
Kernel P Systems - Version 1

Marian Gheorghe1,2, Florentin Ipate2, Ciprian Dragomir1, Laurenţiu Mierlă2,
Luis Valencia-Cabrera3, Manuel Garćıa-Quismondo3, and Mario J.
Pérez-Jiménez3

1 Department of Computer Science
University of Sheffield
Portobello Street, Regent Court, Sheffield, S1 4DP, UK
{m.gheorghe, c.dragomir}@sheffield.ac.uk

2 Department of Computer Science
University of Bucarest
Str Academiei, 14, Bucarest, Romania
florentin.ipate@ifsoft.ro, laurentiu.mierla@gmail.com

3 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Seville, Spain
{lvalencia, mgarciaquismondo, marper}@us.es

Summary. A basic P system, called kernel P system4 (kP system for short), combining
features of different P systems introduced and studied so far is defined and discussed. The
structure of such systems is defined as a dynamic graph, similar to tissue-like P systems,
the objects are organised as multisets, and the rules in each compartment, rewriting and
communication together with system structure changing rules, are applied in accordance
with a specific execution strategy. The definition of kP systems is introduced and some
examples illustrate this concept. Two classes of P systems, namely neural-like and gen-
eralised communicating P systems are simulated by kP systems. Some case studies prove
the expressive power of these systems.

1 Introduction

Different classes of P systems have been introduced and studied for their compu-
tational power or for specifying or modelling various problems, like solving simple
algorithms [4, 2], NP-complete problems [8] and other applications [5]. More re-
cently various distributed algorithms and problems [13] have been studied with a
new variant of P systems. In many cases the specification of the system investigated
requires features, constraints or types of behaviour which are not always provided

4 This concept was introduced initially in [10]; in this paper it is presented a revised
version of it.

98 M. Gheorghe et al.

by the model in its initial definition. It helps in many cases to have some flexibility
with modelling approaches, especially in the early stages of modelling, as it might
simplify the model, shorten associated processes and clarify more complex or un-
known aspects of the system. The downside of this is the lack of a coherent and
well-defined framework that allows us to analyse, verify and test this behaviour
and simulate the system. In this respect in [10] the concept of kernel P system (kP
system) has ben introduced in order to include the most used concepts from P
systems. It is intended to formally define these systems in an operational style and
finally implement it within a model checker (SPIN [3], Maude [6]) and integrate
it into the P–Lingua platform.

This new class of P systems use a graph-like structure (so called, tissue P sys-
tems) with a set of symbols, labels of membranes, and rules of various types. A
broad range of strategies to run the rules against the multiset of objects available
in each compartment is provided. The rules in each compartment will be of two
types: (i) object processing rules which transform and transport objects between
compartments or exchange objects between compartments and environment and
(ii) structure changing rules responsible for changing the system’s topology. Each
rule has a guard resembling activators and inhibitors associated with certain vari-
ants of P systems. We consider rewriting and communication rules, membrane
division, dissolution, bond creation and destruction.

The paper consists of five chapters. Chapter 2 introduces basic definitions,
Chapter 3 compares the newly introduce kP systems with some other classes of P
systems, Chapter 4 presents a case study based on a static sorting, studying how
this problem is solved with various variants of P systems. Finally Chapter 5 briefly
describes two specification languages for kP systems with their implementations
and some examples.

2 kP Systems

A kP system is a formal model that uses some well-known features of existing
P systems and includes some new elements and, more importantly, it offers a
coherent view on integrating them into the same formalism. The key elements of a
kP system will be formally defined in this section, namely objects, types of rules,
internal structure of the system and strategies for running such systems. Some
preliminary formal concepts describing the syntax of kP systems and an informal
description of the way these systems are executed will be introduced.

We consider that standard concepts like strings, multisets, rewriting rules, and
computation are well-known concepts in P systems and indicate [15] as a compre-
hensive source of information in this respect. First we introduce the key concept
of a compartment.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Kernel P Systems 99

Remark 1. The compartments used by the definition of the kP systems will be
instantiated from the compartment types defined above. The types of rules and
the execution strategy will be discussed later.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of
a compartment type from T and an initial multiset, wi over A; io is the output
compartment where the result is obtained.

Remark 2. The inner part of each compartment is called region, which is delimited
by a membrane.

2.1 kP System Rules

The discussion below assumes that the rules introduced belong to the same com-
partment, Ci.

Each rule r may have a guard g, its generic form is r {g}. The rule r is
applicable to a multiset w when its left hand side is contained into w and g is true
for w. In the sequel we will analyse how the guards are specified and evaluated.

The guards are constructed using multisets over A and relational and Boolean
operators – like Boolean expressions. Before presenting the definition we introduce
some notations.

For a multiset w over A and an element a ∈ A, we denote by #a(w) the
number of a′s occurring in w. Let Rel = {<,≤,=, 6=,≥, >} be the set of relational
operators, γ ∈ Rel, a relational operator, an a multiset and r {g} a rule with guard
g.

Definition 3. If g is the abstract relational expression γan and the current mul-
tiset is w, then the guard denotes the relational expression #a(w)γn. The guard g
is true for the multiset w if #a(w)γn is true.

Let us consider the Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (dis-
junction), listed wrt decreasing precedence order. Abstract relational expressions
can be connected by Boolean operators generating abstract Boolean expressions.

Definition 4. If g is the abstract Boolean expression and the current multiset
is w, then the guard denotes the Boolean expression for w, obtained by replacing
abstract relational expressions with relational expressions for w. The guard g is
true for the multiset w when the Boolean expression for w is true.

Definition 5. A guard is: (i) one of the Boolean constants true or false; (ii) an
abstract relational expression; or (iii) an abstract Boolean expression.

100 M. Gheorghe et al.

Example 1. If the rule is r : ab→ c {≥ a5∧ ≥ b5∨¬ > c}, then this can be applied
iff the current multiset, w, includes the left hand side of r, i.e., ab and the guard
is true for w - it has at least 5 a′s and 5 b′s or no more than a c.

Definition 6. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

• (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A
and tj indicates a compartment type from T – see Definition 2 – with instance
compartments linked to the current compartment; tj might indicate the type
of the current compartment, i.e., tli – in this case it is ignored; if a link does
not exist (the two compartments are not in E) then the rule is not applied;
if a target, tj, refers to a compartment type that has more than one instance
connected to li, then one of them will be non-deterministically chosen;

• (b) structure changing rules; the following types are considered:
– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},

where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj
, tj,hj

) like in
rewriting and communication rules; the compartment li will be replaced by
p compartments; the j-th compartment, instantiated from the compartment
type tij contains the same objects as li, but x, which will be replaced by yj;
all the links of li are inherited by each of the newly created compartments;

– (b2) membrane dissolution rule: []tli → λ {g};
the compartment li will be destroyed together with its links;

– (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type tlj
exists then one of them will be non-deterministically picked up; g is a guard
that refers to the compartment instantiated from the compartment type tl1 ;

– (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are dis-
connected.

Input-output rules considered in [10] will be expressed as rewriting and com-
munication rules.

2.2 kP System Execution Strategy

In kP systems the way in which rules are executed is defined for each compartment
type t from T – see Definition 1 and Remark 1. As in Definition 1, Lab(R) is the
set of labels of the rules R.

Definition 7. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;

Kernel P Systems 101

• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-

deterministically and executed; if none is applicable then none is executed; this
is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times (arbitrary
parallelism);

• σ = {r1, . . . , rs}> – the rules are executed according to maximal parallelism
strategy [15];

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤
s, describes any of the above cases, namely λ, one rule, a choice, arbitrary
parallelism or maximal parallelism; if one of σi fails to be executed then the
rest is no longer executed;

• for any of the above σ strategy only one single structure changing rule is al-
lowed.

