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Abstract

One important goal in clinical applications of multi-state models is the estimation of transition

probabilities. Recently, landmark estimators were proposed to estimate these quantities, and their

superiority with respect to the competing estimators has been proved in situations in which the

Markov condition is violated. As a weakness, it provides large standard errors in estimation in

some circumstances. In this article, we propose two approaches that can be used to reduce the

variability of the proposed estimator. Simulations show that the proposed estimators may be much

more efficient than the unsmoothed estimator. A real data illustration is included.
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1. Introduction

The analysis of survival data may be described by the Markov process considering the

transition from an initial ‘alive’ state to a single ultimate state or endpoint ‘dead’. How-

ever, in most longitudinal medical studies more than one endpoint can be defined. In

breast cancer trials, for instance, several endpoints, such as disease-free survival, local

recurrence, distant metastasis or death are possible. Multi-state models are a useful way

of describing such a process in which an individual moves through a number of finite

states in continuous time. A wide range of medical situations have been modeled using

multi-state methods, for example, HIV infection and AIDS (Gentleman et al., 1994),

liver cirrhosis (Andersen et al., 2002), breast cancer (Pérez-Ocón et al., 2001; Putter et

al., 2007) and problems following heart transplantation (Meira-Machado et al., 2009). A

commonly-used model is the illness-death model, with three states representing health,

illness and death (Figure 1). Individuals start in the healthy state and subsequently move
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Figure 1: Illness-death model.

either to the diseased state or to the dead absorbing state. In the irreversible version

of this model, individuals in the diseased state will eventually move to the dead state

without any possibility of recovery. Methods developed for the progressive illness-death

model have a wide range of applications in longitudinal medical studies.

One important feature of multi-state models is their ability to obtain predictions of

the clinical prognosis of a patient at a certain point in his/her recovery or illness process.

Various aspects of the model dynamics can be captured through the transition prob-

abilities. Traditionally, the transition probabilities are estimated using Aalen-Johansen

estimator (Aalen and Johansen, 1978) which assumes the process to be Markovian. Sub-

stitute estimators for the Aalen-Johansen estimator for a general non-Markov illness-

death process without recovery were introduced by Meira-Machado et al. (2006). These

authors showed that the new estimators may behave much more efficiently than the

Aalen-Johansen when the Markov assumption does not hold. This work has been re-

visited by Allignol et al. (2014), who proposed a closely related non-Markov estimator

too. However, both of the proposed non-Markov estimators have the drawback of re-

quiring that the support of the censoring distribution contains the support of the lifetime

distribution, which is not often the case. To avoid this problem, de Uña-Álvarez and

Meira-Machado (2015) propose new estimation methods which are consistent regard-

less the Markov condition and the referred assumption about the censoring support. The

idea behind the proposed methods is to use specific subsamples or portions of data at

hand (namely, those observed to be in a given state at a pre-specified time point). Such

an approach is known in the literature as the landmark methodology (van Houwelin-

gen, 2007). Simulations reported in the paper by de Uña-Álvarez and Meira-Machado

(2015) reveal significant improvements on the behaviour of the new method. For small

sample sizes and/or large proportion of censored data the landmark approach may re-

sult in a wiggly estimator with fewer jump points. This will be more prominent is some

transition probabilities. To avoid this problem, we propose two approaches that can be

used to reduce the variability of the landmark estimator. A simple approach is based on

spline smoothing. Another valid approach is to consider a modification of the landmark

estimator based on presmoothing (Dikta, 1998). Simulation studies reported in Section

3 show that the proposed estimators may be much more efficient than the completely

nonparametric estimator. In addition, we introduce nonparametric estimators based on

the landmark approach that account for the influence of covariates in the transition prob-

abilities.
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The organization of the paper is as follows. In Section 2, we introduce the notation

and revisit the estimator proposed by de Uña-Álvarez and Meira-Machado (2015). New

smoothed estimators are also introduced. The performance of the three sets of estimators

is investigated through simulations in Section 3, while in Section 4 the methods are

compared through the analysis of medical data from a clinical trial on breast cancer

from Germany. In Section 5 we give a brief overview of the R package developed by the

authors. Main conclusions are reported in Section 6.

2. Transition probabilities

2.1. Notation and preliminaries

A multi-state model is a stochastic process (Y (t), t ∈ T ) with a finite state space in

continuous time. These models are a useful way of describing a process in which an

individual moves through a series of states. In this paper, we consider the progressive

illness-death model depicted in Figure 1 and we assume that all the subjects are in State

1 at time t = 0. Extensions to progressive processes beyond the three-state illness-death

model can also be considered following the ideas given in the paper by de Uña-Álvarez

and Meira-Machado (2015) (Section 5).

The progressive illness-death model is characterized by the three random variables

Ti j, 1 ≤ i < j ≤ 3, that represent the potential transition times from State i to State j.

