Turing Incompleteness of Asynchronous
P Systems with Active Membranes

Alberto Leporati', Luca Manzoni':?, and Antonio E. Porreca!

! Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,luca.manzoni,porreca}@disco.unimib.it

2 13S Research Lab.,
University Nice Sophia Antipolis,
CS 40121 — 06903 Sophia Antipolis CEDEX, France

Summary. We prove that asynchronous P systems with active membranes without divi-
sion rules can be simulated by place/transition Petri nets, and hence are computationally
weaker than Turing machines. This result holds even if the synchronisation mechanisms
provided by electrical charges and membrane dissolution are exploited.

1 Introduction

P systems with active membranes [5] are parallel computation devices inspired by
the structure and functioning of biological cells. A tree-like hierarchical structure of
membranes divides the space into regions, where multisets of objects (representing
chemical substances) are located. The system evolves by means of rules rewriting or
moving objects, and possibly changing the membrane structure itself, by dissolving
or dividing membranes.

Under the maximally parallel updating policy, whereby all components of the
system that can evolve concurrently during a given computation step are required
to do so, these devices are known to be computationally universal. Alternative up-
dating policies have also been investigated. In particular, asynchronous P systems
with active membranes [3], where any, not necessarily maximal, number of non-
conflicting rules may be applied in each computation step, have been proved able
to simulate partially blind register machines [4], computation devices equivalent
under certain acceptance conditions to place/transition Petri nets and vector ad-
dition systems [6]. This simulation only requires object evolution (rewriting) rules
and communication rules (moving objects between regions).

In an effort to further characterise the effect of asynchronicity on the computa-
tional power of P systems, we prove that asynchronous P systems can be simulated
by place/transition Petri nets, and as such they are not computationally equivalent

166 A. Leporati, L. Manzoni, A.E. Porreca

to Turing machines: indeed, the reachability of configurations and the deadlock-
freeness (i.e., the halting problem) of Petri nets are decidable [1]. This holds even
when membrane dissolution, which provides an additional synchronisation mech-
anism (besides electrical charges) whereby all objects are released simultaneously
from the dissolving membrane, is employed by the P system being simulated. Un-
fortunately, this result does not seem to immediately imply the equivalence with
partially blind register machines, as the notion of acceptance for Petri nets em-
ployed here is by halting and not by placing a token into a “final” place [4].

The paper is organised as follows: in Section 2 we recall the relevant definitions;
in Section 3 we prove that asynchronous P systems are computationally equivalent
to sequential P systems, where a single rule is applied during each computation
step; in Section 4 we show that dissolution rules in sequential P systems can be
replaced by a form of generalised communication rule; finally, in Section 5 we show
how P systems using generalised communication rules can be simulated by Petri
nets, thus proving our main result. Section 6 contains our conclusions and open
problems.

2 Definitions

We recall the definition of P systems with active membranes and its various oper-
ating modes.

Definition 1. A P system with active membranes of initial degree d > 1 is a tuple
II = (I, A, p,why, - .. ,wh,, R), where:

I is an alphabet, i.e., a finite nonempty set of objects;
A is a finite set of labels for the membranes;
1 is @ membrane structure (i.e., a rooted unordered tree) consisting of d mem-
branes injectively labelled by elements of A;

® Wpy,...,Wh,, With hi,...,hqg € A, are strings over I', describing the initial
multisets of objects located in the d regions of u;

e R is a finite set of rules.

Each membrane possesses, besides its label and position in p, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (—)
and is always neutral before the beginning of the computation.

The following four kinds of rules are employed in this paper.

e Object evolution rules, of the form [a — w]f
They can be applied inside a membrane labeled by h, having charge o and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

Turing Incompleteness of Asynchronous P Systems 167

o Send-in communication rules, of the form a[]§ — [b]g
They can be applied to a membrane labeled by h, having charge o and such
that the external region contains an occurrence of the object a; the object a is
sent into A becoming b and, simultaneously, the charge of h is changed to 3.
o Send-out communication rules, of the form [a]} — Hg b
They can be applied to a membrane labeled by h, having charge « and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to (3.
e Dissolution rules, of the form [a]ff — b
They can be applied to a membrane labeled by h, having charge o and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are released in the surrounding region unaltered, except that an occurrence of
a becomes b.