Remark 3. Let us suppose that a certain order relationship exists, e.g., r1, r2 >
r3, r4, which means that when weak priority is applied, the first two rules are
executed first, if possible, then the next two. If both are executed with maximal
parallelism, this is described by {r1, r2}> {r3, r4}>.

Remark 4. The result of a computation will be the number of objects collected in
the output compartment. For a kP systems kΠ, the set of all these numbers will
be denoted by M(kΠ).

2.3 kP System Examples

In this section we illustrate the newly introduced P system model with some
examples.

Example 2. Let us consider the set of component types
T = {t1, t2, t3}, where t1 = (R1, σ1), t2 = (R2, σ2), t3 = (R3, σ3), with
R1 = {r1 : a→ a(b, 2)(c, 3) {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ1 = Lab(R1)>,
R2 = {r1 : b→ (b, 0)c {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ2 = Lab(R2)>,
R3 = ∅ and σ3 = Lab(R3)>.
A kP system with n = 4 compartments is kΠ1 = (A,µ,C1, . . . , C4, 1), where
A = {a, b, c, p}, C1 = (t1, w1,0), C2 = (t2, w2,0), C3 = (t2, w3,0), C4 = (t3, w4,0);
with w1,0 = a3p, w2,0 = w3,0 = p, w4,0 = λ;
µ is given by the graph with nodes {C1, C2, C3, C4} and edges {C1, C2}, {C1, C3},
{C1, C4}.

One can note that we do not use targets for objects meant to stay in the
current compartment (i.e., we have r1 : a → a(b, 2)(c, 3) {≥ p} instead of r1 :
a→ (a, 1)(b, 2)(c, 3) {≥ p}). The rule r1 in R2 simulates an input/output rule [10]
which is meant to bring a c from the environment (0) and to send out a b instead.

In this example there are only rewriting and communication rules; some rules
have a guard, ≥ p (p is a promoter), others do not have any and in each compart-
ment the rules are applied in maximal parallel way in every step, as indicated by

102 M. Gheorghe et al.

σj , 1 ≤ j ≤ 3. As two instances of the compartment type t2, C2, C3, appear in the
system, when the rule r1 from the compartment C1 is applied, the object b goes
non-deterministically to one of the two compartments labelled 2 (from t2) as long
as p remains in compartment C1; object c goes always to the compartment C4, of
type t3.

The initial configuration of kΠ1 is M0 = (a3p, p, p, λ). The only applicable
rules are r1, r2 and r3 from C1 and r2, r3 from C2, C3. If r1, r2 are chosen in C1

and r2 in C2, C3, then a3p is rewritten by r1, r2 in C1 and p in C2, C3 by r2;
then three a′s stay in C1, three b’s go non-deterministically to C2, C3, three c’s
go to compartment C4, and each p in C2, C3 stays in its compartment. Let us
assume that two of them go to C2 and one to C3. Hence, the next configuration is
M1 = (a3p, b2p, bp, c3). If in the next step the same rules are applied identically in
the first compartment, C1, and rules r1, r2 are used in C2 and r1, r3 in C3, then
the next configuration is M2 = (a3p, b2c2p, bc, c6). If now r1, r3 are used in C1,
with r1 used in the same way and r1, r3 in C2 (no rule is available in C3) then
M3 = (a3, b2c4, b2c, c9); this is a final configuration as there is no p to trigger a
further step.

Example 3. Let us reconsider the example above enriched with rules dealing with
the system’s structure. First the set T will be replaced by T ′ = {t1, t′2, t3}, where
t′2 = (R′2, σ

′
2), with R′2 = R2 ∪ Rstr

2 and σ′2 = Lab(R2)>&Lab(Rstr
2)>. We can

notice that σ′2 tells us that first the rewriting and communication rules are applied
in a maximal parallel manner and then one of system’s structure rules is chosen
to be executed. The set Rstr

2 denotes the set of membrane division rules for t′2,
i.e., Rstr

2 = {r4 : []2 → []2[]2 {≥ b2∧ ≥ p}}. The new kP system, denoted kΠ2, will
have the following four compartments:
C1 = (t1, w1,0), C ′2 = (t′2, w2,0), C ′3 = (t′2, w3,0), C4 = (t3, w4,0).

If the system follows the same pathway as kΠ1 then M2 shows a different
configuration given that in C ′2 after applying R2 in a maximal parallel manner,
Rstr

2 is applied as indicated by σ′2, when the guard of r4 is true. The compart-
ment C ′2 is divided into two compartments, C2,1, C2,2, instantiated from the same
compartment type t2, with the content of C ′2 and appearing on positions 2 and 3
in the new configuration, M ′2 = (a3p, b2c2p, b2c2p, bc, c6); the new compartments,
C2,1, C2,2, are linked to compartment C1. Compartment C ′3 is not divided as the
guard of r4 is not true for its current multiset. In the next step both C2,1, C2,2 are
divided as they contain the guard triggering the membrane division rule r4. The
process will stop when either p will be rewritten to λ or b2 stops coming to these
compartments.

Remark 5. If we aim to dissolve one of the compartments instantiated from t2 or to
disconnect it from compartment C1, once a certain condition is true, for instance
{≥ b2∧ ≥ c2∧ ≥ p}, then two more rules will be added to Rstr

2 , namely
r5 : []2 → λ {≥ b2∧ ≥ c2∧ ≥ p}, r6 : []2 − []1 → []2; []1 {≥ b2∧ ≥ c2∧ ≥ p}. The
expression σ′2 remains the same, but in this case Rstr

2 contains three elements and
at most one is applied at each step, in every compartment with label 2. For this
reason σ′2 can also be written as Lab(R2)>&Lab(Rstr

2).

Kernel P Systems 103

2.4 Final Remarks

We will recap and summarise how various rules are applied in a compartment
instantiated from a compartment type tli .

The rules presented in Section 2.1 are applied as follows:

• A rewrite - communication rule, x→ (a1, t1) . . . (ah, th) {g}, is executable
if and only if
1. its left hand side multiset, x, is contained within the current multiset;
2. its associated guard, g, holds (i.e., it is true for the current multiset);
3. for each right hand side element, (aj , tj), tj ∈ T (see Definition 1), there is

at least one connected compartment of type tj to receive aj , otherwise the
rule is not applicable.

• A membrane division rule, [x]tli → [y1]ti1 . . . [yp]tip {g}, is executable if and
only if
1. the multiset on the left hand side, x, is included in the current multiset;
2. its associated guard, g, is true for the current multiset;
3. no other structure changing rule (see Definitions 6 and 7) has been applied

in the same step;
4. the compartment instantiated from tli is replaced by p compartments in-

stantiated from the compartment types ti1 , . . . , tip ; their contents will be
the same as the content of the compartment on the left hand side, but x
will be replaced by y1, . . . , yp, respectively;

5. all the links of the compartment instantiated from tli will be inherited by
each of those instantiated from the compartment types ti1 , . . . , tip .

• A membrane dissolution rule, []tli → λ {g}, will destroy the compartment
obtained from li and its links, given the guard g is true for the current multiset;
no other structure changing rule (see Definitions 6 and 7) has been applied in
the same step;.

• A link creation rule, [x]tli ; []tlj → [y]tli − []tlj {g}, is executable if and only

if
1. its left hand side multiset, x, is contained in the current multiset in the

compartment;
2. its associated guard, g, holds;
3. there exists at least one membrane instance of type tlj which is not con-

nected to the instance of type tli (i.e there is at least one instance to link to);
if there are more instances then one will be non-deterministically chosen;

4. no other structure changing rule (see Definitions 6 and 7) has been applied
in the same step.

• A link destruction rule is executed when conditions similar to those men-
tioned for link creation hold.

104 M. Gheorghe et al.

3 Neural-like P Systems and P Systems with Active
Membranes versus kP Systems

In order to prove how powerful and expressive kP systems are, we will show how
two of the most used variants of P systems are simulated by kP systems. More
precisely, we will show how neural-like P systems and P systems with active mem-
branes are simulated by some reduced versions of kP systems.

