
Constant-Space P Systems with Active
Membranes

Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, Claudio
Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,luca.manzoni,mauri,porreca,zandron}@disco.unimib.it

Summary. We continue the investigation of the computational power of space-
constrained P systems. We show that only a constant amount of space is needed in
order to simulate a polynomial-space bounded Turing machine. Due to this result, we
propose an alternative definition of space complexity for P systems, where the amount of
information contained in individual objects and membrane labels is also taken into ac-
count. Finally, we prove that, when less than a logarithmic number of membrane labels
is available, moving the input objects around the membrane structure without rewriting
them is not enough to even distinguish inputs of the same length.

1 Introduction

This paper continues the recent investigations of the computational power of P sys-
tems with active membranes by looking at the problems that they are able to solve
while working in constant space. It is already known that a super-polynomial
amount of space is needed to solve problems outside PSPACE [6]. Recently [2],
it has been shown that logarithmic space suffices to simulate a polynomial space-
bounded Turing machine (TM). Here we show that the constant space is sufficient
and, trivially, necessary to solve all problems in PSPACE.

This result challenges our intuition about space. How can we even be able
to remember, for example, the position of the TM head when we have less than
a logarithmic number of bits of information? We discuss the implication of this
result and how the current definition of space in P systems can be changed in order
to better represent out intuition about “space”. With the new definition all the
known results involving polynomial (or larger) amount of space, according to the
old definition, still hold. Only in the case of P systems with severely tight bounds
on space the new definition makes a difference.

Finally, we show a result highlighting the importance of membranes for P sys-
tems. In fact, when only movement rules, i.e., send-in, send-out, and dissolution

244 A. Leporati et al.

without rewriting, are allowed on the input symbols and less than a logarithmic
number of membrane labels are present, there is no possibility of correctly de-
termining even if two inputs are distinct, unless the ordering of the symbols is
discarded.

The paper is organised as follows. The basic notions necessary for the rest of
the paper are presented in Section 2. The main result, that is, the simulation of
a polynomial space-bounded TM, is described in Section 3. The current definition
of space in P systems is discussed and an alternative definition is proposed in
Section 4. In Section 5 we examine the limitations arising when only movement
but no rewriting is possible for the input symbols. Finally, in Section 6 we present
a brief summary of the results and some possible future research directions.

2 Basic Notions

We recall the basic definitions related to P systems with active membranes with
input alphabet [7].

Definition 1. A P system with (elementary) active membranes of initial degree
d ≥ 1 is a tuple Π = (Γ,∆,Λ, µ, wh1

, . . . , whd
, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• ∆ is another alphabet, disjoint from Γ , called the input alphabet;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

• wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial

multisets of objects placed in the d regions of µ;
• R is a finite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

A description of the available kinds of rule follows. This description differs from
the original definition [4] only in that new input objects may not be created during
the computation.

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w). At most one input object b ∈ ∆ may appear in w, and only if it
also appears on the left-hand side of the rule (i.e., if b = a).

Constant-Space P Systems with Active Membranes 245

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β. If
b ∈ ∆ then a = b must hold.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.
If b ∈ ∆ then a = b must hold.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b. If b ∈ ∆ then a = b must hold.

• Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes. If
b ∈ ∆ (resp., c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must hold.

Each instantaneous configuration of a P system with active membranes is described
by the current membrane structure, including the electrical charges, together with
the multisets located in the corresponding regions. A computation step changes
the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). The same principle applies to each membrane that
can be involved to communication, dissolution, or elementary division rules.
In other words, the only objects and membranes that do not evolve are those
associated with no rule, or only to rules that are not applicable due to the
electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
putation step is conventionally described as a sequence of micro-steps as follows.

246 A. Leporati et al.

First, all evolution rules are applied inside the elementary membranes, followed
by all communication, dissolution and division rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane division occurs, all chosen object evolution rules
must be applied inside it; this way, the objects that are duplicated during the
division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck. A
non-halting computation C = (Ci : i ∈ N) consists of infinitely many configura-
tions, again starting from the initial one and generated by successive computation
steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished
objects yes and no; exactly one of these must be sent out from the outermost
membrane in the last step of each computation, in order to signal acceptance or
rejection, respectively; we also assume that all computations are halting. If all
computations starting from the same initial configuration are accepting, or all are
rejecting, the P system is said to be confluent. If this is not necessarily the case,
then we have a non-confluent P system, and the overall result is established as for
nondeterministic Turing machines: it is acceptance iff an accepting computation
exists. Unless otherwise specified, the P systems in this paper are to be considered
confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recogniser P systems Π = {Πx : x ∈ Σ⋆}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ⋆ by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
each input length [3].