The most general form of P systems with active membranes [5] also includes mem-
brane diviston rules, which duplicate a membrane and its contents; however, divi-
sion rules are not used in this paper.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

e Fach object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules having
the same left-hand side, or the same evolution rule can be applied simultane-
ously; this includes the application of the same rule with multiplicity).

e When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

e In each computation step, all the chosen rules are applied simultaneously (in
an atomic way). However, in order to clarify the operational semantics, each
computation step is conventionally described as a sequence of micro-steps as
follows. First, all evolution rules are applied inside the elementary membranes,
followed by all communication and dissolution rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane dissolution occurs, all chosen object evolution
rules must be applied inside it; this way, the objects that are released outside
during the dissolution are already the final ones.

e The outermost membrane cannot be dissolved, and any object sent out from
it cannot re-enter the system again.

In the maximally parallel mode, the multiset of rules to be applied must be max-
imal (i.e., no further rule can be added without creating conflicts) during each
step. In the asynchronous mode, any nonempty multiset of applicable rules can be

168 A. Leporati, L. Manzoni, A.E. Porreca

chosen. Finally, in the sequential mode, exactly one rule per computation step is
applied. In the following, only the latter two modes will be considered.

A halting computation of the P system II is a finite sequence of configura-
tions C = (Cy, . . .,Cy), where Cy is the initial configuration, every C;;1 is reachable
from C; via a single computation step, and no rule can be applied in C,,. A non-
halting computation C = (C; : @ € N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

The other model of computation we will employ is Petri nets. In particular, with
this term we denote place/transition Petri nets with weighted arcs, self-loops and
places of unbounded capacity [2]. A Petri net N is a triple (P, T, F') where P is the
set of places, T the set of transitions (disjoint from P) and F C (P xT)U (T x P)
is the flow relation. The arcs are weighted by a function w: FF — (N — {0}). A
marking (i.e., a configuration) is a function M: P — N. Given two markings M,
M’ of N and a transition ¢ € T we say that M’ is reachable from M via the firing
of ¢, in symbols M —; M’, if and only if:

e for all places p € P, if (p,t) € F and (t,p) ¢ F then M(p) > w(p,t)
and M'(p) = M(p) — w(p,t);
for all p € P, if (t,p) € F and (p,t) ¢ F then M'(p) = M(p) + w(t, p);
for all p € P, if both (p,t) € F and (¢,p) € F then M(p) > w(p,t) and M'(p) =
M(p) —w(p,t) + w(t,p).

Petri nets are nondeterministic devices, hence multiple markings may be reachable
from a given configuration. We call halting computation a sequence of markings
(Mo, ...M,) where My —¢, My —y, -+ —y, M, for some t,...,t,, and no
transition may fire in M,,. Several problems related to the reachability of markings
and halting configurations (or deadlocks) are decidable [1].

3 Asynchronicity and Sequentiality

In this section we show how it is possible to find, for every asynchronous P system,
a sequential P system that is equivalent to the original one in the sense that they
both halt on the same inputs and produce the same outputs.

The main idea is that each asynchronous step where more than one rule is
applied can be substituted by a sequence of asynchronous steps where the rules
are reordered and applied one at a time.

Proposition 1. Let IT be a P system with active membranes using object evo-
lution, communication, and dissolution rules. Then, the asynchronous and the
sequential updating policies of Il are equivalent in the following sense: for each
asynchronous (resp., sequential) computation step C — D we have a series of
sequential (resp., asynchronous) steps C =Cy — -+ — C,, = D for some n € N.

Turing Incompleteness of Asynchronous P Systems 169

Proof. Every asynchronous computation step C — D consists in the application

of a finite multiset of rules {e1,...,ep,c1,...,¢q,d1,...,d,}, where eq,..., e, are
object evolution rules, ci, ..., ¢, are communication rules (either send-in or send-
out), and dy, . ..,d, are dissolution rules.