Definition 8. A neural-like P system (tissue P system with states) of degree n is
a construct Π = (O, σ1, ...σn, syn, i0) ([14], p. 249), where:

• O is a finite, non-empty set of objects, the alphabet;
• σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, represents a cell and

– Qi is the finite set of states of cell σi;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects contained in cell σi;
– Ri is a finite set of rewriting and communication rules, of the form sw →

s′xygozout; when such a rule is applied, x will replace w in cell σi, the objects
from y will be sent to neighbouring cells, according to the transmission mode
(see Remark 6) and the objects from z will be sent out into the environment;
cell σi will move from state s to s′;

• syn ⊆ {1, ..., n} × {1, ..., n}, the connections between cells, synapses;
• i0 is the output cell.

Remark 6. We discuss here a special class of P systems introduced in Definition 8
that will help us to prove a first result.

1. For neural-like P systems, three processing modes are considered, called “max”,
“min”, “par”, and three transmission modes, namely “one”, “repl”, “spread”.
For formal definitions and other details we refer to [14].

2. We denote by simple neural-like P systems the class of P systems given by
Definition 8, where the rewriting and communication rules have the form sw →
s′x(a1, t1) · · · (ap, tp), where th, 1 ≤ h ≤ p, denotes the target cell (σh), and
processing mode “max”, transmission mode defined by the target indications
mentioned in each rule.

Notation. For a given P system, Π, the set of numbers computed by Π will
be denoted by M(Π).

Theorem 1. If Π is neural-like P system of degree n, then there is a kP system,
Π ′, of degree n and using only rules of type (a), rewriting and communication
rules, simulating Π and such that M(Π ′) ⊆M(Π) ∪ {2}.

Proof. Let Π be a simple neural-like P systems of degree n, as defined by Remark
6.2. We construct the kP system, Π ′, as follows: the set of compartment types
T = {t1, . . . , tn}, where ti = (R′i, σi), 1 ≤ i ≤ n, (see below the definitions of ti
components) and Π ′ = (A,µ,C1, . . . , Cn, i0) where:

Kernel P Systems 105

• A = O ∪ (
⋃

1≤i≤nQi)∪ {γ}; γ is a new symbol neither in O nor in
⋃

1≤i≤nQi;
• µ = syn;
• Ci = (ti, w

′
i,0), 1 ≤ i ≤ n; and

– w′i,0 = γ, 1 ≤ i ≤ n;
– R′i contains the following rules:

1. γ → si,0twi,0, where si,0, wi,0 are the initial state and initial multiset,

respectively, associated with cell σi, and t ∈ Q(i)
si,0 . For s ∈ Qi, denote

by Q
(i)
s = {t|t ∈ Qi, sx → ty ∈ Ri}; i.e., Q

(i)
s gives, when the cell σi

is in state s, all the states where σi can move to. In the first step, in
compartment Ci, a rule γ → si,0twi,0 is applied and the current multiset
becomes w′i = si,0wi,0.

2. For each pair (s, t), t ∈ Q(i)
s , there are rules

sxj → tyj ∈ Ri, 1 ≤ j ≤ p (∗).
If there are no rules in Ri from s to t then another pair of states is
considered. For the above rules from Ri, (∗), the following rules are
considered in R′i:
xj → yj {= s ∧ = t}, 1 ≤ j ≤ p, and st → tq {≥ x1 ∨ . . .∨ ≥ xp},
q ∈ Q(i)

t (∗∗).
In the above guards the notation ≥ xj , if xj = aj,1 . . . aj,lj , denotes
≥ aj,1 ∧ . . .∧ ≥ aj,lj . The rules (∗∗) make use of guards; the first p rules
are applied iff the current multiset contains one s and one t, whereas
the last one is applicable iff at least one or more of the occurrences of
one of the multisets xj , 1 ≤ j ≤ p, is included in the current multiset.
Clearly, in state s only the rules (∗) of Π are applicable for this P system,
depending on the availability of the multisets occurring on the left hand
side of them; the next state Π is moving to t. Similarly, in Π ′ only the
rules denoted by (∗∗) are applicable; the rule st→ tq {≥ x1∨. . .∨ ≥ xp}
is applied once whereas the first p rules are applied as many times as
their corresponding (∗) rules are applied.

If the set Q
(i)
t used in st→ tq {≥ x1 ∨ . . .∨ ≥ xp} of (∗∗) is empty, i.e., there

are no rules from state t, then the rule is replaced by st→ λ. When Q
(i)
si,0 = ∅ then

the rule γ → wi,0 is introduced in R′i.
At any moment the component Ci of the kP system Π ′ contains a multiset

which is the multiset of σi augmented by the current state of σi, s, and one of the
next states, t, if it exists.

The process will stop in component Ci of Π ′ when no pair of rules of type (∗∗)
is applicable, which means no sxi → tyi rule is applicable in state s.

The multiset M(Π ′) contains M(Π) and maybe two states s, t occurring in the
last step of the computation. Hence M(Π ′) ⊆M(Π) ∪ {2}. ut

Remark 7. A few comments regarding Theorem 1.

1. The above simulation can be assessed with respect to number of compartments,
objects and rules as well as the computation steps.

106 M. Gheorghe et al.

2. When rules sw → txygo ∈ Ri are used in the “spread” mode, this means
that any a ∈ O occurring in y may go to any of the neighbours. In this case if
y = y1ay2 then for each such a ∈ O, in the set R′i the rule w → xy {= s ∧ = t},
defined in the proof of Theorem 1, will be replaced by w → xy1(a, j)y2 {= s ∧ =
t}, where j the label of one of the neighbours of the current compartment. For
“one” mode all a′s in y will point to the same target, j, for all neighbours of
the compartment i.

3. The transmission replicative mode - when a symbol is sent to all the neighbours,
can also be simulated. Indeed if j1, . . . , jh are the neighbours of i, then w →
xy1(a, j)y2 is transformed into w → xy1(a, j1) . . . (a, jh)y2 for each a.

4. If a rewriting rule contains zout on its right side, i.e., sw → txygoxout then in
the set of rules transcribing it, w → α, we will have α = xy1(a, j)y2z

′, where if
z = a1 . . . ak, then z′ = a′1 · · · a′k; also rules a′ → λ will be added to R′i, for any
a ∈ O. In this way in the next step all the prime elements are removed from
the compartment.

5. If we want to simulate the “min” processing mode then this can be obtained
by specifying the sequential behaviour of the component i - by changing the
definition of σi corresponding to the component.

We study now how P systems with active membranes are simulated by kP sys-
tems. In this case we are dealing with a cell-like system, so the underlying structure
is a tree and a set of labels (types) for the compartments of the system. The sys-
tem will start with a number of compartment and its structure will evolve. In the
study below it will be assumed that the number of compartments simultaneously
present in the system is bounded.

Definition 9. A P system with active membranes of initial degree n is a tuple (see
[15], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O, w1,0, . . . , wn,0 and i0 are as in Definition 8;
• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The following result shows how a P system with active membranes starting
with n1 compartments and having no more than n2 simultaneously present ones
can be simulated by a kP system using only rules of type (a).

Kernel P Systems 107

Theorem 2. If Π is a P system with active membrane having n1 initial com-
partments and utilising no more than n2 compartments at any time, then there
is a kP system, Π ′, of degree 1 and using only rules of type (a), rewriting and
communication rules, such that Π ′ simulates Π.

Proof. Let us denote J0 = {(i, h)|1 ≤ i ≤ n2, h ∈ H}; for a multiset w = a1 . . . am,
(w, i, h), (i, h) ∈ J0, denotes (a1, i, h) . . . (am, i, h). Let us consider the P system
with active membranes, Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0). The polarizations of
the n1 compartments are all 0, i.e., e1 = . . . = en1 = 0.

