),
http://www.springerlink.com/content/f490qnv027884g27/, algorithms and Ar-
chitectures for Parallel Processing ICA3PP Workshops, (ADCN 2011)

3. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A., Pérez-Jiménez,
M.J.: Improving GPU simulations of spiking neural P Systems. Romanian
Journal of Information Science and Technology 15, 5–20 (06/2012 2012),
http://www.imt.ro/romjist/Volum15/Number15 1/cuprins15 1.htm

4. Cavaliere, M., Egecioglu, m., Ibarra, O.H., Ionescu, M., Paun, G.,
Woodworth, S.: Asynchronous spiking neural p systems: Decidability
and undecidability. In: Garzon, M.H., Yan, H. (eds.) DNA. Lecture
Notes in Computer Science, vol. 4848, pp. 246–255. Springer (2007),
http://dblp.uni-trier.de/db/conf/dna/dna2007.html#CavaliereEIIPW07

5. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-
Lingua programming environment for membrane computing. In: Corne, D.W., Frisco,
P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing.
Lecture Notes in Computer Science, vol. 5391, pp. 187–203. Springer (2008)

6. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-Lingua 2.0. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5957, pp. 264–288. Springer
(2009)

7. Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.): Membrane
Computing - 12th International Conference, CMC 2011, Fontainebleau, France,
August 23-26, 2011, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 7184. Springer (2012)

8. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P Systems. Fundam. Inform.
71(2-3), 279–308 (2006)

9. Maćıas-Ramos, L.F., Pérez-Hurtado, I., Garćıa-Quismondo, M., Valencia-Cabrera,
L., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-Lingua based simulator for spiking
neural P Systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan,
S. (eds.) Int. Conf. on Membrane Computing. Lecture Notes in Computer Science,
vol. 7184, pp. 257–281. Springer (2011)

10. Maćıas-Ramos, L.F., Pérez-Jiménez, M.J.: Spiking Neural P Systems with Functional
Astrocytes, 12th international conference on Membrane Computing, accepted paper

280 L.F. Maćıas-Ramos et al.

11. Maćıas-Ramos, L.F., Pérez-Jiménez, M.J.: On recent developments in p-lingua based
simulators for spiking neural p systems. Asian Conference on Membrane Computing
pp. 14–29 (10/2012 2012)

12. Pan, L., Wang, J., Hoogeboom, H.J.: Limited asynchronous spik-
ing neural p systems. Fundam. Inf. 110(1-4), 271–293 (Jan 2011),
http://dl.acm.org/citation.cfm?id=2362097.2362116

13. Păun, G.: Computing with membranes (P Systems): An introduction. In: Current
Trends in Theoretical Computer Science, pp. 845–866 (2001)

14. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

15. Research Group on Natural Computing, University of Seville: The P–Lingua website.
http://www.p-lingua.org

16. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural p sys-
tems with local synchronization. Inf. Sci. 219, 197–207 (Jan 2013),
http://dx.doi.org/10.1016/j.ins.2012.07.023