Since evolution rules do not change any charge nor the membrane structure
itself, the computation step C — D can be decomposed into two asynchronous
computation steps C — £ — D, where the step C — £ consists in the application
of the evolution rules {ei,...,ep,}, and the step £ — D in the application of the
remaining rules {c1,...,¢q,d1,...,d,}. Notice that in &£ there still exist enough
objects to apply these communication and dissolution rules, since by hypothe-
sis C — D is a valid computation step.

Furthermore, notice how there is no conflict between object evolution rules
(once they have been assigned to the objects they transform). Therefore, the ap-
plication of the rules {ei, ..., ey} can be implemented as a series of sequential steps
C=C—--—=C,=¢.

Each membrane can be subject to at most a single rule of communication or
dissolution type in the computation step C — D; hence, applying one of these
rules does not interfere with any other. Thus, these rules can also be serialised
into sequential computation steps &€ — Cpy1 — -+ — Cpygtr = D. Once again,
all rules remain applicable since they were in the original computation step.

By letting n = p + g + r, the first half of the proposition follows. The second
part is due to the fact that every sequential computation step is already an asyn-
chronous computation step. a

4 Generalised Communication Rules

In this section we define a variant of P systems with active membranes that we call
generalised communication P systems, where every evolution, communication, and
dissolution rule is replaced by a generalised communication rule, in which an object
can at the same time be rewritten and move between membranes while changing
their charges. This requires the introduction of an extra membrane charge. Gener-
alised communication rules are introduced in order to simplify the simulation by
means of Petri nets, as shown in the next section.

To maintain uniformity in the structure of the rules, we define the external
environment as a membrane having label 0 containing all the other membranes
and having constant charge.

Definition 2 (Generalised communication rules). A generalised communi-
cation rule is a rule of the form

e fal L T Jo = bl O T2 10

On the left-hand side of the rule we have a path in p (a sequence of nested mem-
branes) consisting of membranes hy, ..., h, with charges a1, ..., ay, and a single

170 A. Leporati, L. Manzoni, A.E. Porreca

object a contained in membrane h; (for some 1 < i < n). On the right-hand side
the same path appears, with charges 31, ..., Bn, and a multiset w appears in mem-
brane h; (for somel < j < n). The rule can be applied when membranes hi, ..., hy
have charges az, . .., ay, and a copy of a exists inside h;; the rule removes that copy
of a from h;, adds w to the region hj, and changes the charges to 31, ..., Bn.

As a special case, hy = 0 denotes the external environment of the P system; in
that case, the charge of hy can never be changed.

Definition 3 (Generalised communication P systems). A generalised com-
munication P system of degree d > 1 is a structure

I = (F,AvwvlL?whla"'awhdaR)

where the elements I', A, pu, wp,,...,wp, are the same as in standard P systems
with active membranes, ¥ is a finite, nonempty set of electrical charges (replacing
the standard set of charges {+,0,—}), and R consists only of generalised commu-
nication rules.

We can now show that generalised communication P systems are equivalent to
standard P systems with active membranes (without division rules) when operating
under the sequential semantics.

Proposition 2. Let IT = (I A, p,wp,, ..., wh,, R) be a P system with active
membranes working in sequential mode and using object evolution, communica-
tion, and dissolution rules. Then, there exists a generalised communication P sys-
tem with active membranes II' = (F, A {+,0,—, 0}, p,why .., Why, R’) working
in sequential mode, having the same initial configuration Co as II, and such that

(i) If C = (Co,Cy,...,Cn) is a halting computation of II, then there exists a
halting computation D = (Co,D1,...,Dy) of II' such that each membrane
appearing in both C,, and D, contains the same objects and has the same
charge in both configurations; if a membrane has dissolved during the compu-
tation C, then the corresponding membrane in D,, is empty and with charge e.

(i) If D = (Co,D1,...,Dy) is a halting computation of II', then there exists
a halting computation C = (Cy,Cy,...,Cn) of II such that each membrane
appearing in both C,, and D, contains the same objects and has the same
charge in both configurations; if a membrane has charge o in D,, then the
corresponding membrane dissolves during the computation C.