We construct Π ′ using T = {t1}, where t1 = (R′1, σ1) (where R′1 and σ1 will
be defined later) as follows:
Π ′ = (A,µ′, C1, 1) where:

• A =
⋃

(i,h)∈J0
{(a, i, h)|a ∈ O ∪ {+,−, 0} ∪ {δ}}, where δ is a new symbol; let

us denote by = δall the guard ¬ = (δ, 1, 1) ∧ . . .∧¬ = (δ, n2, | H |), | H | is the
number of elements in H (= δall stands for none of the (δ, i, h), (i, h) ∈ J0);

• µ′ = []1;
• C1 = (t1, w

′
1,0), and

– w′1,0 = (w1,0, 1, h1) . . . (wn1,0, n1, hn1
)(e1, 1, h1) . . . (en1

, n1, hn1
),

e1 = . . . = en1
= 0; let Jc = J0 \ {(i, hi)|1 ≤ i ≤ n1} (Jc denotes indexes

available for new compartments and J0 \Jc the set of indexes of the current
compartments);

– R′1 contains the following rules
1. for each h ∈ H and each rule [u → v]eh ∈ R, e ∈ {+,−, 0}, we add the

rules (u, i, h)→ (v, i, h) {= (e, i, h) ∧ = δall}, 1 ≤ i ≤ n2; these rules are
applied to every multiset containing elements with h ∈ H, only when
the polarization (e, i, h) appears and none of the (δ, j, h′) appears;

2. for each h ∈ H and each rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0}, we
add the rules (u, j, l)(e1, i, h) → (v, i, h)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l; these rules will transform (u, j, l) corre-
sponding to u from the parent compartment j to (v, i, h) corresponding
to v from compartment i of label h, the polarization is changed; for each
polarization, (e1, i, h) only one single rule can be applied at any moment
of the computation;

3. for each h ∈ H and each rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0}, we
add the rules (u, i, h)(e1, i, h) → (v, j, l)(e2, i, h) {= δall}, 1 ≤ i ≤ n2, j
is the parent of i of label l;

4. for each h ∈ H and each rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we add
the rules (u, i, h)(e, i, h) → (v, j, l)(δ, i, h) {= δall}, 1 ≤ i ≤ n2, j is
the parent of i of label l; all the elements corresponding to those in
compartment i must be moved to j - this will happen in the presence of
(δ, i, h) when no other transformation will take place; this is obtained by
using rules (a, i, h) → (a, j, l) {= (δ, i, h)}, a ∈ O and (δ, i, h) → λ {=
(δ, i, h)}; the set of available indexes will change now to Jc = Jc∪{(i, h)};

108 M. Gheorghe et al.

5. for each h ∈ H and each rule [u]e1h → [v]e2h [w]e3h ∈ R, e1, e2, e3 ∈
{+,−, 0}; if j1, j2 are the indexes of the new compartments, we add
(u, i, h)(e1, i, h) → (v, j1, k1)(e2, j1, k1)(w, j2, k2)(e3, j2, k2)(δ, i, h) {=
δall}, 1 ≤ i ≤ n2; the content corresponding to compartment i should
be moved to j1 and j2, hence rules (a, i, h) → (a, j1, k1)(a, j2, k2 {=
(δ, i, h)}, a ∈ O and finally (δ, i, h) → λ {= (δ, i, h)}; Jc is updated,
Jc = Jc ∪ {(i, h)} \ {(j1, k1), (j2, k2)}.

The size of the multiset obtained in i0 by using Π computation is the same as
the size of the multiset in Π, when only (a, i0, h) are considered, minus 1 (the
polarization is also included). ut

4 Case Study - Static Sorting

In this section we analyse the newly introduced kP systems by comparing them
with established P system classes by using them to specify a static sorting algo-
rithm. This algorithm was first written with symport/antiport rules [4] and then
reconsidered in some other cases [2]. The specification below mimics this algorithm.

4.1 Static Sorting with kP Systems

Let us consider a kP system having the following n = 6 compartment types:
ti = (Ri, σi) and corresponding compartments Ci = (ti, wi,0), 1 ≤ i ≤ n, where
w1,0 = a3;w2,0 = a6p;w3,0 = a9;w4,0 = a5p;w5,0 = a7;w6,0 = a8p.

The rules of the set Ri, 1 ≤ i ≤ n, are :
r1 : a→ (b, i− 1) {≥ p}, only for i > 1
r2 : p→ p′

r3 : p′ → (p, i− 1), for i even and r′3 : p′ → (p, i+ 1), for i odd
r4 : ab→ a(a, i+ 1), i < n
r5 : b→ a, i < n.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
The aim of this problem is to order the content of these compartments such that
the highest element (a9) will be in the leftmost compartment, C1, and the smallest
one (a3) in the rightmost compartment, Cn, (n = 6).

Remark 8. The functioning of the kP systems is presented below:

• A = {a, b, p, p′} is the set of objects;
• the rule r1 is absent from the compartment C1;
• the last two rules, r4, r5, are only present in compartments C1 to Cn−1;
• for n = 2k + 1 we need an auxiliary compartment, Cn+1, which will start

with an initial multiset p and will contain a set of rules with r2 : p → p′ and
r3 : p′ → (p, n); whereas Cn should have an additional rule r′3 : p′ → (p, n+ 1);

Kernel P Systems 109

• in each compartment Ci, σi = {r1, r2, r3, r4}>{r5}>, if i is even; for odd values
of i, r3 is replaced by r′3; σi tells us that firstly the rules from the first set are
applied in a maximal parallel manner and then r5, also in a maximal way;

• σi describes an order relationship, r1, r2, r3, r4 > r5; so we can replace this kP
system by a P system with promoters and having an order relationships on the
set of rules associated with each membrane.

The table below presents the first steps of the computation. In the first step the
only applicable rules are r1, r2; given the presence of p, rule r1 moves all a′s from
each even compartment to the left compartment as b′s and rule r2 transforms p
into p′. Next, rules r3, r4, r5 are applicable; first r3 and r4 are applied, this means
p′ is moved as p to the left compartments and for each ab an a is kept in the
current compartment and a b is moved as an a to the right compartment; finally,
the remaining b′s, if any, are transformed into a’s. These two steps implement a
sort of comparators between two adjacent compartments moving to the left bigger
elements. In the previous steps the comparators have been considered between
odd and even compartments. In the next step p′s appear in even compartments
and the comparators are now acting between an even and an odd compartment.
The algorithm does not have a stopping condition. It must stop when no changes
appear in two consecutive steps. Given that the algorithm must stop in maximum
2(n− 1) steps, then we can introduce such a counter, c, in each compartment and
rules c→ c1, ci → ci+1, 1 ≤ i ≤ 2(n− 1)− 2 and c2(n−1)−1p→ λ.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3 a6p a9 a5p a7 a8p
1 a3b6 p′ a9b5 p′ a7b8 p′

2 a6p a3 a9p a5 a8p a7

3 a6p′ a3b9 p′ a5b8 p′ a7

4 a6 a9p a3 a8p a5 a7p
5 a6b9 p′ a3b8 p′ a5b7 p′

Remark 9. Bounded number of compartment types. The above solution is
using n compartment types for n compartments. As the rules are the same in each
compartment, with two exceptions involving the components at both ends of the
system (compartments C1 and Cn), it is natural to look for a solutions with a
bounded number of types. If we use the same type everywhere except for the two
margins then we face the problem of replacing the rules using targets with different
rules where the targets are now the new types; if these are the same we can no
longer distinguish between left and right neighbours, so we should have at least
two distinct ones. Additionally, we have to distinguish odd and even positions.
Consequently, four types, and two more for the two ends are enough. Are there
further simplifications? The answer to this question and the solution in this case
are left as exercises to the reader.

110 M. Gheorghe et al.

4.2 Static Sorting with States

We consider the same n-compartment tissue-like P system structure as in the
previous subsection. Additionally, in this case, the rules in each compartment use
states; an order relationship between rules in each compartment is also considered.
Initial states are s1 in odd compartments and s0 otherwise; the content of the 6
regions is illustrated by the first line, step 0, of the table below.

