
Describing Membrane Computations with a
Chemical Calculus ⋆

Péter Battyányi, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
{battyanyi.peter, vaszil.gyorgy}@inf.unideb.hu

Summary. Membrane systems are nature motivated computational models inspired by
certain basic features of biological cells and their membranes. They are examples of the
chemical computational paradigm which describes computation in terms of chemical so-
lutions where molecules interact according to rules defining their reaction capabilities.
Chemical models can be presented by rewriting systems based on multiset manipulations,
and they are usually given as a kind of chemical calculus which might also allow non-
deterministic and non-sequential computations. Here we study membrane systems from
the point of view of the chemical computing paradigm and show how computations of
membrane systems can be described by such a chemical calculus.

1 Introduction

The history of the chemical computing paradigm goes back to the introduction
of the Gamma programming language by Bânatre and Le Métayer in [3, 4]. They
describe computations in terms of a symbolic chemical solution of molecules with
possible reactions between them. The molecules represent the data, the reactions
represent their transformations, and the Brownian motion of molecules in the
solution represents the execution model of the program.

The general idea behind the chemical paradigm (and the purpose of the intro-
duction of the Gamma formalism) is to be able to express algorithms without the
sequentiality which is not inherently necessary, which is not inherently “built into”
the problem that the algorithm needs to solve, or in other words, the sequentiality
which is the consequence of the given computational model and not related to the
logic of the solution of the problem.

The idea was developed further in several different directions, on of them was
realized by the chemical abstract machine of Berry and Boudol in [5] where they

⋆ Research supported in part by the Hungarian Scientific Research Fund, “OTKA”,
grant no. K75952, and by the European Union through the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project which is co-financed by the European Social Fund.

80 P. Battyányi, G. Vaszil

also introduce the notion of membranes which encapsulate subsolutions forcing the
reactions to occur in locally isolated ways. The role of membranes was underlined
by Păun in [7] where membrane systems (P systems) were introduced emphasizing
the importance of the hierarchical structure of different compartments or regions
enclosing different molecules which react, evolve according to different rules and
they only cross the membranes or region boundaries in a restricted and controlled
manner.

Since its introduction, the theory of P systems became an extensive and well
established research field, one of the most important and most popular areas of
natural computing which also evolved in several different directions and into dif-
ferent subfields. The evolution of the area made its relationship to other chemical
computing models and formalisms less apparent, so it might be of interest to ex-
amine them from the point of view of the chemical computing paradigm, and to
point out the links between P systems and other chemical computational models,
as we attempt in the present paper.

This approach could be beneficial in different ways. By being able to translate
chemical programs, or chemical computing formalisms (like Gamma) to membrane
systems, we could provide something like a high-level programming language for P
systems which could serve as an elegant and efficient way of presenting P system
algorithms. A preliminary study of turning certain simple Gamma programs to
P systems was initiated in [11]. On the other hand, by being able to describe
membrane systems using one of the chemical computing formalisms (as we attempt
in this paper), we would be able to use the tools and techniques developed for the
many different types of chemical calculi to reason about membrane systems and
their computations.

In what follows we first give a short introduction to the Gamma formalism and
to the notions of membrane systems and their computations. Then we present the
γ-calculus from [1], and show how computations of certain membrane systems can
be described in this formalism.

2 Preliminaries and Definitions

We assume that the reader is familiar with the basics of formal language theory
and membrane computing; for more information, we refer to the monograph [10],
and the handbooks [9] and [8].

In the following, we briefly review the notions and the notation we will use.
An alphabet is a finite non-empty set of symbols. Given an alphabet V , we denote
the set of strings over V by V ∗ . If the empty string, ε, is not included, then we
use the notation V +.

A finite multiset over an alphabet V is a mapping M : V → N where N denotes
the set of non-negative integers, and M(a) for a ∈ V is said to be the multiplicity
of a in M . The support of M is the set supp(M) = {a ∈ V | M(a) ≥ 1}. If
supp(M) is a finite set, then M is called a finite multiset. The set of all finite

Describing Membrane Computations with a Chemical Calculus 81

multisets over the set V is denoted by M(V). We say that a ∈ M if a ∈ supp(M),
M1 ⊆ M2 if supp(M1) ⊆ supp(M2) and for all a ∈ V , M1(a) ≤ M2(a). The
union of two multisets over V is defined as (M1 ∪ M2) where for all a ∈ V ,
(M1∪M2)(a) = M1(a)+M2(a), the difference is defined for M2 ⊆ M1 as (M1\M2)
where (M1 \M2)(a) = M1(a)−M2(a) for all a ∈ V .