According to this notation, subjects not visiting State 2 will reach State 3 at time T13.

This time will be T12 +T23 if he/she passes through State 2 before, where the variables

T12 and T23 are recorded successively, rather than simultaneously. In this model we have

two competing transitions leaving State 1. Therefore, we denote by ρ= I(T12 ≤ T13) the

indicator of visiting State 2 at some time, Z = min(T12,T13) the sojourn time in State 1,

and T = Z +ρT23 the total survival time of the process. This means that ρ= I(Z < T ).
As usual, assume that these event times are subject to univariate right-censoring

denoted by C, which we assume to be independent of (Z,T). Define Z̃ = min(Z,C)
and T̃ = min(T,C) for the censored versions of Z and T . Then, put ∆1 = I(Z ≤ C)

and ∆ = I(T ≤ C) for the respective censoring indicators. Finally, the available data is

(Z̃i, T̃i,∆1i,∆i), 1 ≤ i ≤ n, iid copies of (Z̃, T̃ ,∆1,∆).
In the illness-death model, the target is each of the five transition probabilities

pi j(s, t) = P(Y (t) = j|Y (s)= i), where 1≤ i ≤ j ≤ 3 and s≤ t are two pre-specified time

points. However, since we have two obvious relations, p12(s, t) = 1− p11(s, t)− p13(s, t)

and p22(s, t) = 1− p23(s, t), in practice one only need to estimate three of these quanti-

ties. According to our notations, the transition probabilities are written as

p11(s, t) = P(Z > t | Z > s) , p12(s, t) = P(Z ≤ t,T > t | Z > s) ,



378 Smoothed landmark estimators of the transition probabilities

p13(s, t) = P(T ≤ t | Z > s) , p22(s, t) = P(Z ≤ s,T > t | Z ≤ s,T > s) ,

p23(s, t) = P(T ≤ t | Z ≤ s,T > s) . (1)

2.2. Landmark estimators

According to the landmark approach (van Houwelingen, 2007) nonparametric estima-

tors for the transition probabilities can be introduced by considering specific subsam-

ples or portions of the data. For example, given the time point s, to estimate p1 j(s, t) for

j = 1,2,3 the analysis can be restricted to the individuals observed in State 1 at time s.

This set is just S1 =
{

i : Z̃i > s

}
. As explained in de Uña-Álvarez and Meira-Machado

(2015) as long as C is independent of Z, a subject in S1 is representative of those in-

dividuals for which Z exceeds s. On the other hand, for the subpopulation Z̃ > s, the

censoring time C is still independent of the pair (Z,T ) and, therefore, Kaplan-Meier-

based estimation will be consistent. The same applies to the analysis restricted to the

individuals observed in State 2 at time s, say S2 =
{

i : Z̃i ≤ s< T̃i

}
, which serves to

introduce landmark estimators for p2 j(s, t), j = 2,3.

The transition probability p11(s, t) is defined as the survival function at time t, among

the individuals observed in State 1 at time s, which can be estimated by the ordinary

Kaplan-Meier estimator (Kaplan and Meier, 1958) of the sojourn time distribution in

State 1, based on the pairs (Z̃i,∆1i)’s in the subsample S1. Similarly, the transition prob-

ability p13(s, t) is defined as one minus the survival function (of the total time) at time

t in the same subset S1. The transition probability p23(s, t) is defined as one minus the

survival function (of the total time) at time t in the subset S2. The landmark estima-

tors given in the paper by de Uña-Álvarez and Meira-Machado (2015) are defined in

terms of multivariate ‘Kaplan-Meier integrals’ with respect to the marginal distribution

of the first time, for the transition probability p11(s, t), and with respect to the marginal

distribution of the total time T in the remaining transitions.

To formally present the estimators, we need to introduce the expressions for the

Kaplan-Meier weights: w
(s)
i - the Kaplan-Meier weights attached to Z̃i when estimating

the marginal distribution of Z from the (Z̃i,∆1i)’s in subset S1, W
(s)

i - the Kaplan-Meier

weights attached to T̃i when estimating the marginal distribution of T from the (T̃i,∆i)’s

in subset S1, and W
[s]

i - the Kaplan-Meier weights attached to T̃i when estimating the

marginal distribution of T from the (T̃i,∆i)’s in subset S2. Let
(

Z̃
(s)
(i) ,∆

(s)
1[i]

)
, i = 1, ...,n1s,

be the
(

Z̃,∆1

)
-sample in S1 ordered with respect to Z̃, and

(
T̃
(s)
(i) ,∆

(s)
[i]

)
, i = 1, ...,n1s,

be the
(

T̃ ,∆
)

-sample in S1 ordered with respect to T̃ . Then,

p̂ldm
11 (s, t) = 1−

n1s∑

i=1

w
(s)
i I(Z̃

(s)
(i) ≤ t), (2)
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p̂ldm
13 (s, t) =

n1s∑

i=1

W
(s)
i I(T̃

(s)
(i) ≤ t), (3)

where

w
(s)
i =

∆
(s)
1[i]

n1s − i+1

i−1

∏
j=1


1−

∆
(s)
1[ j]

n1s − j+1


 , 1 ≤ i ≤ n1s;

and

W
(s)

i =
∆
(s)
[i]

n1s − i+1

i−1

∏
j=1


1−

∆
(s)
[ j]

n1s − j+1


 , 1 ≤ i ≤ n1s.