(i5i) II admits a non-halting computation (Cop,C1,...) if and only if II' admits a
non-halting computation (Co, D1, ...).

Proof. The main idea is to replace every dissolution rule in R with a generalised
communication rule setting the charge of the membrane A that would be dissolved
with a new charge o. After setting the charge of h, the objects inside it must be
moved to the nearest surrounding membrane having charge different from e, in
order to ensure that membranes with the same label contain the same objects in

Turing Incompleteness of Asynchronous P Systems 171

IT and II'. Send-in communication rules must also be adapted, since the object to
be brought in might be not immediately outside the membrane, as a number of
membranes with charge e might be interposed.

Let [a]fj, — b be a dissolution rule in R. Then, R’ contains the following
generalised communication rules:

([l 1n, — (L1507, for B € {+,—,0,e}, (1)

where hsy is the parent membrane of iy in pu. The remaining objects are sent out
from h; by means of the following rules:

[lal5,Jn, = [[1h,alk, forael’, g e{+,0,— e} (2)

Notice that, if § = e, then membrane hy, has been dissolved during a previous
computation step; this means that there exists another rule of type (2) sending
all the objects out from hs. Hence, the objects never remain stuck in a membrane
with charge o, and eventually reach a membrane having a different charge.

An object evolution rule [a — w]§ is simulated by the following generalised
communication rule:

[alfy — [wl}- 3)

A send-out communication rule [afy — []’glb is replaced by the following rules:

a5 17, — (117817, for v € {+,0,—,e}. (4)

where hy is the parent membrane of hy in u. As mentioned before, if v = o, then
a rule of type (2) will move b out of hs.

Finally, a send-in communication rule a [|§j, — [b]g1 is simulated as follows.
Let (hp,hn—1,...,ha, h1) be a sequence of nested membranes surrounding hq, i.e.,

a descending path in the membrane tree p. For every such sequence, we add the
following rules to R’:

@l TR T, = [Th h, forvef4,0-1 ()

This rule moves the object a into h; from the nearest membrane outside h; having
charge in {+, 0, —}, ignoring any interposed membrane with charge e (correspond-
ing to a dissolved membrane in IT). Observe that the number of descending paths
leading to h; is bounded above by the depth of pu.

Notice how every rule of R’ is exactly of one type among (1)—(5); in particular,
given a rule in R’ of type (1), (3), (4), or (5), it always possible to reconstruct the
original rule in R.

Each computation step of II consisting in the application of an evolution or
send-in communication rule is simulated by a single computation step of II’ by
means of a rule of type (3) or (5) respectively.

The dissolution of a membrane hy in II requires a variable number of steps
of IT': first, a rule of type (1) is applied, then each object located inside h; is

172 A. Leporati, L. Manzoni, A.E. Porreca

sent out to the nearest membrane surrounding h; having a charge different from e
by using rules of type (2). The exact number of steps depends on the number of
objects located inside h; and the number of membranes with charge e they have to
traverse. The reasoning is analogous for send-out communication rules, simulated
by means of rules of type (4) and (2).

Part (i) of the proposition follows from the semantics of generalised communi-
cation rules.

Now let D = (Dy = Co,D1,...,D,) be a halting computation of II'. Then
there exists a sequence of rules r = (r1,...,7,) in R’ such that

DO —ry Dl g T TTraa anl —r, Dn

where the notation X —,.) indicates that configuration) is reached from X by
applying the rule r. Let f: N — N be defined as

f(t) =|{ri : 1 <i < tandr; is not of type (2)}|.

We claim that there exists a sequence of rules s = (s1,...,5s,,) such that the
computation C = (Cy, . ..,Cy,) of I generated by applying the rules of s, i.e.,

CO —s1 Cl s T T7Smo1 Cmfl Sm Cm

has the following property P(t) for each t € {0,...,n}:

For all h € A and a € I, if h has a charge among {+,0,—} in configura-
tion D; of II’, then the number of copies of a contained in the membrane
substructure rooted in / is equal in D; and Cy(y), and h has the same charge
in both configurations. If A has charge e in D;, then it does not appear in
Cy) (having dissolved before).

