
Life-Death Ratio Approach
by a Multiset-Based Type System

Bogdan Aman, Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. We introduce and study a multiset-based type system with ratio thresholds
motivated by an important regulatory mechanism inside a cell which try to maintain a
“life-death” ratio between some given lower and upper thresholds. We use such a type
system to control ratio thresholds in a bio-inspired and multisets-based formalism. For
this type system we prove a subject reduction theorem, together with soundness and
completeness theorems. A type inference for deducing the type of a system is presented.

1 Introduction

Membrane systems have been introduced as a computational model inspired by
cellular biology [9], and have been later applied to the description of biological
systems [6]. Possible links between process calculi and membrane systems are pre-
sented in [7].

Membrane systems usually consider cells as mechanisms working in a maximal
parallel and non-deterministic manner.

However, the living cells do not work in such ways; a chemical reaction takes
place only if certain constraints are fulfilled (e.g, certain ratios are between given
thresholds in sodium/potassium pump [3] and ratio-dependent predatorprey sys-
tems [8]). In order to cope with such constraints, in [2] we enriched the membrane
systems with integral proteins by adding a quantitative type discipline. We asso-
ciated to each system a set of constraints that must be satisfied in order to assure
that the application of the rules to a well-formed membrane system leads to a
well-formed membrane system as well. We think that this two-stage approach to
the description of biological behaviours is of interest, where the first describes re-
actions in an “untyped” setting, and then rules out certain evolutions by imposing
thresholds. This allows one to treat separately different aspects of the modelling:
what transitions are possible at all, and under which circumstances they can take
place. In this paper we provide a type inference algorithm for deducing the type
of a system.

50 B. Aman, G. Ciobanu

The type system for membrane systems with integral proteins follows the re-
search line started in [1] where a type system for membrane system with sym-
port/antiport rules is presented. The work is also related to [4] where a type
systems for the calculus of looping sequences is defined based on the number of
elements and not on the ratios between elements. The presentation of the typed
sodium/potassium pump in [2] is used as a motivation and a running example for
typing the membrane systems. This paper is related to our previous article [2].

2 Membrane Systems with Integral Proteins

Membrane systems are parallel and nondeterministic computing models inspired
by the compartments of cells and their biochemical reactions. The structure of
the cell is represented by a set of hierarchically embedded regions, each one de-
limited by a surrounding boundary called membrane, and all of them contained
inside an external special region called the skin membrane. Multisets of objects
are distributed inside these regions, and they can be modified or moved between
adjacent compartments. Objects represent the formal counterpart of the molecular
species (ions, proteins, etc.) floating inside cellular compartments, and they are
described by means of strings over a given alphabet. Evolution rules represent the
formal counterpart of chemical reactions, and are given in the form of rewriting
rules that operate on the objects, as well as on the compartmentalised structure
(e.g., by dissolving, dividing, creating, or moving membranes).

Starting from an initial configuration, the multisets of objects initially placed
inside the compartmentalised structure, the system evolves by applying the evolu-
tion rules in a nondeterministic and maximally parallel manner. A rule is applica-
ble when all the objects appearing on its left hand side are available in the region
where the rule is placed. The maximal parallelism of rule application means that
each applicable rule that is inside a region has to be applied in that region. Since
there is a competition for the available objects, only certain (nondeterministically
selected) rules are applied. A halting configuration is reached when no rule is ap-
plicable, and the result is given by the number of objects (in a specified region).
More details can be found in [9, 10].

In what follows we present some technical notions used in this paper. Given a
finite set O of symbols, the set of all strings over O is denoted by O∗, and the set
of all non-empty strings over O, is denoted by O+ = O∗\λ, where λ is the empty
string. A multiset over O is a map u : O → N, where u(a) denotes the multiplicity
of the symbol a ∈ O in the multiset u and |u| =

∑
a∈O u(a) denotes the number

of objects appearing in the multiset u. We say that a multiset u is included into
a multiset v (denoted by u ⊆ v) if u(a) ≤ v(a) for all a ∈ O. The empty multiset
is denoted by ε, and satisfies ε(a) = 0, for all a ∈ O. For two multisets u and v we
define the sum u+ v by (u+ v)(a) = u(a) + v(a) for all a ∈ O, and the difference
u−v by (u−v)(a) = max{0, u(a)−v(a)} for all a ∈ O. More details can be found
in [11].