In what follows, we usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = (a1, . . . , an), but the multiset M can also be

represented by any permutation of a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗,

where if M(x) ̸= 0, then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅ as in the case of the empty set.

Both P systems and chemical calculi are implemented as rewriting systems. A
rewriting system is a pair A = {Σ, (→i)i∈I}, where Σ is a set and (→i)i∈I is a
set of binary relations defined on Σ. The relations (→i)i∈I are called reduction
relations. In the rewriting systems considered in this paper the set § is a set of
multisets of elements over an alphabet O or, in the case of the chemical formalism,
multisets of terms of some calculus, and → is a single binary relation rendering
multisets to multisets. It is supposed that the reduction relation → is compatible
with the term formation rules in the γ-calculus, and, in the case of membrane
systems, it extends itself to a relation on configurations.

2.1 The Gamma-formalism

Several attempts have been made to establish a programming language suitable for
programming massively parallel architectures. The aim of the Gamma-formalism
is to provide the programmer with a high-level programming language deprived
of all artificial constraint for sequentiality, in which the parallel aspect is left
implicit. The Gamma-formalism, as a programming language, is a tool for multiset
manipulation. The only data structure, in the untyped version, is that of multisets,
and the programs are collections of pairs consisting of reaction conditions and
actions. The following presentation is based mainly on [2].

The meaning of the Γ -function can be defined as follows:

Γ (R,A)(M) =

Γ (R,A)((M\(x1, . . . , xn)) ∪A(x1, . . . , xn)),
if x1, . . . , xn ∈ M and R(x1, . . . , xn),

M otherwise.

For example, the Γ -program below computes the maximal element of a set of
integers M :

maxset(M) = Γ ((R,A))(M) where
R(x, y) = x ≤ y
A(x, y) = (y)

The Boolean function R describes a relation to be satisfied by the selected
elements x and y. If R(x, y) is true, then x and y are replaced by the result of
the reaction defined by the function A. In this case, the element of the multiset

82 P. Battyányi, G. Vaszil

(x, y) is chosen which is not less than the other. The function R is called the
reaction condition and the action A is the result of the reaction. The computation
terminates when no more reactions are possible. In the present situation this leaves
the computation with a one element multiset as the result, which is the maximal
element of M .

The next introductory example finds the prime numbers up to a given number
n:

sieve(n) = Γ ((R,A))(2, . . . , n) where
R(x, y) = x divides y
A(x, y) = (x)

The reaction condition is fulfilled for x and y, if y is a multiple of x. In this
case the multiset (x, y) is removed from the original multiset and is replaced by
the multiset (x). In effect, this means that a stable condition is reached if there
are no more pairs (x, y) such that x divides y, which is satisfied if and only if the
resulting multiset consists of the prime numbers not greater than n.

The definition of Γ reflects the way the program reaches its halting point:
if there is at least one multiset (x1, . . . , xn) such that R(x1, . . . , xn) holds, then
Γ (R,A)(M) is applicable and the result is the same as the value determined by
application Γ (R,A)((M\(x1, . . . , xn)) ∪A(x1, . . . , xn)), if it exists.

Remark 1. Of course, there can be Γ -programs which do not terminate. In simple
cases like the above ones, termination can be proven by an application of the
Dershowitz–Manna lemma, see [6]. This lemma asserts that if (S,<) is a well-
founded ordered set with the strict (that is, irreflexive and transitive) partial-order
<, then M(S), the set of all finite multisets over S with the strict partial ordering
≪ is also well-founded, where ≪ is defined as follows. Let M,N,∈ M(S). We say
that M ≪ N if there are X, Y ∈ M(S) such that

• X ̸= ∅,
• N = (M\X) ∪ Y ,
• (∀y ∈ Y)(∃x ∈ X)(y < x).

As the well foundedness of a set means that there exists no infinite decreas-
ing sequence of its elements, the lemma applies to the examples above, because
both by the maxset and the sieve programs, the number of elements of the mul-
tisets obtained as the intermediate results of the transformation forms a strictly
decreasing sequence.