Definition 2. Let E, F be classes of functions over strings. A family of P sys-
tems Π = {Πx : x ∈ Σ⋆} is said to be (E ,F)-uniform if the mapping x 7→ Πx can
be described by two functions F ∈ F (for “family”) and E ∈ E (for “encoding”)
as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common P system
for all inputs of length n with a distinguished input membrane.

• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to the multiset placed inside its input

membrane.

In particular, a family Π is said to be (L,L)-uniform if the functions E and F
can be computed by a deterministic Turing machine in logarithmic space.

Constant-Space P Systems with Active Membranes 247

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [3] for further details on the encoding of
P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes [5, 7].

Definition 3. Let C be a configuration of a P system Π. The size |C| of C is
defined as the sum of the number of membranes in the current membrane structure
and the total number of objects from Γ (i.e, the non-input objects) they contain.
If C = (C0, . . . , Ck) is a computation of Π, then the space required by C is defined
as

|C| = max{|C0|, . . . , |Ck|}

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ⋆} be a family of recogniser P systems, and let s : N →
N. We say that Π operates within space bound s iff |Πx| ≤ s(|x|) for each x ∈ Σ⋆.

Definition 4. We denote by (L,L)-MCSPACEAM(f(n)) the class of languages
decidable by (L,L)-uniform families of confluent P systems with active membranes
within space bound f . In particular, (L,L)-MCSPACEAM(O(1)) denotes the class
of languages decidable in constant space.

3 Simulating Polynomial-Space Turing Machines

The idea behind the simulation of a polynomial-space bounded TM using only
constant space in the P system is to use the input objects as a way to store the
status of the TM tape. Since by rewriting more than a constant number of input
symbols the amount of space would be non-constant, the only way to use them to
store the state of the TM tape is to track the position of the symbols inside the
membranes. We will use a tape alphabet consisting of two symbols, a and b; the
construction presented here immediately generalises to alphabets of any size.

The simulation relies on two main ideas in order to store and retrieve the
content of the simulated TM tape. The first idea is that, apart from a short
initialisation procedure, the only relevant part of an input object σj is its subscript,
that is, the position j in the TM tape. We will then have two membranes, named
a and b, in which the input objects will be distributed. The interpretation of the
fact that an object σj is in membrane a is that the j-th cell of the TM contains

248 A. Leporati et al.

the symbol a. Notice that σ = a is not required, since this information is not used
after the initial phase of the simulation. The second idea is that it is possible to
“read” a subscript of an input object σj without rewriting it and by using only
a constant number of additional objects and membranes. An input object σj can
use an evolution rule to generate a timer that, after j time steps, changes the
charge of a membrane. Any other object that was observing that same membrane,
i.e., it was counting together with the timer, is able to obtain the value j of the
subscript of σj . The two ideas intuitively presented here, to be formalised in the
construction below, allow us to store and retrieve the content of the tape of a TM
using only a constant number of additional objects and membranes by “moving
around” the input objects.

The simulation is divided into three phases. The first one is the initialisation,
in which the input objects are distributed across the membranes of the systems.
The second phase is simulation of a step of the TM, which requires the third phase,
where the P system is reset in order to simulate the next step.

3.1 Membrane structure

The membrane structure consists of six membranes:

0

T

0

I

0

R

0

a

0

b

0

e

Each of these membranes has a specific semantics:

• T is a “temporary storage”. It will contain objects that are not needed in that
particular stage of the computation, and, then it will be emptied and the object
contained will be moved to one of the other membranes. It also serves as the
input membrane.

• I is used only during the initialisation, acting as a container for the “dispatching
machinery” that moves an input object to the correct membrane.

• R is a membrane used to check the subscript of a specific input symbol. The
input object σj generates a timer that changes the charge of the membrane
after j time steps.

• Membrane a (resp. b) contains all input objects σj such that, in the currently
simulated step of the TM, the j-th cell of the tape contains the symbol a (resp.
b).

• e is the external membrane, containing all the others.

If the tape alphabet contains more than two symbols, it is possible to add more
membranes inside e, one for each symbol.