Life-Death Ratio Approach by a Multiset-Based Type System 51

Inspired by [5], we present a membrane system that is able to model biological
pumps, in which exist attachment/de-attachment of objects to/from the integral
proteins of the membranes, and transformation of objects inside a region if certain
integral proteins are present in the surrounding membranes. To each membrane is
associated a label i ∈ Lab, and two multisets si and vi over O∗, and the membrane
is denoted by [si]ivi . If si and/or vi are the empty multisets, they are omitted.

Definition 1. A membrane system with integral proteins of degree n is:∏
= (O,Lab, µ, v1/s1, . . . , vn/sn, R), where:

1. O is an alphabet (finite, non-empty) of objects;
2. L is a finite set of labels;
3. µ is a membrane hierarchical structure with n ≥ 2 membranes;
4. vi, 1 ≤ i ≤ n is a multiset of integral proteins present on the membrane i;
5. si, 1 ≤ i ≤ n is a multiset of objects placed inside the membrane i;
6. R is a finite set of rules of the following forms:

a) [α]iv → []iv′ , α ∈ O+, v, v′ ∈ O∗, i ∈ Lab; (attachin)
This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region i (α ⊆ si);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• α is removed from si;
• v is modified to v′;
• the objects not involved in this rule are left unchanged.

b) [[]iv α]j → [[]iv′]
j, α ∈ O+, v, v′ ∈ O∗, i, j ∈ Lab; (attachout)

This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region j (α ⊆ sj);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i we have:
• α is removed from sj;
• v is modified to v′;
• the objects not involved in this rule are left unchanged.

c) []iv → [α]iv′ , α ∈ O+, v ∈ O+, v′ ∈ O∗, i ∈ Lab; (de− attachin)
This rule is applicable if the following conditions are fulfilled:
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• v is modified to v′;
• α is added to si;
• the objects not involved in this rule are left unchanged.

d) [[]iv]
j → [[]iv′ α]j, α ∈ O+, v ∈ O+, v′ ∈ O∗, i, j ∈ Lab; (de− attachout)

This rule is applicable if the following conditions are fulfilled:
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i we have:
• v is modified to v′;

52 B. Aman, G. Ciobanu

• α is added to sj;
• the objects not involved in this rule are left unchanged.

e) [α]iv → [β]iv, v, β ∈ O∗, α ∈ O+, and i ∈ Lab. (local evol)
This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region i (α ⊆ si);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• α is removed from si;
• β is added to si;
• the objects not involved in this rule are left unchanged.

The way in which the evolution rules are applied is detailed in what follows. In
order to formally represent the configurations of membrane systems with integral
proteins, we define terms ranged over by st, st1, . . ., that are built by means of a
membrane constructor [−]−−, using a set O of objects and a set Lab of labels. The
syntax of the terms st ∈ ST is given by

st ::= u | [st]iv | st st ,
where u denotes a (possibly empty) multiset of objects placed inside a membrane, v
a multiset of objects within or on the surface of a membrane, i a membrane label,
and st st is the parallel composition of two terms. Since we work with multisets of
terms, we introduce a structural congruence relation following a standard approach
from process algebra. The defined structural congruence is the least congruence
relation on terms satisfying also the rule:

if v1 ≡ v2 and st1 ≡ st2 then [st1]iv1 ≡ [st2]iv2 .
A pattern is a term that may include variables. We denote by P the infinite set
of patterns P of the form: P ::= st | [P X]iv y | P P . We distinguish between
“simple variables” (ranged over by x, y, z) that may occur only on the surface
of membranes (i.e., they can be replaced only by multisets of objects) and “term
variables” (ranged over by X, Y , Z) that may only occur inside regions (they can
be replaced by arbitrary terms). Therefore, we assume two disjoint sets: VO∗ (set of
simple variables) and VST∗ (set of term variables). We denote by V = VO∗ ∪ VST∗
the set of all variables, and with ρ any variable in V .