The addition of states is potentially very useful from a modelling point of view
since many widely-used modelling languages are state-based and, therefore, such
rules were a strong candidate for inclusion in our kP system model. However, as
shown below, states can be effectively simulated by rewriting rules, as shown below.

For the algorithm considered, the rules in each compartment and the order
relationships are as follows
Compartment 1:
r1 : s0x→ s0y
r2 : s0y → s1x
r3 : s1ab→ s0a(a, 2)
r4 : s1b→ s0a
The rules satisfy: r1, r2, r3 > r4 .

Compartment i, 2 ≤ i ≤ n− 1:
r1 : s0a→ s1(b, i− 1)
r3 : s1ab→ s0a(a, i+ 1)
r4 : s1b→ s0a
The rules satisfy: r1, r3 > r4.

Compartment n:
r1 : s0a→ s1bn−1
r2 : s1x→ s1y
r3 : s1y → s1z
r4 : s1z → s0x

Membranes - Step C1 C2 C3 C4 C5 C6

0 s1 : a3x s0 : a6 s1 : a9 s0 : a5 s1 : a7 s0 : a8x
1 s1 : a3b6x s1 : s1 : a9b5 s1 : s1 : a7b8 s1 : x
2 s0 : a6x s1 : a3 s0 : a9 s1 : a5 s0 : a8 s1 : a7y
3 s0 : a6y s1 : a3b9 s1 : s1 : a5b8 s1 : s1 : a7z
4 s1 : a6x s0 : a9 s1 : a3 s0 : a8 s1 : a5 s0 : a7x
5 s1 : a6b9 s1 : s1 : a3b8 s1 : s1 : a5b7 s1 : x

In the case where we have an odd number of compartments, the n−th region
must contain an y instead of x. Thus the starting configuration for n = 7 is the

Kernel P Systems 111

following:
w1,0 = a3x;w2,0 = a6;w3,0 = a9;w4,0 = a5;w5,0 = a7;w6,0 = a8;w7,0 = a13y.

4.3 Static Sorting with P Systems Using Polarizations on Membranes

We now use cell-like P systems with active membranes to specify the same algo-
rithm. P systems with active membranes were introduced with the primary aim of
solving NP-complete problems in polynomial (often linear) time [15]. The key fea-
tures of this variant is the possibility of multiplying the number of compartments
during the computation process by using membrane division rules in addition to
multiset rewriting and communication rules. Each membrane can have one of the
three electrical charges {+,−, 0} and a rule can only be executed if the membrane
has the required electrical charge; a rule can also change the polarization of the
membrane when objects cross it (either in or out).

In our static sorting example compartments with two states were used, so,
when the algorithm is implemented using electrical charges, it is expected that
two electrical charges would suffice. Indeed, from the list of rules below one may
observe that 0 and + are the only polarizations utilised.

There is, however, a problem with this approach, arising from the rule appli-
cation strategy. In P systems with membrane division and polarizations, only one
rule which can change the polarization of a membrane can be applied per step [8].
The sorting algorithm however, employs maximal parallel communication rules
to operate the comparator procedure between membranes. In order to correctly
implement this procedure we will accept maximal parallel communication rules
which change the charge of the membrane they traverse to/from if and only if
they target the same final polarization.

In the case of P systems with polarizations on membranes we will use a cell-like
structure with n = 6 regions defined below with the initial multisets included and
initial polarizations; the implementation of the static sorting with P systems with
polarization on membranes is using priorities over the sets of rules.

µ = [[[[[[[a3x1]01a
6x1]+2 a

9x1]03a
5x1]+4 a

7x1]05a
8x1]+6]0aux

Rules:
”Comparator” rules:
r1 : a[]0j → [b]0j , 1 ≤ j ≤ n;

r2 : [ab]0j → a[a]+j , 1 ≤ j ≤ n;

r3 : [b→ a]0j , 1 ≤ j ≤ n;

Rules for switching polarities between adjacent membranes:
r4 : [x1 → x2]ij , 1 ≤ j ≤ n;

r5 : [x2]0j → y1[]+j , 1 ≤ j ≤ n;

r6 : [x2]+j → y1[]0j , 1 ≤ j ≤ n;

r7 : [y1 → y2]ij , 1 < j ≤ n+ 1;

112 M. Gheorghe et al.

r8 : y2[]0j → [x1]+j , 1 ≤ j ≤ n;

r9 : y2[]+j → [x1]0j , 1 ≤ j ≤ n;
where i ∈ {0,+} ; and the order relationship r1, r2, r4, r5, r6, r7, r8, r9 > r3.

M/S []1 []2 []3 []4 []5 []6 []aux

0 [a3x1]0 [a6x1]+ [a9x1]0 [a5x1]+ [a7x1]0 [a8x1]+ []0

1 [a3b6x2]0 [x2]+ [a9b5x2]0 [x2]+ [a7b8x2]0 [x2]+ []0

2 [a6]+ [a3y1]0 [a9y1]+ [a5y1]0 [a8y1]+ [a7y1]0 [y1]0

3 [a6]+ [a3b9y2]0 [y2]+ [a5b8y2]0 [y2]+ [a7y2]0 [y2]0

4 [a6x1]0 [a9x1]+ [a3x1]0 [a8x1]+ [a5x1]0 [a7x1]+ []0

5 [a6b9x2]0 [x2]+ [a3b
8x2]0 [x2]+ [a5b7x2]0 [x2]+ []0

There are no additional requirements in the case where n = 2k + 1, however
we always entail an extra auxiliary membrane to enable out communication of the
n−th membrane, therefore allowing it to switch polarity.

A similar implementation of the static sorting algorithm can be obtained by
using P systems with labels on membranes. As illustrated in [1], we can encode elec-
trical charges in strings of the membrane labels, in order to differentiate between
the two necessary states. For each membrane hi we synthesise its complementary
label h′i, which is changed to by a communication rule. We leave this as an exercise
to the reader.

A number of (preliminary) conclusions can be drawn from the above case study:

• kP systems are conceptually closer to tissue P systems than cell-like P systems;
in our case studies, this is reflected by the similarity between the specifications
using kP systems and tissue P systems, respectively. On the other hand, the
model realised using the cell-like P system variant is significantly more complex.

• In terms of complexity, the three implementations are roughly equivalent. The
kP system executes in each step one more rule then the P system with states;
this rule is either r2 or r3 (dealing with p). On the other hand, the number
of rules applied in each compartment for every step by cell-like P systems is
similar to the case of kP systems.

5 Specification Languages

In this section a specification language covering the entire model of the kP system
will be described in Section 5.1 and a specification language with a different syntax
for a subset of the same model will be presented in Section 5.2.

5.1 Specification Language for kP Systems

Our Kernel P system research is to be complemented by a set of tools targeting the
simulation and trace analysis of various models on the one hand, but also the formal

Kernel P Systems 113

verification by means of automated model checking on the other hand. In order
to utilise such applications, a formal, unambiguous representation of the model
is required. We have attained this objective by designing a modelling language
capable of mapping the kernel P system specification into a machine readable
representation. We call this language kP–Lingua.

There are two principal and naturally opposing precepts which influenced and
guided the development of kP–Lingua:

1. Conciseness, simplicity, minimalism: the language must consist of a minimal
set of (meta-)descriptive symbols, keywords or constructs, such that it satisfies
the necessity for an unambiguous syntax.

2. Clarity, coherence, intelligibility: each statement or sequence of statements
must overly express an entity with its associated values or a binding between
two or more entities in the model; each proposition should be transparent in
its context and intuitive, intelligible in the absence of a reference manual.