We prove this property by induction on ¢. The case t = 0 clearly holds, since IT
and 1" have the same initial configuration: Cyy = Co = Do, as f(0) = [2].

Now suppose P(t) holds for some t < n. If 7,41 is a rule of type (2) then an
object is sent out from a membrane with charge e; therefore, for each object a € I',
the number of copies of a does not change from D; to Dy in any subtree rooted
in a membrane having charge in {4, 0, —}; furthermore, no membrane changes its
charge. Since 7441 is of type (2), we have f(t + 1) = f(t) hence Csi41) = Crp),
and property P(t + 1) holds.

On the other hand, if r;y; is not of type (2), then f(¢t+ 1) = f(t) + 1 by
definition. Let sf)11 = sf(¢+1) be the rule corresponding to the generalised com-
munication rule 711 as described above (an object evolution rule if ry1 is of
type (3), a dissolution rule if ;41 is of type (1), and so on). Observe that if r¢i4
is applicable in Dy, then sy ;)41 is applicable in Cy ;) by induction hypothesis:

e identically labelled membranes have the same charge in D; and Cy(yy;

e ifryyy isof type (1), (3), or (4) and uses an object a located inside a membrane
h having charge 4, 0, or — in Dy, then a copy of a also appears in membrane
h in Cy ;) for the membrane substructure property;

Turing Incompleteness of Asynchronous P Systems 173

o if ry1q is of type (5) and uses an object a located inside a membrane h having
charge o in Dy, then the object a appears in Cy(;) inside the membrane having
the same label as the nearest membrane outside h in D; with charge different
from e.

The configuration Cy ;)11 such that Cyiy —s; ., Cry+1, due to the semantics of
the corresponding rules applied by IT and IT’, is such that the property P(t + 1)
holds: objects are moved to identically labelled membranes, charges in {+,0, —}
are changed in both systems in the same way, and membranes that are set to e by
IT' are dissolved by II.

In particular, P(n) holds: configurations D,, and Cy(, have the following prop-
erties: membrane substructures rooted in identically labelled membranes contain
the same multisets, identically labelled membranes have the same charge if it is in
{+,0, -}, and membranes having charge e in D,, do not appear in Cy,). Notice
that Cs(,) is a halting configuration, since otherwise any rule applicable from it
could be simulated from D,, as in statement (i). Furthermore, membranes having
charge e in D,, are empty, otherwise further rules of type (2) could be applied,
contradicting the hypothesis that D,, is a halting configuration. As a consequence,
not just the membrane substructures, but the individual membranes contain the
same multisets in D,, and Cy(,), and statement (ii) follows.

Finally, let us consider a non-halting computations of II. Each time a com-
putation of IT can be extended by one step by applying a rule, that rule can be
simulated by IT’ using the same argument employed to prove statement (i), thus
yielding a non-halting computation of II’. Vice versa, in a non-halting computa-
tion of [T’ it is never the case that infinitely many rules of type (2) are applied
sequentially, as only finitely many objects exist at any given time, and eventu-
ally they reach a membrane having charge different from e. As soon as a rule of
type (1), (3), (4), or (5) is applied, the corresponding rule can also be applied by
11, thus yielding a non-halting computation. a

5 Simulation with Petri Nets

The generalised communication P systems we introduced in the last section can
be straightforwardly simulated by Petri nets.

Proposition 3. Let IT = (I', A, ¥, pi, wh,, . . ., Wh,, R) be a generalised communica-
tion P system working in sequential mode. Then, there exists a Petri net N, having
((AU{0}) x I') U (A x W) among its places, such that C — C' is a computation
step of I if and only if M — M’ is a computation step of N, where

M(h,a) is the number of instances of a in membrane h in C;
M(0,a) is the number of instances of a in the environment in C;
M(h,a) =1 if h has charge o in C, and M (h,«) = 0 otherwise;
M'(h,a) is the number of instances of a in membrane h in C';
M'(0,a) is the number of instances of a in the environment in C’;

174 A. Leporati, L. Manzoni, A.E. Porreca
o M'(h,a) =1 if h has charge « in C’', and M'(h,«) = 0 otherwise.

Proof. The set of places of N is defined as ((A U {0}) x I') U (A x ¥) U {lock},
where lock is a place always containing a single token that is employed in order to
ensure the firing of at most one transition per step.