Similarly, one can introduce the corresponding estimator for p23(s, t). Let
(

T̃
[s]
(i) ,∆

[s]
[i]

)
,

i = 1, ...,n2s, is the
(

T̃ ,∆
)

-sample in S2 ordered with respect to T̃ . Then,

p̂ldm
23 (s, t) =

n2s∑

i=1

W
[s]

i I(T̃
[s]
(i) ≤ t), (4)

where

W
[s]

i =
∆
[s]
[i]

n2s − i+1

i−1

∏
j=1


1−

∆
[s]
[ j]

n2s − j+1


 , 1 ≤ i ≤ n2s.

The estimators p̂ldm
i j (s, t) have the simple form of a Kaplan-Meier estimator, based

on a certain subsample which is determined by the time point s. Thus, they can also

be expressed in the form of inverse of probability censoring weighted average (IPCW)

(Satten and Datta, 2001),

p̂ldm
11 (s, t) = 1− 1

n1s

n1s∑

i=1

I(Z̃
(s)
(i) ≤ t)∆

(s)
1[i]

Ĝ(Z̃
(s)
(i) )

,

p̂ldm
13 (s, t) =

1

n1s

n1s∑

i=1

I(T̃
(s)
(i) ≤ t)∆

(s)
[i]

K̂1(T̃
(s)
(i) )

,
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and

p̂ldm
23 (s, t) =

1

n2s

n2s∑

i=1

I(T̃
[s]
(i) ≤ t)∆

[s]
[i]

K̂2(T̃
[s]
(i) )

,

where G, K1 and K2 are the survival functions of the censoring variable C, which can be

consistently estimated by the Kaplan-Meier approach considering events as ‘censored’

observations and censored observations as ‘events’. Here, Ĝ stands for the Kaplan-Meier

estimator (of the censoring survival function) based on the (Z̃i,1−∆1i)’s in subset S1;

whereas, K̂1 and K̂2 stand for the Kaplan-Meier estimator (of the censoring survival

function) based on the (T̃i,1−∆i)’s in subset S1 and S2, respectively.

It is important to mention that p̂ldm
11 (s, t) is equivalent to the estimator given by Meira-

Machado et al. (2006) and the so-called Aalen-Johansen estimator (Aalen and Johansen,

1978) of p11(s, t), which is consistent regardless of the Markov assumption. In addition,

for s = 0, the landmark estimators are known as the occupation probabilities and they

are equivalent to those provided by Meira-Machado et al. (2006).

2.3. Smooth landmark estimators

The standard error of the landmark estimators introduced in the previous subsection

may be large when the censoring is heavy, particularly with a small sample size. This

problem may be more obvious when estimating the transition probabilities pi j(s, t) for

large values of s. In this section, we propose two smoothed versions of the nonparametric

landmark estimators given in the previous subsection. One simple approach is based on

the use of constrained penalized regression splines (Meyer, 2008, 2012; Wood, 2006).

We also introduce a semiparametric estimator which uses a presmoothed version of the

Kaplan-Meier estimator (Dikta, 1998; Jácome and Iglesias, 2008; López-de-Ullibarri

and Jácome, 2013) pertaining to the distribution of the survival times to weight the data.

2.3.1. Constrained penalized splines

Constrained penalized regression splines can be used as a simple approach which pro-

vides smooth estimation of the transition probabilities. These methods can be used under

some constraints of shape, such as monotonicity (required for the transition probabili-

ties p11(s, t), p13(s, t), p22(s, t) and p23(s, t)) and to force a fit curve to go through a

particular point. The later constraint is also important since for s = t obvious conditions

are required (p11(s,s) = p22(s,s) = 1 and p12(s,s) = p13(s,s) = p23(s,s) = 0). To obtain

spline-based landmark estimators, p̂crs
i j (s, t), we propose the use of the cubic regression

splines.

The key assumption underlying regression spline smoothing is that, for a fixed value

of s, the unknown functions pi j(s, t) can be approximated by polynomial splines, defined
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on a set of knots (join points) within the domain of A = [s,τT ] where τT is the upper

bound of the support of T . For a fixed value of s, we first obtain the (landmark) estimates

of the transition probabilities over all possible time values t with s< t, and then, define

a cubic spline basis defined by a modest sized set of knots spread evenly through the

interval A = [s,τT ]. For each transition probability pi j(s, t) the use of regression splines

provide one approach that allows flexible relationships between a covariate X (time

values in A) and the average response (i.e., the landmark estimates of the transition

probabilities) as a function of the variable X .