This proposal stands at the confluence of these orthogonal aspirations and the
formal description of the computational model. Since kP systems explicitly apply
the type - instance paradigm with respect to compartments, a model definition
reflects this distinction in its structure, which is bi-partitioned as follows:

1. Type definitions - encompassing the instruction set, organised in accordance
with the type’s associated execution strategy.

2. Instance definitions and interlinking - establish the set of compartments and
related connections, assembling the graph-like structure of membranes.

A type is declared using the keyword type followed by the name of the type
- any combination of alphanumeric characters excluding the restricted keywords.
The body of a type declaration consists of a succession of guarded rules or rule
ensembles (choice, arbitrary execution and maximal parallel execution blocks) as
specified in the type’s execution strategy. A rule is represented as a guarded tran-
sition, symbolised by an arrow, between two terms. We illustrate the syntax of a
type definition and its constituents with a comprehensive example:

Example 4. A type definition in kP–Lingua.

type C1 {

2a, 3b -> c .

>= 2c & > 2b : b, c -> a .

choice {

b -> 2b .

< 3b : b -> 3b .

}

max {

a -> a, a(C2), {a, 2b}(C3) .

114 M. Gheorghe et al.

}

2c -> -(C2) .

2b -> \-(C2) .

= 5a : a -> [3a, 3b](C1) [3b](C2) [3a](C3) .

}

In this example we define type C1 with the following sequence of rules: a rewrit-
ing rule which takes two a objects and three b objects and produces a c; a guarded
rewriting rule which yields an object a if and only if there are at least two c’s and
more than two b’s in the compartment the rule is applied on; next we have a choice

block with two rewriting rules of which one is guarded, followed by a maximally
parallel block where the rewrite communication rule is exhaustively executed, pro-
ducing an object a inside the membrane and sending an object a to compartments
of type C2, one a and two b’s to membranes of type C3 respectively; next, a link
creation rule expends two c objects to establish a new connection with an instance
of type C2; conversely, the following rule breaks a link with a compartment of type
C2, using two b’s; finally, a guarded membrane division rule takes one object a

and divides the compartment into three distinct compartments of types C1, C2, C3
respectively, if the number of a’s in the membrane is precisely five.

The newly created cells are initialised with the a copy of the multiset contained
in the divisible compartment, however, one a is substituted with the multiset
denoted by the value enclosed in the square brackets.

In kP–Lingua every statement terminates with a full stop and, similar to other
programming languages, each block which groups a set of statements together is
enclosed in curly braces.

An instance is declared as a typed multiset which also designates the initial
configuration of the compartment. Hence, a membrane of type C1 containing two
a and three b objects is encoded as {2a, 3b} (C1). We underline our choice of
a consistent notation both for type references and multiset values across different
declarative contexts. A variable is considered to be a type variable if it is en-
veloped by parentheses. Any other identifier within the scope of a type definition
is interpreted as an object and is prefixed by its multiplicity (if greater than one).
Membrane instances may also bear an identifier, a variable name nominating a
specific compartment in a ‘link’ statement. We further illustrate instantiation and
binding in Example 5.

Example 5. Instantiation and interlinking of compartments expressed in kP–Lingua.

m1 {a, b, 3c} (C1).

m2 {10 xx, 10 xy} (C2).

m1 - m2 .

m2 - m3 {} (C2) - {5 xx, 5 xy} (C2) - {m, 2n} (C3) .

m1 - m3 .

In the first line, compartment m1 of type C1 is declared, with an initial multiset
consisting of an a, a b and three c objects. m2 of type C2 is defined analogous. The

Kernel P Systems 115

third statement is a ‘link’ instruction, connecting the two previously instantiated
compartments. In kernel P systems links are bidirectional and consequently, the
connect binary operator (-) is neutral to the order of its arguments. This, however,
becomes relevant when we consider a succession of contiguous vertices in our graph
of compartments. Line four emphasises a more condensed way to link instances
together: the first one is a reference to compartment m2 which connects to a new
compartment of type C2 with an empty multiset and label m3; this is further joined
with an anonymous membrane of type C2 and finally, a second unlabelled instance
of type C3. The last line of the example connects m1 with m3, demonstrating the
necessity for identifiers and referencing when organising instances in a non-linear
structure (i.e., one that is more complex than a list).

We conclude this section by noting the two remaining elements which are not
featured in the examples, namely membrane dissolution, symbolised by ‘#’ and
the arbitrary execution block respectively. We also acknowledge the expressive
power of kP–Lingua whose syntax can intuitively represent a kernel P system
model with its plethora of components, using no more than four keywords (type,
choice, arbitrary, max), five delimiters ((), {}, [], : and .), eight relational
operators (=, !=, < , <=, >, >=, &, |) and four meta-symbols (->, -, \-, #) to identify
an instruction. A complete EBNF formal description of kP–Lingua’s syntax is
available in the Appendix.

5.2 Specification Language for a Subset of kP Systems

The previous section has described in detail the specification language for kernel
P systems (kP systems). However, a previous specification language was provided
to specify and simulate simple kernel P systems (skP systems), a simpler version
not taking into account some of the detailed current features of this model of
computation. The next subsections describe the syntax, the methodology and the
software environment provided with this alternative simpler model, illustrating
the process of specification and simulation through a case study, the NP-complete
Partition problem.

P–Lingua structures

The following structures, including kP–related features, have been added into P–
Lingua version 4, which will be shortly available [16]. The current version of P–
Lingua describes simple kP systems, a subset of kP systems [11]. Thus, it does not
support link creation rules, link destruction rules nor execution strategies (only
maximal parallelism). These features might be incorporated in future releases.

Guards: A guard g denoting a relational expression #a(w)γn (see Section 3) is
represented as {γ′a∗n}, where γ′ is a representation of γ such as < (for <), <=
(for ≤), = (for =), <> (for 6=), >= (for ≥) and > (for >). As illustrative exam-
ples, {<=c*2} represents the guard denoting #c(w) ≤ 2, whereas{>=b} repre-
sents #b(w) ≥ 1. As described in Section 4, guards denoting relational expres-
sions (namely relational guards) can be used in Boolean expressions (namely

116 M. Gheorghe et al.

Boolean guards). Boolean operators involved in Boolean expressions, ∧ and
∨, are represented as && and ||, respectively. For instance, {<=a*2}&&{<=b}
represents the guard {≤ a2∧ ≤ b}. Similarly, {<=a*2}||{<=b} represents the
guard {≤ a2∨ ≤ b}. ∧ and ∨ operators can be combined to describe complex
guards, such as
{<=a*2}&&{<=b}||{<=a*3}&&{<=c*3}.
A rule r {g} is defined as
@guard g ? r.
For instance, rule a→ b {= a2} is defined as
@guard {=a*2} ? [a --> b].

Membrane initialisation: Membrane initialisation enables users to define mem-
branes in the initial configuration. According to the membrane structure
of the system defined, the syntax for membrane differs. In this respect,
mu(label1)+=[multiset]’label2;
is used for cell–like membrane structures (i.e, those of PDP systems [7]),
whereas
mu(0)*=[multiset]’label;
is used for tissue–like membrane structures, such as those of kernel P systems.
The former instruction adds a new membrane labelled label2 with associated
multiset multiset as a child of membrane label1, whereas the latter adds a
new membrane labelled label with associated multiset multiset to the initial
configuration.

New rules: In order to define the currently supported subset of kernel P systems,
some rules defined in Section 6 have been incorporated, which are:
Rewriting and communication rules: A rewriting and communication rule x→

y {g}, where x ∈ A+ and y, has the form y = (a1, t1) . . . (ah, th), h ≥ 0,
aj ∈ A and tj indicates a compartment type from T , is represented as
@guard g ? [x]’t0 --> [a1]’t1, ..., [ah]’th,
with t0 being the current compartment. In contrast to the definition given
in Section 6, the P–Lingua implementation of these rules does not require
t0 to be linked to every compartment ti, 1 ≤ i ≤ h.