Constant-Space P Systems with Active Membranes 249

3.2 Initialisation

The initial configuration of the P system contains all the input objects in mem-
brane T and one auxiliary object move in membrane e. The initialisation procedure
moves each input object aj (resp., bj) to membrane a (resp., b) and generates an
object q0,a, where q is the initial state of the TM, 0 indicates the position of the
TM on the tape, and a indicates the fact that the P system simulating the TM
will check if the symbol on the TM tape at position 0 is a. An example of the
movement of one object to the correct membrane is shown in Fig. 1.

In the description of the simulation we assume that n is the size of the input
and p(n) is the length of the tape of the TM, which is polynomial in n.

The following set of rules uses the object move to transport an input object
outside of membrane T or, if the membrane is empty, to start the simulation of
the first step of the TM.

move []0T → [move]−T

[move → move′]−T

[move′]0T → []0T open

[ai]
−
T → []0T ai 0 ≤ i < p(n)

[bi]
−
T → []0T bi 0 ≤ i < p(n)

[move′]−T → []0T q0,a

The next set of rules is used to move an input object from membrane e to I:

open []0I → [open]+I

[open]0I → []−I wait

ai []
+
I → [ai]

0
I 0 ≤ i < p(n)

bi []
+
I → [bi]

0
I 0 ≤ i < p(n)

The following rules move an input object ai (resp., bi) to membrane a (resp., b):

[ai → ai gotoa]
0
I 0 ≤ i < p(n) (1)

[bi → ai gotob]
0
I 0 ≤ i < p(n) (2)

[gotoa]
0
I → []−I gotoa

[gotob]
0
I → []−I gotob

[ai]
−
I → []0I ai 0 ≤ i < p(n)

[bi]
−
I → []0I bi 0 ≤ i < p(n)

gotoa []0a → [gotoa]
+
a

gotob []
0
b → [gotob]

+
b

[gotoa → ϵ]+a

250 A. Leporati et al.

a0 b1 b2

a3

0

T

0

I

0

R

move

0

a

0

b

0

e

a0 b1 b2

a3 move

−

T

0

I

0

R

0

a

0

b

0

e

a0 b2

a3 move
′

0

T

0

I

0

R

b1

0

a

0

b

0

e

a0 b2

a3

0

T

0

I

0

R

b1 open

0

a

0

b

0

e

a0 b2

a3

0

T

open

+

I

0

R

b1

0

a

0

b

0

e

a0 b2

a3

0

T

open

b1

0

I

0

R

0

a

0

b

0

e

a0 b2

a3

0

T

goto
b

b1

−

I

0

R

wait

0

a

0

b

0

e

a0 b2

a3

0

T

goto
b

0

I

0

R

wait′ b1

0

a

0

b

0

e

a0 b2

a3

0

T

0

I

0

R

wait′′ b1 goto
b

0

a

+

b

0

e

a0 b2

a3

0

T

0

I

0

R

wait′′′ b1

0

a

goto
b

+

b

0

e

a0 b2

a3

0

T

0

I

0

R

move

0

a

b1

0

b

0

e

Fig. 1. The movement of an input symbol to the correct membrane during the initiali-
sation phase.

Constant-Space P Systems with Active Membranes 251

[gotob → ϵ]+b

ai []
+
a → [ai]

0
a 0 ≤ i < p(n)

bi []
+
b → [bi]

0
b 0 ≤ i < p(n) (3)

Finally, the auxiliary object in membrane e has to wait for three steps before
moving another input object outside of membrane T:

[wait → wait′]0e

[wait′ → wait′′]0e

[wait′′ → wait′′′]0e

[wait′′′ → move]0e

After the initialisation phase, all the input objects of the form ai (resp., bi) are
located in membrane a (resp., b), and the actual simulation of the TM can start.

3.3 Simulation of a Step of the Turing Machine

To simulate a step of the TM we first define how its configuration is encoded as
a configuration of the P system. Let c0, c1, . . . , cp(n)−1, with ci ∈ {a, b}, be the
tape of the TM at the current time step, and σ0, . . . , σn−1 the initial content of
the tape. Then the P system contains, in membrane a, all σj such that cj = a
and, in membrane b, all the input objects σj such that cj = b. Notice that this
allows a complete reconstruction of the tape of the TM. The state q of the TM
and the position i of the head are encoded in an object qi,τ in membrane e, where
τ ∈ {a, b} indicates that the P system will check if the symbol in position i of the
tape is τ .