An instantiation is a partial function σ : V → ST ∗ that preserves the type of all
variables: simple variables (x ∈ VO∗) and term variables (X ∈ VST∗) are mapped
into objects (σ(x) ∈ O∗) and terms (σ(X) ∈ ST ∗), respectively. Given a pattern
P , the term obtained by replacing all occurrences of each variable ρ ∈ V with the
term σ(ρ) is denoted by Pσ. The set of all possible instantiations is denoted by
Σ, and the set of all variables appearing in P is denoted by V ar(P).

Formally, a rewriting rule r is a pair of patterns (P1, P2), denoted by P1 →
P2, where P1 6= ε (i.e., P1 is a non-empty pattern) and V ar(P2) ⊆ V ar(P1).
A rewriting rule P1 → P2 states that a term P1σ can be transformed into the
term P2σ, for some instantiation function σ.

Example 1. Consider the membrane system depicted in what follows. In the right
part of the picture we give some examples of the notions defined above.

Life-Death Ratio Approach by a Multiset-Based Type System 53

iab

ab2c

r1 : a→ ac

r2 : a→ ab2

Terms: [ab2c]iab or ab2c
Patterns: [aX]iy or aX
Instantiation: σ(X) = b2c, σ(y) = ab
Rewriting rule r1: aX → acX
Rewriting rule r2: aX → ab2X

It can be noticed that using the given instantiations the pattern [aX]iy becomes

the term [ab2c]iab, while the pattern aX becomes the the term ab2c. The rewriting
rules are a generalization of the rules used in P systems, by adding variables that
stand for the objects not involved in the evolution of a system.

The notion of context is used to complete the definition of a rewriting seman-
tics for our systems. This is done by enriching the syntax with a new object �
representing a hole. By definition, a context is represented as a single hole �. The
infinite set C of contexts (ranged over by C) is given by:

C ::= � | C st | [C]iv.
Given C1, C2 ∈ C, C1[st] denotes the term obtained by replacing � with st in

C1, while C1[C2] denotes the context obtained by replacing � with C2 in C1.
Given a set R of rewriting rules, a reduction semantics of the system is given

by the least transition relation→ closed with respect to ≡ satisfying also the rule:
P1 → P2 ∈ R P1σ 6≡ ε σ ∈ Σ C ∈ C

C[P1σ]→ C[P2σ]
.

→∗ denotes the reflexive and transitive closure of →.

Example 2. Consider the membrane system depicted in what follows. In the right
part of the picture we give some examples of the notions defined previously.

iab

ab2c

r1 : a→ ac

r2 : a→ ab2

Rewriting rule r1: aX → acX
Instantiation: σ(X) = b2c
Context: [�]iab
Transition: [ab2c]ab → [ab2c2]ab

It can be noticed that using the given instantiation and context the rewriting rule
r1: aX → acX can be used to perform the transition [ab2c]ab → [ab2c2]ab, thus
modelling the application of rule r1 is the above membrane system.

3 Threshold-Based Type System Over Multisets

We use the type system defined in [2]. Let T be a finite set of basic types ranged
over by t. We classify each object in O with a unique element of T ; we use Γ to
denote this classification. In general, different objects a and b can have the same
basic type t. When there is no ambiguity, we denote the type associated with an
object a by ta. For each ordered pair of basic types (t1, t2), we assume the existence
of two functions, min : T × T → (0,∞) ∪ {�} and max : T × T → (0,∞) ∪ {�}.
These functions indicate the minimum and maximum ratio between the number
of objects of basic types t1 and t2 that can be present inside a membrane.