2.2 Membrane Systems

A P system is a structure of hierarchically embedded membranes, each hav-
ing a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labeled
with 1, is called the skin membrane. The membrane structure is denoted by a
sequence of matching parentheses where the matching pairs have the same la-
bel as the membranes they represent. If x ∈ {[i,]i | 1 ≤ i ≤ n}∗ is such a

Describing Membrane Computations with a Chemical Calculus 83

string of matching parentheses of length 2n, denoting a structure where mem-
brane i contains membrane j, then x = x1 [i x2 [j x3]j x4]i x5 for some
xk ∈ {[l,]l | 1 ≤ l ≤ n, l ̸= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains mem-
brane j, and there is no other membrane, k, such that k contains j and i contains
k (x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j. A membrane m is called elementary
if it contains no membrane, in this case x = x1 [m]m x2.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another one.
The rules are multiset rewriting rules given in the form of u → v where u, v are
multisets, and they are applied in the maximal parallel manner, that is, as many
rules are applied in each region as possible. The end of the computation is defined
by halting: A P system halts when no more rules can be applied in any of the
regions, the result is a number, the number of objects in an elementary membrane
labeled as output.

Definition 1 A P system of degree n ≥ 1 is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, out)

where

• O is an alphabet of objects,
• µ is a membrane structure of n membranes,
• wi ∈ M(O), 1 ≤ i ≤ n, are the initial contents of the n regions,
• Ri, 1 ≤ i ≤ n, are the sets of evolution rules associated to the regions, they

are of the form u → v where u ∈ M(O) and v ∈ M(O × TAR) where TAR =
{here, out} ∪ {inj | 1 ≤ j ≤ n}, and

• out ∈ {1, . . . , n} is the label of an elementary membrane, the output membrane.

The evolution rules of the system are applied in the nondeterministic, maxi-
mally parallel manner to the n-tuple of multisets of objects constituting the con-
figuration of the system. The n-tuple (w1, . . . , wn) is the initial configuration of Π.
For two configurations C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain C2

from C1 by applying the rules of R1, . . . , Rn in the following way. The application
of u → v ∈ Ri in the region i means to remove the objects of u from ui and add
the new objects specified by v to the system. The objects of v should be added to
the regions as specified by the target indicators associated to them: If v contains
a pair (a, here) ∈ O×TAR, then a is placed in region i, the region where the rule
is applied. If v contains (a, out) ∈ O × TAR, then a is added to the contents of
the parent region of region i; if v contains (a, inj) ∈ O × TAR for some region j
which is contained inside the region i (so region i is the parent region of region j),
then a is added the contents of region j.

The objects evolve simultaneously, and the rules by which they evolve are
chosen nondeterministically, but in a maximally parallel manner. This means that

84 P. Battyányi, G. Vaszil

the rules are chosen in such a way, that in each region objects are assigned to rules,
as many objects to as many rules as possible, and the assignment is maximal in
the sense that no other rule can be applied to the remaining (unassigned) objects
which appear unchanged in the next configuration.

A sequence of transitions between configurations is called a computation. A
computation is successful if it halts, that is, if it reaches a configuration where no
application of any of the rules are possible. In this case, the result is the number
of objects which are present in the output region in the halting configuration.

3 Writing Gamma Programs for Membrane Systems

The Γ -formalism has been the source of inspiration for the higher-order chemical
model of Banâtre et al., the so-called γ-calculus. The following presentation is
based on [1].

Two syntactical elements, molecules and patterns, are defined simultaneously
in the following definition.

Definition 1. The syntactical elements of molecules, denoted by M , and patterns,
denoted by P , are defined as

M = x | γ(P)[M1].M2 | (M1,M2) | ⟨M⟩
P = x | (P1, P2) | ⟨P ⟩,

where x is a variable standing for any molecule, γ(P)[M1].M2 is a γ-abstraction
with reaction condition M1 and result M2. The operator “,” is commutative and
associative, and ⟨M⟩ is called a solution.

A solution ⟨M⟩ encapsulates the molecule M : molecules inside the solution are
insulated from molecules outside the solution. However, the contents of solutions
can be changed by reactions which occur inside the solution.

The fundamental rule of the γ-calculus is that of a reaction. Prior to defining
reactions, we need some auxiliary notions.