The simulation proceeds as follows:

• The object qi,τ moves an object σj from membrane τ , i.e., either a or b, to
membrane R.

• In membrane R the object σj produces a timer that counts from j to 0, while
qi,τ counts from i to 0. When the first timer stops, it changes the charge of
R, that is immediately changed again by the object σj exiting from R. This
makes it possible to determine if i = j. In that case, the symbol on the tape of
the TM in position i is actually τ , and it is possible to perform a step of the
simulated machine. In the other case, i.e., i ̸= j, the object σj is moved into
membrane T and we return to the previous step.

• When membrane τ is empty, or the correct input object was found in the pre-
vious step, it is necessary to move back the objects from T to membrane τ . The
search for the input object having subscript i will then proceed in membrane
b (when τ = a) or a (when τ = b).

We will now detail the rules necessary to formally define the previous algorithm.
In order to shorten the notation, in the following description we are going to write
only half of the rules, those involving a. The missing half is obtained by swapping
a and b.

252 A. Leporati et al.

0

T

0

I

0

R

q2,a

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a

0

R

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

+

R

q′2,a

a0 b2

0

a

b1 a3

0

b

0

e

Fig. 2. The symbol q2,a changes the charge of the membrane R before starting the next
phase of the simulation (continues in Fig 3).

Reading the Symbol under the Tape Head

This first set of rules uses the object qi,a to change the charge of membrane R to
+, as shown in Fig. 2. The set Q′ denotes the non-finals states of Q.

qi,a []0R → [qi,a]
0
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a]
0
R → []+R q′i,a for q ∈ Q′, 0 ≤ i < p(n)

The following rules move an input object from membrane a to membrane R.

q′i,a []0a → [q′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a → q′′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
a → []0a σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′′i,a]
0
a → []0a qi,a,read for q ∈ Q′, 0 ≤ i < p(n)

[q′′i,a]
−
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n) (4)

σj []
+
R → [σj]

0
R for σ ∈ {a, b}, 0 ≤ j < p(n)

The next rules allow us to compare the position of the head of the TM (stored as
a subscript of the object qi,a,read) with the subscript j of the object σj that has
left membrane a. To accomplish this, the object σj in membrane R produces the
object timerj . At the same time step in which timerj is produced, the object qi,a,read
enters R, changing its charge to +. Both timerj and qi,a,read rewrite themselves in
order to count from j (resp., i) to 0. In this way, it is possible to determine if
i = j. If it is so, then qi,a,found exits from R. If not, it is qi,a,not-found that appears.
An example of application of those rules is presented in Fig. 3.

[σj → σj timerj]
0
R for σ ∈ {a, b}, 0 ≤ j < p(n) (5)

Constant-Space P Systems with Active Membranes 253

0

T

0

I

+

R

a0 b2 q′2,a

−

a

b1 a3

0

b

0

e

0

T

0

I

+

R

b2

a0 q′′2,a

0

a

b1 a3

0

b

0

e

0

T

0

I

b2

0

R

q2,a,read

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer2

q2,a,read

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer1

q2,a,2

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer0

q2,a,1

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 q2,a,0

−

R

timer0

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a,found

0

R

b2

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2 q2,a,found

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2

a0

0

a

b1 a3 q2,a,found

+

b

0

e

0

T

0

I

0

R

a0

0

a

b1 a3 b2

q2,a,found

0

b

0

e

0

T

0

I

0

R

r3,a,reset

a0

0

a

b1 a3 b2

0

b

0

e

Fig. 3. The symbol q2,a is used to discover that position 2 of the tape contains a. After
that, a transition to state r and a movement of the tape head to position 3 is performed.