54 B. Aman, G. Ciobanu

Definition 2 (Consistent Basic Types). A system using a set of basic types T
and the functions min and max is consistent if:

1. ∀t1, t2 ∈ T , min(t1, t2) 6= � iff max(t1, t2) 6= �;
2. ∀t1, t2 ∈ T , min(t1, t2) 6= � iff min(t2, t1) 6= �;
3. ∀t1, t2 ∈ T if min(t1, t2) 6= �, then min(t1, t2) ≤ max(t1, t2);
4. ∀t1, t2 ∈ T if min(t1, t2) 6= � and max(t2, t1) 6= �,

then min(t1, t2) ·max(t2, t1) = 1.

Example 3. Consider T = {ta, tb, tc} and min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 ta tb tc
ta � 0.4 �
tb 0.2 � 1/6
tc � 3 �

t1\t2 ta tb tc
ta � 5 �
tb 2.5 � 1/3
tc � 6 �

The system is consistent since each pair of types respects Definition 2.

Definition 3. Quantitative types are triples (L,Pr, U) over the set T of ba-
sic types, where L (lower) is the set of minimum ratios between basic types, Pr
(present) is the multiset of basic types of present objects (the objects present at the
top level of a pattern, i.e. in the outermost membrane), and U (upper) is the set
of maximum ratios between basic types.

The number of objects of type t appearing in a multiset Pr is denoted by Pr(t).
In order to define well-formed types, given a multiset M of types, the sets RPM
(ratios of present types in M), LM (lower bounds of present types in M) and UM
(upper bounds of present types in M) are required:

• RPM =

∅ if |M | ≤ 1⋃
t,t′∈M

{
t/t′ :

Pr(t)

Pr(t′)
| t 6= t′, P r(t′) 6= 0

}
otherwise

• LM =

{
∅ if |M | ≤ 1⋃
t,t′∈M {t/t′ : min(t, t′) | t 6= t′,min(t, t′) 6= �} otherwise

• UM =

{
∅ if |M | ≤ 1⋃
t,t′∈M {t/t′ : max(t, t′) | t 6= t′,max(t, t′) 6= �} otherwise

These sets contain labelled values in order to be able to refer to them when needed:

e.g., t/t′ :
Pr(t)
Pr(t′)

denotes the fact that the ratio between the objects of types t

and t′ that are present in Pr has the label t/t′, and the value is
Pr(t)
Pr(t′)

.

Definition 4 (Well-Formed Types). A type (L,Pr, U) is well-formed if
L = LPr, U = UPr and L ≤ RPPr ≤ U .

Life-Death Ratio Approach by a Multiset-Based Type System 55

Remark 1. If the set T contains a large number of basic types, defining a type to
be well-formed only if L = LPr and U = UPr reduces the amount of information
encapsulated by a type. E.g., for |T | = 100, the number of entries in the min table
is equal to 10000.

Example 4. Let us assume a set of basic types T = {ta, tb}, a classification Γ =
{a : ta, b : tb} and the functions min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 t1 t2
t1 � 0.5
t2 0.3 �

t1\t2 t1 t2
t1 � 10/3
t2 2 �

The term a5b2 is well-formed, while the term a9b is not, because the ratio between
ta and tb equals 9, and so it exceeds the maximum 10/3 indicated in max table.

From now on we work only with well-formed types. For instance, the two well-
formed types (L,Pr, U) and (L′, P r′, U ′) of the following two definitions are con-
structed by using specific ratio tables for min and max.

Definition 5 (Type Compatibility). Two well-formed types (LPr, P r, UPr)
and (LPr′ , P r

′, UPr′) are compatible, written (L,Pr, U) ./ (LPr′ , P r
′, UPr′), if

LPr+Pr′ ≤ RPPr+Pr′ ≤ UPr+Pr′ .

Example 5 (cont.). Consider the assumptions from Example 4. The types
(Lt5a t2b , t

5
at

2
b , Ut5a t2b), (∅, ta, ∅) and (∅, t4a, ∅) are well-formed. It holds that

(Lt5at2b , t
5
at

2
b , Ut5a t2b) ./ (∅, ta, ∅) and (Lt5at2b , t

5
a t

2
b , Ut5a t2b) 6./ (∅, t4a, ∅),

since the ratio in the second case between ta and tb equals 4.5, and so it exceeds
the maximum 10/3 indicated in max table.