Definition 2. A substitution is a mapping ϕ : V ar → M, if M is the set of all
molecules and V ar represents the set of variables. We can define the application
of a substitution to a molecule as follows:

ϕx = ϕ(x)

ϕ(M1,M2) = ϕM1, ϕM2

ϕ⟨M⟩ = ⟨ϕM⟩
ϕ(γ(P)[C].M) = γ(P)[C].ϕ′M,

where ϕ′ is obtained from ϕ by removing from the domain all the variables which
occur in P .

Describing Membrane Computations with a Chemical Calculus 85

A molecule is termed inert if no reaction can take place within it. The first
argument of match is a pattern, the other one is a molecule. Its value is a substi-
tution.

Definition 3. Let x denote a variable, P a pattern, and M a molecule. Then we
define

match(x,M) = {x 7→ M}
match(⟨P ⟩, ⟨M⟩) = match(P,M) provided inert(M)

match((P1, P2), (M1,M2)) = match(P1,M1) ◦match(P2,M2)

match(P,M) = fail in every other case.

The operation ◦ is the function composition with the additional stipulation that
fail ◦ x = x ◦ fail = fail.

We are in a position now to define the main rule of the calculus, the reaction
rule.

Definition 4. Let

γ(P)[C].M,N → ϕM, (γ)

where match(P,N) = ϕ and ϕ(C) →∗ true.

Besides the γ-rule some additional rules are applied.

Definition 5. Let M , M1, and M2 be any molecule. Then we have the following
rules:

M1 → M2

M,M1 → M,M2
(locality),

M1 → M2

⟨M1⟩ → ⟨M2⟩
(solution).

Moreover, we identify molecules with respect to commutativity and associativity,
that is, any reduction is understood modulo ≡, where

M1, (M2,M3) ≡ (M1,M2),M3 and M1,M2 ≡ M2,M1.

The γ-rule is a so-called one-shot rule: after taking part in a reduction, the
γ-abstraction disappears. To obtain a syntactic tool resembling the Γ -operator of
the previous section, we introduce a new operator which does not vanish in the
course of the reduction.

Let rep lace P by M if C, or rep lace(P,C,M) in short, be an operator obeying
the following reduction rule:

rep lace P by M if C,N → replace P by M if C, ϕ(M), (rep lace)

where C →∗ true and match(P,N) = ϕ.
With the notation introduced, we can construct the term finding the maximal

element of a given set of numbers:

86 P. Battyányi, G. Vaszil

Example 1. Let M = {3, 5, 8, 10, 12}. Then

(rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨y⟩ if x ≤ y, ⟨3⟩, ⟨5⟩, ⟨8⟩, ⟨10⟩, ⟨12⟩)

finds the maximum element of the set M .

Observe that in the example above the integers are represented as solutions.
Otherwise the term “rep lace x, y by y if x ≤ y” would match any molecules x
and y. In this case, it does not seem to be a problem since x ≤ y makes sense if x
and y are integers. As another example we compute the largest prime number up
to an integer n.

Example 2.

largestprime(n) =

let sieve = rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨x⟩ if x div y in

let max = rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨x⟩ if x ≤ y in

(⟨⟨2⟩, ⟨3⟩, . . . , ⟨n⟩, sieve⟩, γ⟨x⟩(x,max))

Observe that in this example above the pattern standing in the last γ-term is
a solution ⟨x⟩. By the definition of match, only inert solutions are able to match
with this pattern. This amounts to a means of governing the sequence of reductions
in a molecule: first the prime numbers are selected with the term sieve, then the
term max chooses the maximum among them.

Now we can turn to the problem of establishing a relation between the com-
putations in the γ-calculus and computations in membrane systems. We consider
the systems defined in Section 2.2, that is P systems of the form

(O,µ,w1, . . . , wn, R1, . . . , Rn, io)

where n is the number of membranes in the structure. We may assume io = n,
which means the output membrane is the n-th membrane.

The membrane structure can be uniquely described by setting the parent mem-
ber to each element. To this end, let par : {1, . . . , n} → {1, . . . , n} ∪ {nil} be the
function with the interpretation: if par(j) = k, then the k-th membrane is the
parent of the membrane numbered j. The parent of the outer membrane is nil,
that is, par(1) = nil.

We assume, as in Definition 1, that the rules Ri belonging to membrane i are
of the form u → v, where u ∈ M(O) and v ∈ M(O × {here}) ∪ M(O × {out}) ∪
M(O × {inj}), where par(j) = i.