254 A. Leporati et al.

qi,a,read []
0
R → [qi,a,read]

+
R for q ∈ Q′, 0 ≤ i < p(n)

[timerj → timerj−1]
+
R for 1 ≤ j ≤ p(n)

[qi,a,read → qi,a,i]
+
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,k → qi,a,k−1]
+
R for q ∈ Q′, 0 ≤ i < p(n), 1 ≤ k ≤ p(n)

[timer0]
+
R → []−R timer0

[timer0 → ϵ]0e

[σj]
−
R → []0R σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,0 → qi,a,found]
−
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,0 → qi,a,not-found]
+
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,0 → qi,a,not-found]
0
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,found]
0
R → []0R qi,a,found for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,not-found]
0
R → []0R qi,a,not-found for q ∈ Q′, 0 ≤ i < p(n) (6)

If i ̸= j we need to move the selected input object σj to membrane T:

qi,a,not-found []
0
T → [qi,a,not-found]

+
T for q ∈ Q′, 0 ≤ i < p(n)

σj []
+
T → [σj]

0
T for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,not-found]
0
T → []0T qi,a for q ∈ Q′, 0 ≤ i < p(n)

On the other hand, if i = j we have correctly identified the symbol under the head
of the TM. Assume δ(q, a) = (r, τ, d) with r non final; then we define the following
rules:

qi,a,found []
0
τ → [qi,a,found]

+
τ for 0 ≤ i < p(n)

σi []
+
τ → [σi]

0
τ for σ ∈ {a, b}, 0 ≤ i < p(n)

[qi,a,found]
0
τ → []0τ ri+d,a,reset for 0 ≤ i < p(n) (7)

Notice that, in the case of a nondeterministic TM, the simple repetition of rule (7)
for each (r, τ, d) ∈ δ(q, a) assures a non-deterministic simulation on a non-confluent
P system.

Notice that the last rule has a change in both the state and in the position of
the head. The presence of reset in the subscript indicates that this object will move
all the objects from membrane T to membrane a. This happens also in another case
(see rule (4)) but without any change of state and position of the TM head. This
is an intended behaviour, since in both cases, before continuing the simulation, we
need to restore the configuration of the P system by emptying membrane T. After
that, the simulation with proceed with the object ri+d,b in this case, and qi,b in
the other, as intended.

Constant-Space P Systems with Active Membranes 255

Clean-up

The following set of rules use the object qi,a,reset to move all the objects from
membrane T to membrane a. After that, the object is rewritten into qi,b.

qi,a,reset []
0
T → [qi,a,reset]

−
T for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
T → []0T σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,reset → q′i,a,reset]
−
T for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
0
T → []0T q′i,a,reset for q ∈ Q′, 0 ≤ i < p(n)

q′i,a,reset []
0
a → [q′i,a,reset]

+
a for q ∈ Q′, 0 ≤ i < p(n)

σj []
+
a → [σj]

0
a for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′i,a,reset]
0
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
−
T → []0T qi,b for q ∈ Q′, 0 ≤ i < p(n)

Now all the input objects have been moved to either membrane a or membrane b,
and the P system proceeds by checking whether the tape head is reading the
symbol b in state q.

3.4 Halting

If δ(q, a) = (r, τ, d) and r is an accepting (resp., rejecting) state of the TM, then,
when simulating the last transition, instead of rule (7) one of the following rules
is applied:

[qi,a,found]
0
τ → []0τ yes for 0 ≤ i < p(n), if r is accepting

[qi,a,found]
0
τ → []0τ no for 0 ≤ i < p(n), if r is rejecting

Finally, the object yes or no is sent out from the outermost membrane, as the last
computation step by, via the rules

[yes]0e → []0e yes

[no]0e → []0e no

No further rule can then be applied, since the only remaining objects are the input
objects located in membranes T, a, and b, where they are not subject to any rule,
as the membrane charges are neutral.

3.5 Main Result

The simulation of one step of the TM requires at most a polynomial number of
steps of the P system, since each of the different “phases” (initialisation, checking
if the input symbol σj has a subscript corresponding to the current position of

256 A. Leporati et al.

the head of the TM, and moving the objects from membrane T to either a or b)
requires at most polynomial time – actually O(p(n)) – and it is repeated at most
once for each cell of the tape, that is, at most p(n) times.

Even if we have presented a simulation of a TM having only two tape symbols, it
is possible to extend the simulation to arbitrary alphabets by using one membrane
for each symbol, similarly to membranes a and b, and by adding the corresponding
rules. Therefore, in the following theorem we assume that a blank tape symbol ⊔
is available.

Theorem 1. (L,L)-MCSPACEAM(O(1)) = PSPACE.