A basis ∆ assigning types to simple and term variables is defined by
∆ ::= ∅ | ∆,x : (Lt, t, Ut) | ∆,X : (L,Pr, U).

A basis is well-formed if all types in the basis are well-formed.
A classification Γ maps each object in O to a unique element of the set T of

basic types. The judgements are of the form ∆ ` P : (L,Pr, U) indicating that a
pattern P is well-typed having the type (L,Pr, U) relative to a typing environment
∆.

Types are assigned to patterns and terms according to the typing rules of
Table 1. It is not difficult to verify that a derivation starting from well-formed
bases produces only well-formed bases and well-formed types.

We define a typed semantics, since we are interested in applying reduction
rules only to correct terms having well-formed types, and whose requirements are
satisfied. More formally, a term st is correct if ∅ ` st : (L,Pr, U) for some well-
formed type (L,Pr, U). An instantiation σ agrees with a basis ∆ (denoted by
σ ∈ Σ∆) if ρ : (L,Pr, U) ∈ ∆ implies ∅ ` σ(ρ) : (L,Pr, U).

In order to apply the rules in a safe way, we introduce a restriction on rules
based on the context of application rather than on the type of patterns involved in

56 B. Aman, G. Ciobanu
Table 1. Typing Rules

∆ ` ε : (∅, ∅, ∅) (TEps)
a : t ∈ Γ

∆ ` a : (Lt, t, Ut)
(TObj)

∆, ρ : (L,Pr, U) ` ρ : (L,Pr, U) (TV ar)

∆ ` v : (L,Pr, U) ∆ ` P ′ : (L′, P r′, U ′)
(L,Pr, U) ./ (L′, P r′, U ′) i ∈ Lab

∆ ` [P ′]iv : (L,Pr, U)
(TMem)

∆ ` P : (LPr, P r, UPr) ∆ ` P ′ : (LPr′ , P r
′, UPr′)

(LPr, P r, UPr) ./ (LPr′ , P r
′, UPr′)

∆ ` P P ′ : (LPr+Pr′ , P r + Pr′, UPr+Pr′)
(TPar)

the rule. In this direction, we characterise contexts by the types of terms that can
fill their hole, and the rules by the types of terms produced by their application.

Definition 6 (Typed Holes). Given a context C and a type (L,Pr, U) that is
well-formed, the type (L,Pr, U) fits the context C if for some well-formed type
(L′, P r′, U ′) it can be shown that X : (L,Pr, U) ` C[X] : (L′, P r′, U ′).

Example 6 (cont.). Consider the notions from Example 4, and also

• a term [a5 b4]a12 b3,
• a rule r1 : [a3 X]x → [X]a3 x (having the form P1 → P2),
• a context C = � a12 b3,
• instantiations σ(X) = a2 b4, σ(x) = ε.

By applying rule r1 the term [a2 b4]a3a
12 b3 is obtained. This is not well-typed

since the type (Lt3a , t
3
a, Ut3a) of P2 does not fit the context C. It does not fit since

the term C[P2] has the type (Lt15a t3b
, t15a t

3
b , Ut15a t3b

) that is not well-formed due to

the fact that the ratio between ta and tb at the top level is
12 + 3

3
= 5 that is

greater than 10/3.

The above notion guarantees that we obtain a correct term filling a context
with a term whose type fits the context: note that there may be more than one
type (L,Pr, U) such that (L,Pr, U) fits the context C.

We can classify reduction rules according to the types that can be derived for
the right hand sides of the rules, since they influence the type of the obtained
term.

Definition 7 (∆-(L,Pr, U) safe rules). A rewriting rule P1 → P2 is ∆ safe if
for some well-formed type (L,Pr, U) it can be shown that ∆ ` P2 : (L,Pr, U).

To ensure correctness, each application of a rewriting rule must verify that the
type of the right hand side of the rule fits the context. Using Definitions 6 and 7,
if it is applied a rule whose right hand side has type (L,Pr, U) and this type fits
the context, then a correct term is obtained.

Life-Death Ratio Approach by a Multiset-Based Type System 57

Typed Semantics.