Cubic spline functions are piecewise continuous curves defined by polynomial func-

tions of degree 3. These functions are built joining the piecewise functions on equally

spaced join points (also known as knots) so that they are continuous in value, as well

as its first two derivatives. This is done by choosing a cubic regression spline basis for

which many alternatives can be found (see for example Durrleman and Simon (1989)

or Wood (2006)). One approach is to parameterize the spline terms of its values at the

knots (Wood, 2006). Specifically, we can write the spline function as a function of u ∈ A

f (u) =

q∑

i=1

δibi(u)

where q is the number of knots, the bi are the basis functions of at least second order for

representing smooth functions over a given interval, and the δi are the spline coefficients.

Constraints forcing the curve to pass through a specific point can be imposed. This can

be done by creating a regression spline basis, making sure there is a knot at the constraint

point. Monotonicity constraints can also be imposed. Penalization is achieved by the

conventional integrated square second derivative cubic spline penalty. In practice, we

use the gam function in the R package mgcv (Wood, 2006) to obtain the transition

probability curves as well for obtaining the predicted values of the smooth curves at

the new values. The mgcv implementation of gam, by default uses basis functions for

these splines that are designed to be optimal, given the number basis functions used. For

details about these methods, see for example Wood (2006) or Pya and Wood (2015).

2.3.2. Presmoothed estimators

The variance of the landmark estimators may also be reduced by presmoothing. Suc-

cessful applications of presmoothed estimators include estimation of the survival func-

tion (Dikta, 1998; Meira-Machado et al., 2016), nonparametric curve estimation (Cao

and Jácome, 2004), regression analysis (de Uña-Álvarez and Rodrı́guez-Campos, 2004;

Jácome and Iglesias, 2010), estimation of the bivariate distribution of censored gap times

(de Uña-Álvarez and Amorim, 2011), and the estimation of the transition probabilities

(Amorim et al., 2011; Moreira et al., 2013). All these references concluded that the

presmoothed estimators have improved variance when compared to purely nonparamet-
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ric estimators. In this paper, we show that presmoothing is also useful to improve ef-

ficiency of the landmark estimators introduced in a previous section. This ‘presmooth-

ing’ is obtained by replacing the censoring indicator variables in the expression of the

Kaplan-Meier weights by a smooth fit. This preliminary smoothing may be based on a

certain parametric family such as the logistic, or on a nonparametric estimator of the

binary regression curve. When the parametric family is the right one, parametric pres-

moothing (Dikta, 1998) leads to more efficient estimation than that associated to the un-

smoothed estimator. Nonparametric presmoothing (Cao et al., 2005) is useful when there

is a clear risk of a miss-specification of the parametric model. The validity of a given

parametric model for presmoothing can be checked graphically or formally, by apply-

ing a goodness-of-fit test. In this paper we consider estimators obtained using standard

logistic regression. The corresponding (semiparametric) presmoothed landmark estima-

tors of the transition probabilities are given by

p̂
prs
11 (s, t) = 1−

n1s∑

i=1

pw
(s)
i I(Z̃

(s)
(i) ≤ t), (5)

p̂
prs
13 (s, t) =

n1s∑

i=1

PW
(s)

i I(T̃
(s)
(i) ≤ t), (6)

and

p̂
prs
23 (s, t) =

n2s∑

i=1

PW
[s]

i I(T̃
[s]
(i) ≤ t) (7)

where the presmoothed Kaplan-Meier weights are defined as follow:

pw
(s)
i =

m0n(Z̃
(s)
(i) )

n1s − i+1

i−1

∏
j=1


1−

m0n(Z̃
(s)
(i) )

n1s − j+1


 , 1 ≤ i ≤ n1s,

PW
(s)
i =

mn(Z̃
(s)
[i] , T̃

(s)
(i) )

n1s − i+1

i−1

∏
j=1


1−

mn(Z̃
(s)
[i] , T̃

(s)
(i) )

n1s − j+1


 , 1 ≤ i ≤ n1s,

and

PW
[s]

i =
mn(Z̃

[s]
[i] , T̃

[s]
(i) )

n2s − i+1

i−1

∏
j=1


1−

mn(Z̃
[s]
[i] , T̃

[s]
(i) )

n2s − j+1


 , 1 ≤ i ≤ n2s,
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where
(

Z̃
(s)
[i] , T̃

(s)
(i) ,∆

(s)
[i]

)
, i = 1, ...,n1s, is the

(
Z̃, T̃ ,∆

)
-sample in S1 ordered with re-

spect to T̃ , and
(

Z̃
[s]
[i] , T̃

[s]
(i) ,∆

[s]
[i]

)
, i = 1, ...,n2s, is the

(
Z̃, T̃ ,∆

)
-sample in S2 ordered with

respect to T̃ . Here, m0n(u) and mn(u,v) stand for estimators of the binary regression

functions m0(u)= P(∆
(s)
1 = 1 | Z̃(s) = u) and m(u,v)= P(∆(s) = 1 | Z̃(s) = u, T̃ (s) = v), re-

spectively. In this work we assume that these functions belong to a parametric (smooth)

family of binary logistic regression curves. For example for m0n(u), we assume that

m0n(u) = m(u;β) where β is a vector of parameters which typically will be computed

by maximizing the conditional likelihood of the ∆
(s)
1 ’s given Z̃(s).