Proof. Let L ∈ PSPACE, and let M be a TM deciding L in space p(n)). We
can construct a family of P systems Π = {Πx : x ∈ Σ⋆} such that L(Π) = L
by letting F (1n) = Πn, where Πn is the P system simulating M on inputs of
length n, and E(x0 · · ·xn−1) = x1,1 · · ·xn−1,n−1 ⊔n · · · ⊔p(n)−1, i.e., by padding
the input string x with p(n) − n blank symbols before indexing the result with
the positions of the symbols. Both F and E can be computed in logarithmic
space by Turing machines, since they only require adding subscripts having a
logarithmic number of bits to rules or strings having a fixed structure, and the
membrane structure is fixed for all Πn. Since the simulation of M only requires a
constant number of membranes and non-input objects, the inclusion PSPACE ⊆
(L,L)-MCSPACEAM(O(1)) follows. The reverse inclusion was proved in [6]. ⊓⊔

4 Rethinking the Definition of Space

The result of Theorem 1 shows that constant-space P systems with active mem-
branes have the same computational power of Turing machines working in poly-
nomial space. This raises some doubts about the definition of space complexity for
P systems adopted until now [5]: does counting each non-input object and each
membrane as unitary space really capture an intuitive notion of “space”?

From an information-theoretic perspective, we may observe that the constant
number of non-input objects employed by the simulation of Section 3.5 actually
encode Θ(log n) bits of information, since they are taken from an alphabet Γ
of polynomial size. It may be argued that this amount of information needs a
proportional amount of physical storage space (e.g., as DNA molecules of com-
parable size). Similarly, the membranes themselves, being identified by a label,
contain Θ(log |Λ|) bits of information, which must have a physical counterpart.1

A more accurate estimate of the space required by a configuration of a P system
might be given by the following alternative definition:

1 We refer to the objects and membrane labels actually appearing during the course of
the computation here; if part of the alphabet Γ or some labels from Λ never appear
in a configuration, then the information content might be smaller.

Constant-Space P Systems with Active Membranes 257

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is
defined as the number of membranes in the current membrane structure multiplied
by log |Λ|, plus the total number of objects from Γ (i.e, the non-input objects) they
contain multiplied by log |Γ |.

Adopting this stricter definition does not significantly change space com-
plexity results for polynomial or larger upper bounds, i.e., the complexity
classes PMCSPACEAM, EXPMCSPACEAM, and larger ones [1] remain un-
changed.

On the other hand, the simulation described in this paper would require log-
arithmic space according to Definition 5. Furthermore, the space bounds of the
previous simulation of polynomial-space Turing machines by means of logarithmic-
space P systems with active membranes [2] also increase to Θ(log n log log n), since
in that case each configuration of the P systems contained Θ(log n) membranes
with distinct labels and O(1) non-input objects.

It remains to be established if space (as in Definition 5) can be freely exchanged
between objects and labels, or if one of the two is strictly more powerful.

5 Computing without Evolving Input Objects

In this section we are going to show that, if input object are only moved around
the membrane structure (without being themselves rewritten into other objects),
evolution rules involving the input objects, such as (1), (2), and (5), are essential
in order to perform a simulation of a TM. In fact, if only non-rewriting send-in,
send-out, and dissolution rules are applied to input symbols, and the number of
membrane labels is o(log n), it is impossible even to correctly distinguish two input
strings of the same length. This happens independently of the space used by the
P systems, as long as the multiset encoding of the input x ∈ Σ⋆ is “simple”:

Definition 6. Let A be an alphabet containing Σ, and let

s : A⋆ → {σi : σ ∈ A, i ∈ N}⋆

be the function defined by s(x0 · · ·xn−1) = x0,0 · · ·xn−1,n−1, i.e., the function sub-
scripting each symbol with its position in the string.

We say that an encoding E of Σ⋆ is “simple” if there exists a function g : N →
A⋆ such that E(x) = s(x · g(|x|)), i.e., E(x) is the original input string x, con-
catenated with a string depending only on the length of x, and indexed with the
positions of its symbols.

Notice that the encoding employed in Theorem 1 is indeed simple.
When the encoding is simple and the input alphabet is at least binary, P sys-

tems with the limitations described above accepting (resp., rejecting) a long enough
string x also accept (resp., reject) another string obtained by swapping two sym-
bols of x.

258 A. Leporati et al.

Theorem 2. Let Π be a family of (E ,F)-uniform, possibly non-confluent P sys-
tems with active membranes, where F is unrestricted, and E is the class of simple
encodings. Suppose that the only rules involving input symbols are send-in com-
munication, send-out communication and membrane dissolution, that these rules
never rewrite the input symbol, and that the family uses o(log n) membrane labels.