Given a finite set R of rewriting rules (e.g., the one presented in Table 2), the
typed semantics of a system is given by the least relation ⇒ closed with respect
to ≡ and satisfying the following rule:

P1 → P2 ∈ R is a ∆-(L,Pr, U) safe rule, P1σ 6≡ ε
σ ∈ Σ∆ C ∈ C and (L,Pr, U) fits C

C[P1σ]⇒ C[P2σ]
(TSem)

Using weakening and substitution properties proved in [2], we can provide the
result that well-formed bases guarantees type preservation.

Proposition 1. For all σ ∈ Σ∆, ∅ ` Pσ : (L,Pr, U) iff ∆ ` P : (L,Pr, U).

Starting from a correct term, all the terms obtained via ∆-(L,Pr, U) safe rules
are correct, and thus avoiding conditions over P1 as they do not influence the type
of the obtained term. As desired, typed reduction preserves correctness.

Theorem 1 (Subject Reduction). If ∅ ` st : (L,Pr, U) and st⇒ st′, then
∅ ` st′ : (L′, P r′, U ′) for a well-formed type (L′, P r′, U ′).

4 Type Inference

To formalize type reconstruction, we will need a concise way of talking about the
possible ways that type variables can be substituted by types, in a term and its
associated context, to obtain a valid typing statement.

In this section we define inference rules in order to derive which rules are ∆-
(L,Pr, U) safe, where the choices of ∆, L, Pr, U are guided by the initial pattern.
Formally, given a typable pattern P , there exists a typing ∆ ` P : (L,Pr, U). The
typed semantics of rule (Tsem) does not show how to choose ∆ and Pr (L and U
depend on Pr).

We assume that for each object variable x there is an o-type variable ρx ranging
over basic types, and for each term variable X there is an m-type variable λX
ranging over multisets of basic types. Moreover, we assume that Λ ranges over
unions of multisets of basic types, o-type and m-type variables.

A basic scheme Θ is a mapping from atomic variables to their o-type variables,
and from term variables to triples of their l-type variables, pr-type variables and
u-type variables:

Θ ::= ∅ | Θ, x : ρx | Θ,X : λX .

The rules for inferring the typings use judgements of the form:
` P : Θ; (LΛ, Λ, UΛ);Ξ

where Θ is the basis scheme in which P is well-formed, (LΛ, Λ, UΛ) is the type of
P , and Ξ is the set of constraints that should be satisfied. Table 2 presents the
inference rules, derived from the typing rules of Table 1.

58 B. Aman, G. Ciobanu

Example 7. Let us assume a set of basic types T = {ta, tb}, a classification Γ =
{a : ta, b : tb} and the functions min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 t1 t2
t1 � 0.6
t2 0.25 �

t1\t2 t1 t2
t1 � 4
t2 5/3 �

Consider the well-formed term a5 b2. In order to infer its type there are several
ways of considering the patterns P1 and P2 in order to apply the last (IPar) rule.
Consider the following two cases:

• P1 = a3b2 (well-formed) and P2 = a2 (well-formed); in this case the rule (IPar)
leads to a well-formed type with all constraints satisfied;

• P1 = ab2 (not well-formed) and P2 = a4 (well-formed); in this case the type-
compatibility condition is not fulfilled even if the obtained term is well-formed.

In order to obtain the type of the term a5 b2, there are considered different decom-
positions until there is obtained an well-formed type and all conditions hold, or
all possible decompositions do not provide a well-formed type with the conditions
fulfilled.