For every generalised communication rule

r = [---[a[---[]ﬁ:---]ijii](i:-~-]ii = ["'[w["'H'Z:,"']fﬁﬁ]fﬁ"']ﬁi

with w = wyws - - - w,,, the net has a transition defined as follows:

(hi,a) (h1,01) (hny i)

(hj,wr) (hj,wm) (h1,51) (hns Bn)

Notice that the output places need not be distinct, as the multiset w may contain
multiple occurrences of the same symbol; in that case, a weighted arc is used. The
output places need not be distinct from the input places either, as w may contain
a, or the charge of a membrane may not change. In that case, the net contains a
loop.

The initial marking My of N is given by

My(h,a) = |wple My(0,a) =0
M(](h, 0) =1 M()(h,Ol) =0 M()(lOCk) =1

forallhe€ A, a € I', and a € ¥ — {0}, where |wy,|, is the multiplicity of a in wy,.

Notice that a transition r in N is enabled exactly when the corresponding
rule » € R is applicable, producing a transition M —, M’ corresponding to a
computation step C —,. C’ of IT as required. ad

By combining Propositions 1, 2, and 3, we can finally prove our main theorem.

Theorem 1. For every asynchronous P system with active membranes I using
evolution, communication, and dissolution rules there exists a Petri net N such
that every halting configuration of II corresponds to a halting configuration of N

Turing Incompleteness of Asynchronous P Systems 175

and vice versa (under the encoding of Proposition 3, the charge ® denoting dissolved
membranes), and every non-halting computation of II corresponds to a non-halting
computation of N and vice versa. a

Notice that, given the strict correspondence of computations and their halting
configurations (if any) between the two devices, this result holds both for P systems
computing functions over multisets (or their Parikh vectors) and those recognising
or generating families of multisets (or their Parikh vectors), since the only differ-
ence between these various computing modes is the initial configuration and the
acceptance condition; these are translated directly into the simulating Petri net.

6 Conclusions

We have proved that asynchronous P systems with active membranes (without
division rules) can be simulated by place/transition Petri nets, and hence are
not computationally universal. In order to achieve this result, we proved that
the asynchronous and the sequential parallelism policies are equivalent, and that
membrane dissolution can be replaced by a generalised form of communication,
together with an extra membrane charge.

However, the conjectured equivalence of asynchronous P systems and Petri nets
does not seem to follow immediately from our result and the previous simulation
of partially blind register machines by means of P systems [3]. Indeed, an explicit
signalling (putting a token into a specified place) instead of accepting by halting
seems to be required in order to simulate Petri nets with partially blind register
machines [4]. Directly simulating Petri nets with asynchronous P systems is also
nontrivial, since transitions provide a stronger synchronisation mechanism than
the limited context-sensitivity of the rules of a P system with active membranes.
This equivalence is thus left as an open problem.

We also conjecture that asynchronous P systems with active membrane remain
non-universal even when membrane division rules are allowed. However, if this is
the case, a different proof technique than that of Section 3 is required, as our
current simulation by Petri nets does not support the creation of new membranes.

Acknowledgements

We would like to thank Luca Bernardinello for his advice on the theory of Petri
nets. This research was partially funded by Lombardy Region under project
NEDD.

References

1. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical
Computer Science 147, 117-136 (1995)

176 A. Leporati, L. Manzoni, A.E. Porreca

2. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri nets I: Basic models, Advances in Petri Nets, vol. 1491, pp. 122-173.
Springer (1998)

3. Frisco, P., Govan, G., Leporati, A.: Asynchronous P systems with active membranes.
Theoretical Computer Science 429, 74-86 (2012)

4. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science 7, 311-324 (1978)

5. Paun, Gh.: P systems with active membranes: Attacking NP-complete problems. Jour-
nal of Automata, Languages and Combinatorics 6(1), 75-90 (2001)

6. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981)