Structure changing rules: A structure changing rule
[x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj

, tj,hj
) like in

rewriting and communication rules, is represented in P–Lingua as
@guard g ? [x]’tli |--> [y1]’ti1, ..., [yp]’tip;.
If any yj , 1 ≤ j ≤ p contains the special symbol @d, then membrane tij is
dissolved. These rules can be used in conjunction with membrane internal
iterators (see below), resulting in arbitrary division and relabelling rules
such as
[a]’1 |--> [b]’2 &{[c,d{i}]’{i}}:{3<=i<=n};.

Kernel P Systems 117

Internal iterators: These iterators enable users to define arbitrary, parameter–
dependent multisets, membrane structures and guards. These iterators ex-
pand the possibilities for defining rules and initial configurations. The syntax
for internal iterators is &{items}:{index ranges}, except for ∨–joined guards,
which is |{items}:{index ranges}. Unless otherwise stated, different internal
iterators can be combined in the same rule or sentence, but they cannot be
nested. Internal iterators can be used within three contexts:
Multiset internal iterators: The syntax for these iterators is

&{multiset}:{index ranges}. These iterators allow the extension of multi-
sets in rule definitions. For instance, given a value for n and a set of values
for ei, 1 ≤ i ≤ n, the rules [a→ b, ci, d

ei
i , 1 ≤ i ≤ n]1 are represented as

[a --> b, &{c{i}, d{i}*e{i}}:{1<=i<=n}’1;.
Membrane internal iterators: The syntax for these iterators is

&{[multiset]’{label}}:{index ranges}. These iterators allow to specify
communications to various compartments occurring on the right–hand side
of the rules only. The left–hand side communication cannot be specified
by using this mechanism. For instance, given a value for n and values for
ei, 1 ≤ i ≤ n, rewriting and communication rules x → (aeii , ti), 1 ≤ i ≤ n,
where x, ai ∈ A, 1 ≤ i ≤ n and tj indicates a compartment type from T ,
are represented as
[x]’t0 --> &{[a{i}*e{i}]’{i}}:{1<=i<=n};,
with t0 being the current compartment.

Guard internal iterators: These iterators are a special case, as they have two
possible syntaxes, according to the Boolean operators involved. These
forms are
&{guard}:{index ranges} |{guard}:{index ranges}.
The construct guards joined by ∧ operators (∧–joined guards), whilst the
latter uses ∨ operators (∨–joined guards). In addition, they are the only
internal iterators which can be nested, in the form of an ∧–joined guard
inside an ∨–joined guard. On the other hand, ∨–joined guards cannot be
defined into ∧–joined guards. As an example, given a value for n and a
value for m,
@guard |{{&{{<=B{i,j}*2}}:{1<=j<=m}}}:{1<=i<=n} ? [a-->b]’1;

can be applied iff, prior to the application of the rule, there exists at
least one value i, 1 ≤ i ≤ n, such that the cardinality of each object
Bi,j , 1 ≤ j ≤ m, in membrane 1, is greater than or equal to 2.

There are some constraints regarding indexes in internal iterators; they cannot
be part of numerical expressions (such as &{a{i+1}}:{1 <= i <= 10}) nor be
used as indexes for constants (such as &{a{g{i}}}:{1 <= i <= 10}). In addi-
tion, names used for indexes in any internal iterator cannot be used anywhere
else, including another internal iterator.

118 M. Gheorghe et al.

A Case Study - Partition Problem

In the previous section we have introduced the subset of kP systems which is
included in P–Lingua platform, as well as the main features of the software tool.
This section describes a case study to be modelled and simulated, as explained in
the next section.

The problem we will focus on is the well-known NP-complete problem called the
partition problem. This is formulated as follows: let V be a finite set and weight,
an additive function on V with positive integer values. It is requested to find, if
exists, a partition of V , denoted V1, V2, such that weight(V1) = weight(V2).

A solution to this problem is provided in [9] by using a recogniser tissue P
system with cell division and symport/antiport rules. In this case study we adapt
the solution to skP systems.

Let V = {v1, . . . , vn} be a finite set with weight(vi) = ki, where ki is a positive
integer, 1 ≤ i ≤ n. The following skP system is built, depending on n (the number
of elements in the set), in order to check whether there is a partition, V1, V2, with
weight(V1) = weight(V2) = k (please note we also check that the weights of both
subsets are k). The set of component types, T = {t1, t2}, ti = (Ri, σi), 1 ≤ i ≤ 2.
R1 and R2 are given as follows:

• R1 contains
r1,1 : S → (yes, 0) {≥ T},
r1,2 : S → (no, 0) {≥ F ∧ < T};
r1,1 or r1,2 sends an answer yes or no, respectively, to the environment;

• R2 contains
membrane division rules:
r2,i : [Ai]2 → [BiAi+1]2[Ai+1]2, 1 ≤ i < n,
r2,n : [An]2 → [BnX]2[X]2, 1 ≤ i < n;
these rules generate in n steps all the subsets of V (2n subsets); each of them
being a potential V1 and V2 its complement;
rewriting rules:
r2,i,j : vivj → v {= Bi ∧ 6= Bj ∧ = X ∨ 6= Bi ∧ = Bj ∧ = X},
1 ≤ i < j ≤ n,
r2,n+1 : X → Y ; and
rewriting and communication rules:
r2,n+2 : Y → (F, 1) {≥ v1 ∨ . . . ∨ ≥ vn ∨ 6= vk},
r2,n+3 : Y → (T, 1) {< v1 ∧ . . . ∧ < vn ∧ = vk}.

The execution strategies are given by σi = Lab(Ri)
>, 1 ≤ i ≤ 2, i.e., maximal

parallelism. The skP system is given by skΠ3(n) = (A,µ,C1, C2, 0), where:

• A is the alphabet;
• µ is given by the graph with edge (1, 2);
• C1 = (t1, w1,0), C2 = (t2, w2,0), where w1,0 = S, w2,0 = A1code(n), with

code(n) = v1
k1 . . . vn

kn being the code of the weights of the elements in V , and
being k, half the sum of the ki values.

Kernel P Systems 119

The computation leads to an answer, yes or no, in n+3 steps. In fact, in n steps
all the subsets of V are generated, as it can be observed above. In step n+1, in each
compartment C2 every occurrence of an element vi of the subset of V is paired up
with an element vj of the complement as many times as the weights allow to, by
using r2,i,j as many times as possible; objects X are simultaneously transformed
into objects Y . The step n+ 2 consists of sending either T or F to compartment
C1 depending on whether all the elements of the subset and their complements are
paired up and the number of pairs is k (i.e., the weight of the partition), or the
weights of the subsets are different or are not equal to k (rules r2,n+3 and r2,n+2

are respectively used). Finally, in step n + 3 the answer is provided by using one
of the rules of C1.

This solution might be easily changed to only verify that weight(V1) =
weight(V2), by simply removing the condition referred to vk in guards attached
to rules r2,n+2 and r2n+3.

skP Systems Simulation

The previous sections have introduced some background details about P–
Lingua specification language and its new features with regard to skP systems,
along with the description of a case study, the Partition problem, modelled within
this approach. This section has the aim of outlining the basic facts concerning the
simulation environment to work with the above presented model.

An integrated methodology for modelling, simulation, analysis and formal veri-
fication of skP systems was first presented in [11]. This methodology was supported
by the software environment provided by MeCoSim and P–Lingua. P–Lingua pro-
vides the P systems designer with a powerful and expressive language to specify
skP systems or families of them, possibly including variable parameters whose val-
ues depend on the specific instance of the skP system to be generated, such as
n for the size of the input set. MeCoSim provides a customisable and extensible
visual environment to enable the end user interacting with the P system model
implementation. The user provides the input data by custom visual tables, and
then runs the simulations (by using the simulation engine of pLinguaCore, that
includes simulators for skP systems). Finally, custom visual outputs are generated
in the form of tables, charts and/or graphs.