Table 2. Inference Rules

` ε : ∅; (∅, ∅, ∅); ∅ (IEps)
a : t ∈ Γ

` a : ∅; (Lt, t, Ut); ∅
(IObj)

` x : {x : ρx}; (Lρx , ρx, Uρx); ∅ (IV ar1)

` X : {X : λX}; (LλX , λX , UλX); ∅ (IV ar2)

` v : Θ; (LΛ, Λ, UΛ);Ξ ` P ′ : Θ′; (LΛ′ , Λ
′, UΛ′);Ξ

′ i ∈ Lab
` [P ′]iv : Θ ∪Θ′; (LΛ, Λ, UΛ);Ξ ∪ Ξ ′ ∪ {(LΛ, Λ, UΛ) ./ (LΛ′ , Λ

′, UΛ′)}
(IMem)

` P : Θ; (LΛ, Λ, UΛ);Ξ ` P ′ : Θ′; (LΛ′ , Λ
′, UΛ′);Ξ

′

` PP ′ : Θ ∪Θ′; (LΛ+Λ′ , Λ+ Λ′, UΛ+Λ′);
Ξ ∪ Ξ ′ ∪ {(LΛ, Λ, UΛ) ./ (LΛ′ , Λ

′, UΛ′)}

(IPar)

The rules of Table 2 are easily derived from the rules of Table 1. The basis
is the union of the basis of the composing patterns, without renaming, because
each variable x or X is associated with an unique o-type variable, or to an unique
m-type variable, respectively. The key difference between inference rules of Table 2
and typing rules of Table 1 is that the conditions of type compatibility and type
satisfaction are not premises, but conclusions. In this way, at the end of inference,
all these conditions create a set of constraints that must be checked to decide the
applicability of the rules.

Soundness and completeness of our inference rules can be stated as usual.
A type mapping associates o-type variables to basic types, m-type variables to
multisets of basic types. A type mapping m satisfies a set of constraints Ξ if all
the constraints in m(Ξ) hold.

Life-Death Ratio Approach by a Multiset-Based Type System 59

Theorem 2 (Soundness of Type Inference).
If ` P : Θ; (LΛ, Λ, UΛ);Ξ and m is a type mapping satisfying Ξ, then

m(Θ) ` P : (m(LΛ),m(Λ),m(UΛ)).

Theorem 3 (Completeness of Type Inference). If ∆ ` P : (LPr, P r, UPr),
then ` P : Θ; (LΛ, Λ, UΛ);Ξ for some Θ, Λ, Ξ such that there is a type mapping
m that satisfies Ξ, ∆ ⊇ m(Θ), and Pr = m(Λ).

We use inference rules to decide applicability of typed reduction rules for ∆-
(LPr, P r, UPr) safe rules. The first step is to see when a type mapping ensures
that a rule is a ∆-(LPr, P r, UPr) safe rule, i.e. when it satisfies the constraints
of Definition 7. The concept of ∆-(LPr, P r, UPr) safety is used to classify rules
according to the types we can derive for the right hand side patterns of them.

Lemma 1 (Characterisation of ∆-(L,Pr, U) safe rules).
A rule P1 → P2 is ∆-(LPr, P r, UPr) safe if and only if the type mapping m

defined by the basis ∆, i.e. such that

• m(ρx) = t if ∆(x) = t, and
• m(λX) = Pr if ∆(X) = (LPr, P r, UPr).

satisfies the set of constraints Ξ2 ∪ {Λ2 = Pr}, whenever it holds that ` P2 :
Θ2; (LΛ2

, Λ2, Ω2);UΛ2
.

Since ∆-(LPr, P r, UPr) safe rules can be applied only in contexts in which type
(LPr, P r, UPr) fits, we must characterise also the fitting relation.

Lemma 2 (Characterisation of Fitting Relation).
Let the context C be such that ` C[T] : (LPrC , P rC , UPrC) for some T and

well-formed type (LPrC , P rC , UPrC). A well-formed type (LPr, P r, UPr) fits C if
and only if the type mapping m defined by

m(λX)=Pr
satisfies the set of constraints

ΞC ∪ {(LΛC
, ΛC , UΛC

) is well-formed},
where ` C[X] : {X : λX}; (LΛC

, ΛC , UΛC
);ΞC .

Using the characterisation of ∆-(L,Pr, U) safe rules and the fitting relation,
we can infer the applicability of a rewriting rule by checking if the type mapping
respects the required constraints.