As discussed in Amorim et al. (2011) the function m(u,v) will typically be discon-

tinuous along the line v = u, that is, for those covariate values (Z̃, T̃ ) corresponding to

individuals who are censored while being in state 1 or who suffer a direct transition to

the absorbing state. In order to construct mn(u,v) we use the ideas proposed by Amorim

et al. (2011).

Note that, unlike the unsmoothed landmark estimators, the presmoothed estimators

can attach positive mass to pair of event times with censored total time. The presmoothed

estimators p
prs
i j (s, t) are step functions, with jumps at the observed (censored or un-

censored) times. In this aspect they differ from landmark estimators (pldm
i j (s, t)) whose

jumps are restricted to the uncensored times. In the limit case of no presmoothing, the

Presmoothed Landmark estimator reduces to the landmark estimator.

In practice, estimation of the variance is needed for inference purposes. To this end,

resampling techniques such as the bootstrap can be used. These methods can be used to

construct confidence limits based on the bootstrap (e.g., using the basic or the percentile

method) and thus to confirm if the proposed methods lead to a reduction in the variability

of the estimators proposed in this section. These resampling techniques can be easily

implemented using the R package described in Section 5.

Simulations reported in Section 3 reveal that the proposed estimators are virtually

unbiased and that they may achieve good efficiency levels when compared to the un-

smoothed landmark estimators.

2.4. Including covariates

In this section, we will explain how to introduce covariate information in the unsmoothed

landmark estimators, p̂ldm
i j (s, t). In particular, we are interested in estimating the condi-

tional transition probabilities pi j(s, t|X = x) that can be computed for any times s and t,

s < t, but conditional to a given continuous covariate X that could either be a baseline

covariate or a current covariate that is observed for an individual before the individual

makes a particular transition of interest. Discrete covariates can be also included by split-

ting the sample for each level of the covariate and repeating the described procedures

for each subsample.
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To account for the covariate effect, one standard method is to consider estimators

based on a Cox’s model (Cox, 1972), with the corresponding baseline hazard function

estimated by the Breslow’s method (Breslow, 1972). Flexible effects of the covariates

on the transition probabilities as those depicted in Figure 5 can be obtained using an al-

ternative approach which introduces local smoothing by means of kernel weights based

on local constant (Nadaraya-Watson) regression (Nadaraya 1965; Watson 1964).

Nonparametric estimators of the conditional transition probabilities have been re-

cently proposed by Meira-Machado et al. (2015). These authors propose to estimate

pi j(s, t |X = x) via estimation of the conditional expectations such as E[ψ(Z,T ) |X = x],
where ψ is a general function defined over Z and T . Following the ideas described in

Meira-Machado et al. (2015), the conditional transition probabilities are defined as fol-

lows:

p11(s, t | X = x) =
1−P(Z ≤ t | X = x)

1−P(Z ≤ s | X = x)
,

p13(s, t | X = x) =
P(Z > s,T ≤ t | X = x)

1−P(Z ≤ s | X = x)

p23(s, t | X = x) =
P(Z ≤ s,s< T ≤ t | X = x)

P(Z ≤ s | X = x)−P(T ≤ s | X = x)
.

(8)

The conditional transition probability p11(s, t | X = x), the denominator of p13(s, t |
X = x) and the denominator of p23(s, t | X = x) involve the estimation of the conditional

distribution/survival function of the response, given the covariate under random right

censoring. This topic was introduced by Beran (1981) and was further studied by several

authors (see e.g. papers by Akritas, 1994; van Keilegom et al., 2001; Akritas and van

Keilegom, 2003). Their proposals can be used to estimate for instances the conditional

distribution function of Z | X = x, that is, FX=x(u) = P(Z ≤ u | X = x) which we denote

by F̂X=x or simply by F̂x. This can be done using the estimator introduced by Beran

(1981),

F̂X=x(u) = 1− ∏
Z̃i≤u,∆1i=1

[
1− NW (x,Xi,h)∑n

j=1 I(Z̃ j ≥ Z̃i)NW(x,X j,h)

]
, (9)

where NW (x,Xi,h) are the Nadaraya-Watson (NW) weights (Nadaraya, 1965; Watson,

1964)

NW (x,Xi,h) =
D((x−Xi)/h)∑n
j=1 D((x−X j)/h)

where D is a known probability density function (the kernel function) and h is a band-

width.
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The remaining quantities in the computation of the conditional transition probabil-

ities involve conditional expectations of particular transformations of the pair (Z,T)
given X , E[ψ(Z,T ) | X = x] which can not be estimated so simply.