First, we label the elements of each membrane, displaying explicitly the number
of the membrane the element belongs to. Thus, let lab : O → {(k : a) | 1 ≤ k ≤
n, a ∈ O} be such that

lab(a) = (k : a),

if a is contained by the regions enclosed by membrane k. Let us determine how
these labels are inherited through a rule u → v.

Describing Membrane Computations with a Chemical Calculus 87

Definition 6. Let a ∈ O × {here} ∪ O × {out} ∪ O × {inj}, assume tar ∈
{here, out, inj}, where 1 ≤ k ≤ n and par(j) = k. Then

lab(k, a, tar) =


k if tar = here
j if tar = inj

par(k) if tar = out and k > 1
undefined if tar = out and k = 1.

Let k be a membrane label for some 1 ≤ k ≤ n. We define a transformation
hk(u → v) of a rule u → v in region k into some γ-term. First, settle hk for the
elements in u and v. Let O be the alphabet of the membrane system. We define
the image of an element of O in the corresponding γ-calculus. If a ∈ O, then

hk(a) = (k : a),

otherwise

hk(a, tar) =

{
(i : a) where i = lab(k, a, tar) and tar ̸= out or k > 1,

λ if tar = out and k = 1.

The function hk propagates itself to multisets, thus

hk(w1 . . . wl) = hk(w1) . . . hk(wl),

if w = w1 . . . wl and w ∈ M(O) or w ∈ M((O × {here}) ∪ M(O × {out}) ∪
M(O×{inj}). For technical reasons we add a new constant, say, 1 to each multiset
obtained from u and v, thus

hk(u → v) = rep lace (hk(u), 1) with (hk(v), 1).

Accomplishing this for every membrane labeled by k, we assign the multiset ((k :
u1), . . . , (k : uik), (k : 1), hk(r1), . . . , hk(rjk)) to region k, where u1, . . . , uik were
the elements and r1, . . . , rjk were the rules corresponding to the region.

Let us denote by gamma(Π) the gamma formalism assigned to the membrane
system Π. The transformation above is injective, thus, given a γ-structure Γ ob-
tained in this way, we can uniquely identify the membrane structure Π such that
gamma(Π) = Γ . In the sequel, if no confusion occurs, we write ak instead of
(k : a) and c instead of (k : c), if c is a fixed element of the base set.

Example 3. Let Π be the membrane system Π = ({a, b, c}, µ, aa, ∅, R1, ∅, 2) where
µ = [[]2]1, and R1 = {a → (a, here)(b, in2)(c, in2)

2, a2 → (a, out)2}.
Now

h1(a) = a1,

h1(a → (a, here)(b, in2)(c, in2)
2) = rep lace (a1, 1) with (a1, b2, c2

2, 1),

h1(aa → (a, out)2) = rep lace (a1, a1, 1) with 1.

88 P. Battyányi, G. Vaszil

In what follows we simulate maximal parallel reduction sequences of the mem-
brane system with reduction sequences in the chemical calculus γ. Besides the
translations of the multiset reduction steps the process must be prepared to sim-
ulate the next maximal parallel sequence of reductions, as well. To this end, the
underlined symbols must be transformed back into usual ones. Some care is needed
though in the process, the replace operators assigned to rules of the membrane
system should not interfere with this stage. The introduction of the additional
constants 1 and 0 serves exactly this synchronization purpose. When 1 is present
in the corresponding molecule, then the operators corresponding to the rules of
the P system are active, and, in the case when 1 is exchanged for 0, the operators
restoring the original elements of the alphabet O come into effect.

Let us define the terms giving us back the elements of the original alphabet O
after simulating a maximal parallel computation sequence.

Definition 7. Let Olab be the set of elements obtained from O by completing the
labeling process for every 1 ≤ k ≤ n. Then

d(Olab) =
∪

{rep lace a, 0 with a, 0 | a ∈ Olab}.

Now we determine the term controlling the whole process.

Theorem 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, in) be a membrane system,
assume gamma(Π) is the multiset defined as above, and d(Olab) is the set of
operators presented in the previous definition. Then, for the term

M = (⟨gamma(Π)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩),

Π comes to a halt with result (ai11 , ai22 , . . . , a
ij
j) if and only if M normalizes with

(n : a1)
i1 , (n : a2)

i2 , . . . , (n : aj)
ij as its elements with label n.