Then, there exists n0 ∈ N such that, for each string x = x0 · · ·xn−1 ∈ Σ⋆

with |x| ≥ n0, there exist i < j < n such that x can be written as u · xi · v · xj · w
and x ∈ L(Π) if and only if u · xj · v · xi · w ∈ L(Π).

Proof. Let Π be a family of P systems as defined in the statement of the theorem,
let F ∈ F be its “family” function, and let

F (1n) = Πn = (Γ,∆,Λ, µ, wh1 , . . . , whd
, R).

Assume that the objects in ∆ have, in R, only rules of type send-in, send-out,
and dissolution not rewriting them. We impose no restriction on rules involving
objects in Γ . Let us consider the possible rules applicable to a fixed object a ∈ ∆
and respecting the imposed restrictions:

• There are at most 32|Λ| send-in rules of the form a []αh → [a]βh, since it is
possible to choose the label of the membrane and the two charges.

• Similarly, there are at most 32|Λ| send-out rules of the form [a]αh → []βh a.
• The number of dissolution rules of the form [a]αh → a is at most 3|Λ|, since,

contrarily to the last two cases, there is no charge on the right-hand side of the
rule.

Thus, there are 21|Λ| possible rules per input object and 221|Λ| possible sets of
rules involving each input object. Since the encoding of the input string is simple,
each input object has the form σi for some σ ∈ A; hence, for each position i in the

input multiset there are
(
221|Λ|)|A|

= 221|Λ||A| possible sets of rules.
A necessary condition to distinguish two input objects a, b ∈ ∆ is that the set

of rules involving b cannot be simply obtained by replacing a with b in the set of
rules involving a (i.e., their sets of rules are not isomorphic); otherwise, replacing a
with b in the input multiset would not change the result of the computation of Π.
In particular, this holds for the first n input objects x0,0, . . . , xn−1,n−1, obtained
by indexing x = x0 · · ·xn−1 ∈ Σn. In order to be able to distinguish these n input
objects it is necessary that

221|Λ||Σ| ≥ n

that is, that the sets of rules associated with the first n objects are pairwise non
isomorphic. This means that

|Λ| ≥ log n

21|Σ|
But |Λ| is o(log n); hence, the inequality does not hold for large enough n. Instead,
there exists n0 such that, for each n ≥ n0, there are two indistinguishable posi-
tions i and j with 0 ≤ i < j < n: for each x = u · xi · v · xj · w ∈ Σn, either x
and u · xj · v · xi · w are both accepted, or they are both rejected. ⊓⊔

Constant-Space P Systems with Active Membranes 259

6 Final Remarks

In this paper we have solved the problem of determining the computational power
of P systems working in constant space, by showing that they can simulate
polynomial-space bounded Turing machines. The simulation is also efficient, in
the sense that it is only polynomially slower than the original machine.

The solution of this problem raised some interesting questions about the ability
of the current definition of space to capture our intuitions about the size of P sys-
tems. We have challenged the existing definition by considering also the number
of bits necessary to encode the auxiliary objects and the labels of the membranes.
While the new definition does not change any result involving an amount of space
polynomial or larger, it changes the current result and, according to the new defi-
nition, our simulation requires logarithmic space.

Finally, we have shown that rewriting input objects, while not exploited in
other simulations [2], is essential when less than a logarithmic number of membrane
labels is present. In fact, distinguishing two inputs is not possible when the input
objects are only moved around in the membrane structure, even when no restriction
on the space are present.

In the future we plan to investigate the relationship between the size of the set of
objects Γ and the set of membrane labels Λ. It would be interesting to understand
if we can easily exchange the way the information is distributed between the two
sets according to the new definition of space (Definition 5).

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity
equivalence of P systems with active membranes and Turing machines. Theoretical
Computer Science 529, 69–81 (2014)

2. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of
P systems with active membranes (2014), submitted

3. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

4. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems. Jour-
nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

5. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complex-
ity measure for P systems. International Journal of Computers, Communications &
Control 4(3), 301–310 (2009)

6. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes
working in polynomial space. International Journal of Foundations of Computer Sci-
ence 22(1), 65–73 (2011)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with
active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A.,
Vaszil, G. (eds.) Membrane Computing, 13th International Conference, CMC 2012,
Lecture Notes in Computer Science, vol. 7762, pp. 342–357. Springer (2013)