In the absence of censoring, to estimate the conditional expectations E[ψ(Z,T ) |
X = x] we may use kernel smoothing techniques by calculating a local average of the

ψ(Z,T ), that is, as follows:

Ê[ψ(Z,T ) | X = x] =
n∑

i=1

NW (x,Xi,h)ψ(Z̃i, T̃i),

where NW (x,Xi,h) are the Nadaraya-Watson (NW) weights.

To handle right censoring Meira-Machado et al. (2015) propose the use of inverse

of probability censoring weighting. Assuming that ∀x, P(Z̃ > s, T̃ ≤ t | X = x)> 0 and

P(Z̃ ≤ s,s< T̃ ≤ t | X = x)> 0, we have the following:

E[I(Z > s,T ≤ t) | X = x] = E[I(Z̃ > s,s< T̃ ≤ t)∆/KX(T̃ ) | X = x],

E[I(Z ≤ s,T > s) | X = x] = E[I(Z̃ ≤ s, T̃ ≤ t)∆/KX(T̃ ) | X = x]

where KX denotes the conditional survival function of the censoring variable C given the

covariate X , that is KX=x(u) = P(C > u | X = x). Let K̂X=x denote Beran’s estimator of

KX . Based on this, the following nonparametric estimators of the conditional transition

probabilities can be introduced:

p̂11(s, t | X = x) =
1− F̂x(t)

1− F̂x(s)
, (10)

p̂13(s, t | X = x) =
1

1− F̂x(s)

n∑

i=1

NW (x,Xi,h1)I(Z̃i > s, T̃i ≤ t)∆i

K̂Xi
(T̃i)

, (11)

and

p̂23(s, t | X = x) =

∑n
i=1 NW (x,Xi,h1)I(Z̃i ≤ s,s< T̃i ≤ t)∆i/K̂Xi

(T̃i)

F̂x(s)− Ĥx(s)
, (12)

where Ĥx denote Beran’s estimator of the conditional distribution of T | X = x.

Similar ideas as those explained above can be used to introduce nonparametric es-

timators for the conditional transition probabilities based on landmark. For example,

given the time point s, the estimation of the conditional transition probabilities p11(s, t |
X = x) and p13(s, t | X = x) are restricted to the individuals in State 1 at time s. Thus,

the landmark estimators for these quantities are given as follows:
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p̃11(s, t | X = x) = 1−
n1s∑

i=1

NW (x,X
(s)
(i) ,h1)

I(Z̃
(s)
(i) ≤ t)∆

(s)
1[i]

ĜXi
(Z̃

(s)
(i) )

, (13)

and

p̃13(s, t | X = x) =

n1s∑

i=1

NW (x,X
(s)
(i) ,h1)

I(T̃
(s)
(i) ≤ t)∆

(s)
[i]

K̂1,Xi
(T̃

(s)
(i) )

, (14)

where ĜX and K̂1,X are Beran’s estimators for the conditional survival function of the

censoring variable of the sojourn time in State 1 (respectively, total time) given X in

subset S1.

Similarly, the built of the landmark estimator of the conditional transition probability

p23(s, t | X = x) is restricted to the individuals in State 2 at time s:

p̃23(s, t | X = x) =

n2s∑

i=1

NW (x,X
[s]
(i),h2)

I(T̃
[s]
(i) ≤ t)∆

[s]
[i]

K̂2,Xi
(T̃

[s]
(i) )

, (15)

where K̂2,X is Beran’s estimator of the conditional survival function of the censoring

variable of the total time given X in subset S2.

Simulation results (not reported here) reveal that the landmark based estimators

p̃12(s, t |X = x) and p̃13(s, t |X = x) perform favourably when compared to p̂12(s, t | X =
x) and p̂13(s, t | X = x), respectively. In contrast, the landmark estimator p̃23(s, t | X = x)

have a worst performance when compared to p̂23(s, t | X = x) particularly when com-

puted at time points s for which few individuals are observed in State 2.

3. Simulation study

In this section, we report the results of a simulation study carried out to investigate the

empirical behaviour of the estimators, introduced in Section 2, for finite sample sizes.

More specifically, the landmark unsmoothed estimators, p̃ldm
i j (s, t), with the smoothed

estimators, p̃crs
i j (s, t), based on cubic regression splines and the semiparametric pres-

moothed estimators, p̃
prs
i j (s, t).