Proof. First of all, observe that the mapping gamma is a bijection between
membrane systems having the structure (O,µ,w1, . . . , wn, R1, . . . , Rn, in) and
chemical structures over the alphabet

∪n
i=1{hi(O) ∪ hi(O × {tar})}, where tar ∈

{here, out, inj} if par(j) = i. A little more is true. Namely, let M → M1 → . . .
be a reduction sequence starting from M . We call a reduction step Mi → Mj a
1-step, if the maximal solution in Mi contains 1, otherwise it is a 0-step. Let ⟨S0⟩,
⟨S1⟩, . . . be the sequence of the maximal solutions of M → M1 → M2 → . . .
and assume, for Π0, Π1, . . . , Πk, . . . , gamma(Π0) = S0, gamma(Π1) = S1, . . . ,
gamma(Πk) = Sk, The notion of 1-step and 0-step transforms to S0, S1, . . .
analogously. We denote by S′ →1 S′′ (S′ →0 S′′) if a 1-step reduction from S′

yields S′′. Then we have the following statement.

Si →1 Sj if and only if Πi → Πj . (1)

The proof can be done by induction on the lengths of the reduction sequences on
the two sides. Assume now Π0 → Π1 → Π2 → . . . → Πn is a reduction sequence

Describing Membrane Computations with a Chemical Calculus 89

yielding a maximal parallel reduction step from Π0. Then, by (1), there can be
no 1-reductions starting from gamma(Πn) = Sn. But this means Sn has arrived
to a normal form. Below, for a multiset S, let S denote the multiset S − (0, 1).
Moreover, if S is a multiset possibly with underlined elements, then let p lain(S)
denote the multiset consisting of the same elements with the underlining removed.
Thus

M = (⟨S0⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →
. . .

→ (⟨Sn⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →

→ (⟨Sn, 0, d(Olab)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →
. . .

→ (⟨p lain(Sn), 0, d(Olab)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →

→ (⟨p lain(Sn), 1)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩)

Here, ⟨Sn, 0, d(Olab)⟩ has no choice but to reduce to ⟨p lain(Sn), 0, d(Olab)⟩, which
cannot be reduced any further. Then the action of ⟨p lain(Sn), 0, d(Olab)⟩ and
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩ yields ⟨p lain(Sn), 1)⟩, which means a new max-
imal parallel reduction step of the membrane system obtained so far can be simu-
lated again. This gives an account of the correspondence set up between membrane
system reductions and reductions in chemical structures. �

4 Conclusion

The chemical computational paradigm describes computations as reactions be-
tween molecules which freely interact in a symbolic chemical solution. We have
given a short overview of a chemical calculus from [1], and shown how computa-
tions of membrane systems can be described in this setting. Thus, we have taken
some initial steps in the direction of being able to describe membrane systems
using the chemical computing formalisms and being able to use the tools and
techniques developed for chemical calculi to reason about membrane systems and
their computations.

References

1. J.P. Banâtre, P. Fradet, Y. Radenac, Principles of chemical computing. Electronic
Notes in Theoretical Computer Science 124 (2005) 133–147.

90 P. Battyányi, G. Vaszil

2. J.P. Banâtre, P. Fradet, Y. Radenac, Generalized multisets for chemical programming.
Mathematical Structures in Computer Science 16(4) (2006), 557 – 580

3. J.P. Banâtre, D. Le Métayer, A new computational model and its discipline of pro-
gramming. Technical Report RR0566, INRIA (1986).

4. J.P. Banâtre, D. Le Métayer, Programming by multiset transformation. Communica-
tions of the ACM 36 (1993), 98–111.

5. G. Berry, G. Boudol, The chemical abstract machine. Theoretical Computer Science
96 (1992), 217–248.

6. N. Dershowitz, Z. Manna, Proving termination with multiset orderings. Communica-
tions of the ACM 22(8) (1979), 465–476.

7. Gh. Păun, Computing with membranes. Journal of Computer and System Sciences
61 (2000), 108–143.

8. Păun, G., Rozenberg, G., Salomaa, A. (eds): The Oxford Handbook of Membrane
Computing, Oxford University Press (2010)

9. Rozenberg, G. Salomaa, A. (eds): Handbook of Formal Languages, Springer Berlin
(1997)

10. Salomaa, A.: Formal Languages, Academic Press, New York (1973)
11. M. Fésüs, Gy. Vaszil, Chemical programming and membrane systems. In: Proc.

14th International Conference on Membrane Computing, Institute of Mathematics
and Computer Science, Academy of Moldova, 2013, 313–316.