The cited methodology has been applied to our case study, that is, partition
problem. The described model has been specified in P–Lingua format, having n
and the weights in code(n) as variable parameters, depending on the specific set
to analyse. P–Lingua file and some additional details about the interface and
simulation are available at [17].

In addition, a custom application has been defined in MeCoSim, enabling the
user entering n, k and the different weights k1 to kn for the elements in the input
set, as showed in Fig 1. As part of the custom application definition, a mapping is

120 M. Gheorghe et al.

set to translate the input data into parameters for the model written in P–Lingua,
possibly after performing additional tasks over the input data. This way, when
the user introduces the specific input data and clicks Simulate!, the values for the
parameters are calculated, the initial configuration is generated, the specific skP
system is instantiated, and then the computation runs until a halting configuration
is reached.

Fig. 1. Input parameters in MeCoSim for Partition

After the simulation has finished, the desired custom outputs are provided
to the end user from the results of the computation, depending on the required
information to be shown. For instance, a skP systems designer might be interested
to know the contents of every membrane, or find out the answer, yes or no, to the
problem. Both outputs have been set in MeCoSim custom application, as shown
in Fig 2.

The explained process should be enough to solve the decision problem, but a
small additional effort could lead us to provide additional information, such as
the elements contained in every specific valid partition, in an automatic way. This
additional stuff has been provided by extending the original model with some
additional informational objects, and some extra output charts defined for the
custom output. The details can be found again in [17], but an example of output
chart for a specific partition is shown in Fig. 3.

6 Conclusions

The kP system introduced in this work represents a low level modelling language.
Its syntax and informal semantics and some examples have been introduced and
discussed. A case study based around a simple sorting algorithm has allowed us to
compare different specifications of this using various types of P systems. Finally

Kernel P Systems 121

Fig. 2. Output tables in MeCoSim for Partition

Fig. 3. Partitions Chart in MeCoSim

122 M. Gheorghe et al.

two specification languages and an implementation are discussed. In the next stage
an implementation using the SPIN model checker is expected.

Acknowledgement. The work of MG, FI and LM was partially supported by
the MuVet project, Romanian National Authority for Scientific Research (CNCS –
UEFISCDI), grant number PN-II-ID-PCE-2011-3-0688; CD’s work was supported
by a DTA PhD studentship. MGQ, LVC and MJPJ were supported by project
TIN 2012-37434 from “Ministerio de Economı́a y Competitividad” of Spain, and
“Proyecto de Excelencia con Investigador de Reconocida Vaĺıa P08-TIC-04200”
from Junta de Andalućıa, both co-financed by FEDER funds. MGQ was also
supported by the National FPU Grant Programme from the Spanish Ministry of
Education.

References

1. A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations for Labels in P Systems with
Active Membranes, Acta Informatica, 41, 111-144, 2004.

2. A. Alhazov, D. Sburlan, Static Sorting P Systems. In [5], 215 – 252, 2006.
3. M. Ben-Ari, Principles of the SPIN Model Checker, Springer, 2008.
4. R. Ceterchi, C. Mart́ın-Vide, P Systems with Communication for Static Sorting.

In Pre-Proceedings of Brainstorming Week on Membrane Computing, Tarragona,
February 2003, M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, eds., Technical Report no
26, Rovira i Virgili Univ., Tarragona, 101–117, 2003.

5. G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez, eds., Applications of Membrane Com-
puting, Springer, 2006.

6. M. Clavel, F.J. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, Maude:
Specification and Programming in Rewriting Logic, Theoretical Computer Science,
285, 187 – 243, 2002.

7. M.A. Colomer, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez. Comparing
simulation algorithms for multienvironment probabilistic P system over a standard
virtual ecosystem. Natural Computing, 11, 369–379, 2012.

8. D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A Uniform Family of
Tissue P Systems with Cell Division Solving 3-COL in a Linear Time, Theoretical
Computer Science, 404, 76 – 87, 2008.

9. D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez. A
linear time solution to the partition problem in a cellular tissue-like model. Journal
of Computational and Theoretical Nanoscience, 7, 5, 884 – 889, 2010.

10. M. Gheorghe, F. Ipate, C. Dragomir, Kernel P Systems. In Membrane Comput-
ing, Tenth Brainstorming Week, BWMC 2012, Sevilla, Spain, February 2009, M. A.
Mart́ınez-del-Amor, Gh. Păun, F. Romero-Campero, eds., Universidad de Sevilla,
153 – 170, 2012.

11. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Pérez-Jiménez, A. Turcanu, L. Valen-
cia, M. Garca-Quismondo, L. Mierlă. 3-COL problem modelling using simple ker-
nel P systems. International Journal of Computer Mathematics, online version
(http://dx.doi.org/10.1080/00207160.2012.743712).

12. M. Gheorghe, V. Manca, F.J. Romero-Campero, Deterministic and Stochastic P
Ssytems for Modelling Cellular Processes, Natural Computing, 9, 457–473, 2010.

Kernel P Systems 123

13. R. Nicolescu, M. J. Dinneen, Y.-B. Kim, Structured Modelling with Hyperdag P
Systems: Part A. In Membrane Computing, Seventh Brainstorming Week, BWMC
2009, Sevilla, Spain, February 2009, R. Gutiérrez-Escudero, M. A Gutiérrez-Naranjo,
Gh. Păun, I. Pérez-Hurtado, eds., Universidad de Sevilla, 85 – 107, 2009.

14. Gh. Păun, Membrane Computing: An Introduction, Springer, 2002.
15. Gh. Păun, G. Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
16. http://www.p-lingua.org – P–Lingua web page.
17. http://www.p-lingua.org/mecosim/doc/case studies/partition.html – Partition case

study at MeCoSim web page.

7 Appendix

7.1 The EBNF formal description of kP–Lingua’s syntax

kpsystem ::= {statement};

statement ::= type definition | instantiation | link;

type definition ::= ‘type’, space, [space], identifier, [space], ‘{’, [space], {(rule |
rule ensemble), [space]}, ‘}’;

rule ensemble ::= (‘choice’ | ‘max’ | ‘arbitrary’), space, [space], ‘{’, [space],
{rule}, [space], ‘}’;

rule ::= [guard, [space], ‘:’], non-empty multiset, ‘->’ (empty multiset | non-empty
multiset | targeted multiset | link creation | link destruction | dissolution |
division), [space], ‘.’;

multiset ::= empty multiset | non-empty multiset;

empty multiset ::= ‘{}’;

multiset atom ::= [multiplicity], [space], object;

non-empty multiset ::= multiset atom | (multiset atom, [space], ‘,’, [space], non-
empty multiset);

type reference ::= ‘(’, identifier, ‘)’;

targeted multiset atom ::= (multiset atom, [space], type reference) | (‘{’, non-
empty multiset, ‘}’, [space], type reference);

124 M. Gheorghe et al.

targeted multiset ::= targeted multiset atom | (targeted multiset atom, [space],
‘,’ [space], targeted multiset);

link creation ::= ‘-’, [space], type reference;

link destruction ::= ‘\-’, [space], type reference;

dissolution ::= ‘#’;

division atom ::= ‘[’, [space], [non-empty multiset], [space], ‘]’;

division ::= {division atom, [space], type reference [space]};

instance ::= [identifier], space, [space], ‘{’, multiset, ‘}’, [space], type reference;

instantiation ::= (instance, [space], ‘.’) | (instance, [space], ‘,’, [space], instan-
tiation);

link operand ::= instance | identifier;

link ::= (link operand, [space], ‘-’, [space], link operand) | link, [space], ‘-’, [space],
link operand, ‘.’;

letter ::= ? A-Za-z ?;

digit ::= ? 0-9 ?;

alphanumeric ::= letter | ‘ ’ | digit;

identifier ::= letter, {alphanumeric};

object ::= letter, {alphanumeric | ‘”};

space ::= ? any space character ?;