To simulate the data in the illness-death model, we use the same scenario as that

described in Amorim et al. (2011) and de Uña-Álvarez and Meira-Machado (2015). We

separately consider the subjects passing through State 2 at some time, and those who

directly go to the absorbing State 3. For the first subgroup of individuals (ρ = 1), the

successive gap times (Z,T −Z) are simulated according to the bivariate exponential

distribution
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F12(u,v) = F1(u)F2(v) [1+γ {1−F1(u)}{1−F2(v)}]

with exponential marginal distribution functions with rate parameter 1. The single pa-

rameter γ controls the amount of dependency between the gap times. The parameter γ

was set to 0 for simulating independent gap times, and also to 1, corresponding to 0.25

correlation between Z and T −Z. The simulation procedure is as follows:

Step 1. Draw ρ∼ Ber(p) where p is the proportion of subjects passing through State 2.

Step 2. If ρ= 1 then:

(2.1) V1 ∼U (0,1) ,V2 ∼U (0,1) are independently generated;

(2.2) U1 =V1,A = γ (2U1 −1)−1,B = (1−γ (2U1 −1))2 +4γV2 (2U1 −1)

(2.3) U2 = 2V2/
(√

B−A
)

(2.4) Z = ln(1/(1−U1)) ,T = ln (1/(1−U2))+Z

If ρ= 0 then Z = ln(1/(1−U(0,1))).

Situations with p = 1 corresponds to the three-state progressive model, in which a

direct transition to State 3 is not allowed. In our simulation we consider p = 0.7. An

independent uniform censoring time C is generated, according to models U [0,4] and

U [0,3]. The first model results in 24% of censoring on the first gap time Z, and in 47%

of censoring on the second gap time T −Z, for those individuals with ρ= 1. The second

model increases these censoring levels to 32% and about 57%, respectively.

For each simulated setting we derived the analytic expression of pi j(s, t) for six dif-

ferent points (s, t) (s < t), corresponding to combinations of the percentiles 20%, 40%,

60% and 80% of the marginal distributions of the gap times. Sample sizes of 100, 250

and 500 were considered. In each simulation, 1000 samples were generated and for each

of the three estimators we obtain the mean bias, the standard deviation (SD), and the

mean square error (MSE) based on the 1000 Monte Carlo replicates. Table 1 reports the

results for the transition probabilities p12(s, t) and p23(s, t) for the case with dependent

gap times; the results for independent gap times (not shown) are similar.

As would be expected, results reported in Table 1 reveal that the performance of all

methods is poorer at the right tail (i.e., larger values of s and t) where the censoring

effects are stronger. At these points the SD is in most cases higher. The SD decreases

with an increase in the sample size and with a decrease of the censoring percentage. All

methods proposed in this article obtain in all settings a small bias.

Results reported in Table 1 reveal that the SD clearly dominates the performance

of the proposed estimators in most cases. This is particularly clear when comparing the

semiparametric estimators with the unsmoothed landmark estimators. The semiparamet-
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Table 1: Bias and standard deviation (SD) for the three estimators of pi j(s, t). The MSE of p̂
prs
i j (s, t) and

p̂crs
i j (s, t) relative to p̂ldm

i j (s, t) are also given. Scenario of correlated exponential gap times with three sample

sizes and two censoring levels.

p̂ldm
12 (s, t) p̂

prs
12 (s, t) p̂crs

12 (s, t)

bias SD bias SD bias SD MSE ldm/MSE prs MSE ldm/MSEcrs

(s, t) = (.2231,.5108)

n = 100 C ∼U [0,4] −0.0017 0.0408 −0.0013 0.0368 0.0046 0.0377 1.2086 1.1532

C ∼U [0,3] −0.0017 0.0415 −0.0011 0.0375 0.0026 0.0385 1.2279 1.1586

n = 250 C ∼U [0,4] 0.0006 0.0263 0.0015 0.0235 0.0040 0.0249 1.2468 1.0882

C ∼U [0,3] 0.0006 0.0268 0.0017 0.0240 0.0022 0.0250 1.2388 1.1410

n = 500 C ∼U [0,4] 0.0017 0.0188 0.0024 0.0170 0.0039 0.0170 1.2075 1.1718

C ∼U [0,3] 0.0016 0.0189 0.0027 0.0169 0.0022 0.0171 1.2325 1.2100

(s, t) = (.2231,.9163)

n = 100 C ∼U [0,4] −0.0028 0.0518 −0.0025 0.0473 0.0017 0.0497 1.2034 1.0881

C ∼U [0,3] −0.0030 0.0530 −0.0035 0.0487 0.0003 0.0525 1.1845 1.0221

n = 250 C ∼U [0,4] <0.0001 0.0338 0.0027 0.0311 0.0006 0.0320 1.1855 1.1153

C ∼U [0,3] −0.0001 0.0352 −0.0007 0.0320 0.0007 0.0328 1.2078 1.1512

n = 500 C ∼U [0,4] 0.0010 0.0235 0.0008 0.0215 0.0002 0.0221 1.1970 1.1326

C ∼U [0,3] 0.0007 0.0243 −0.0003 0.0219 0.0017 0.0239 1.2333 1.0295

(s, t) = (.5108,1.6094)