Theorem 4 (Applicability of Rewriting Rules).
If the following conditions are fulfilled
` P1 : Θ1; (LΛ1

, Λ1, UΛ1
);Ξ1,

` P2 : Θ2; (LΛ2
, Λ2, UΛ2

);Ξ2,
` C[X] : {X : λX}; (LΛC

, ΛC , UΛC
);ΞC

and P1σ 6= ε, then the rule P1 → P2 can be applied to the term C[P1σ] such that
` C[P1σ] : (LPrC , P rC , UPrC) for a well-formed type (LPrC , P rC , UPrC) if and
only if the type mapping m defined by

60 B. Aman, G. Ciobanu

• m(ρx) = t, if σ(x) : t ∈ Γ ,
• m(λX) = Pr, if ` σ(X) : (LPr, P r, UPr)

satisfies the set of constraints

Ξ2 ∪ {(λX = Λ2)}∪ ΞC ∪ {(LΛC
, ΛC , UΛC

) is well-formed}.

5 Conclusion

This paper is related to a previous approach presented in [2], where a quantitative
types based on ratio thresholds is introduced. The inspiration was the first discov-
ered ion transporter (awarded with a Nobel Prize in 1997), namely the sodium-
potassium pump, which extrudes sodium ions in exchange for potassium ions.
These exchanges take place only if the ratios of these elements are between certain
lower and upper thresholds. To cope properly with such constraints, we introduced
in a multiset-based type system with ratio thresholds, where the sodium/potassium
pump is used as a running example. We associated to each system a set of con-
straints, and relate them to the ratios between elements. If the constraints are
satisfied, we prove that if a system is well-typed and an evolution rule is applied,
then the obtained system is also well-typed.

In this paper we defined a type inference algorithm for membrane systems with
integral proteins for which soundness and completeness are proved. The work in-
tends to allow automatic analyse of inference according to the defined type system,
and to provide support for the development of software tools.

The proposed typed semantics completely excludes the fact that sometimes
biological constraints can be broken leading to a disease or even to the death of
the biological system. However, the typed semantics can be modified in order to
allow transitions that lead to terms that are not typable. In this case the type
system should signal that some undesired event has been reached. In this way, it
can be checked if a term breaks some biological property, or if the system has some
unwanted behaviour.

Acknowledgements. The work was supported by a grant of the Romanian
National Authority for Scientific Research, project number PN-II-ID-PCE-2011-
3-0919.

References

1. Aman, B. and Ciobanu, G. Typed Membrane Systems. Lecture Notes in Computer
Science 5957, 169–181 (2010).

2. Aman, B. and Ciobanu, G. Behavioural Types Inspired by Cellular Thresholds.
Lecture Notes in Computer Science 8368, 1–15 (2014).

3. Besozzi, D. and Ciobanu, G. A P System Description of the Sodium-Potassium
Pump. Lecture Notes in Computer Science 3365, 210–223 (2005).

4. Bioglio, L. Enumerated Type Semantics for the Calculus of Looping Sequences.
RAIRO - Theoretical Informatics and Applications 45 (1), 35–58 (2011).

Life-Death Ratio Approach by a Multiset-Based Type System 61

5. Cavaliere, M. and Sedwards, S. Modelling Cellular Processes Using Membrane Sys-
tems With Peripheral and Integral Proteins. Lecture Notes in Bio-Informatics 4210,
108–126 (2006).

6. Ciobanu, G., Păun, Gh. and Pérez-Jiménez, M.J.(Eds.) Applications of Membrane
Computing. Springer (2006).

7. Ciobanu, G. Membrane Computing and Biologically Inspired Process Calculi.
“A.I.Cuza” University Press, Iaşi (2010).

8. Hsu, S.-B., Hwang, T.-W. and Kuang, Y. A Ratio-Dependent Food Chain Model and
Its Applications to Biological Control. Mathematical Biosciences 181, 55–83 (2003).

9. Păun, Gh. Membrane Computing. An Introduction. Springer (2002).
10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Handbook of Membrane Computing.

Oxford University Press (2010).
11. Salomaa, A. Formal Languages. Academic Press (1973).
12. Wells, J. The Essence of Principal Typings. Lecture Notes in Computer Science

2380, 913–925 (2002).