n = 100 C ∼U [0,4] 0.0051 0.0704 0.0025 0.0642 0.0024 0.0691 1.2084 1.0422

C ∼U [0,3] 0.0047 0.0780 −0.0004 0.0695 0.0029 0.0774 1.2647 1.0175

n = 250 C ∼U [0,4] 0.0022 0.0438 −0.0007 0.0397 0.0011 0.0444 1.2176 0.9763

C ∼U [0,3] 0.0019 0.0489 −0.0028 0.0435 0.0007 0.0487 1.2607 1.0097

n = 500 C ∼U [0,4] 0.0005 0.0301 −0.0015 0.0273 0.0015 0.0301 1.2112 0.9979

C ∼U [0,3] 0.0008 0.0337 −0.0036 0.0296 0.0015 0.0333 1.2745 1.0227

(s, t) = (.9163,1.6094)

n = 100 C ∼U [0,4] 0.0055 0.0848 0.0022 0.0775 0.0007 0.0883 1.2015 0.9261

C ∼U [0,3] 0.0053 0.0956 0.0008 0.0873 −0.0070 0.0978 1.2019 0.9537

n = 250 C ∼U [0,4] 0.0029 0.0547 −0.0005 0.0492 0.0027 0.0543 1.2362 1.0152

C ∼U [0,3] 0.0026 0.0610 −0.0020 0.0539 0.0021 0.0589 1.2820 1.0733

n = 500 C ∼U [0,4] <0.0001 0.0383 −0.0032 0.0346 0.0022 0.0367 1.2123 1.0862

C ∼U [0,3] 0.0008 0.0417 −0.0040 0.0371 0.0014 0.0408 1.2491 1.0440

p̂ldm
23 (s, t) p̂

prs
23 (s, t) p̂crs

23 (s, t)

(s, t) = (.2231,.5108)

n = 100 C ∼U [0,4] 0.0016 0.1687 −0.0028 0.1693 0.0042 0.1475 0.9937 1.3054

C ∼U [0,3] 0.0024 0.1722 −0.0006 0.1706 0.0040 0.1535 1.0203 1.2570

n = 250 C ∼U [0,4] −0.0068 0.0967 −0.0087 0.0946 0.0028 0.0965 1.0422 1.0088

C ∼U [0,3] −0.0068 0.0971 −0.0063 0.0957 0.0020 0.0974 1.0294 0.9983

n = 500 C ∼U [0,4] −0.0017 0.0692 −0.0014 0.0677 0.0033 0.0661 1.0463 1.0932

C ∼U [0,3] −0.0015 0.0704 <0.0001 0.0685 0.0025 0.0658 1.0559 1.1409

(s, t) = (.2231,.9163)

n = 100 C ∼U [0,4] 0.0015 0.1615 −0.0003 0.1566 <0.0001 0.1456 1.0633 1.2259

C ∼U [0,3] 0.0009 0.1671 −0.0005 0.1579 −0.0034 0.1550 1.1205 1.1612

n = 250 C ∼U [0,4] 0.0021 0.0939 0.0018 0.0921 0.0003 0.0910 1.0405 1.0653

C ∼U [0,3] 0.0024 0.0972 0.0008 0.0943 0.0023 0.0962 1.0632 1.0209

n = 500 C ∼U [0,4] 0.0031 0.0657 0.0021 0.0647 <0.0001 0.0626 1.0323 1.1039

C ∼U [0,3] 0.0033 0.0691 0.0021 0.0666 0.0001 0.0651 1.0794 1.1282

(s, t) = (.5108,1.6094)

n = 100 C ∼U [0,4] −0.0006 0.1247 −0.0053 0.1169 0.0019 0.1229 1.1352 1.0293

C ∼U [0,3] −0.0058 0.1358 −0.0137 0.1268 0.0020 0.1329 1.1344 1.0456

n = 250 C ∼U [0,4] 0.0005 0.0768 −0.0013 0.0731 0.0012 0.0738 1.1035 1.0828

C ∼U [0,3] 0.0020 0.0835 −0.0068 0.0779 0.0012 0.0807 1.1388 1.0702

n = 500 C ∼U [0,4] 0.0019 0.0540 0.0006 0.0517 0.0007 0.0522 1.0902 1.0711

C ∼U [0,3] 0.0006 0.0604 −0.0038 0.0563 0.0001 0.0573 1.1445 1.1110

(s, t) = (.9163,1.6094)

n = 100 C ∼U [0,4] −0.0085 0.1391 −0.0111 0.1335 0.0023 0.1388 1.0816 1.0078

C ∼U [0,3] −0.0086 0.1525 −0.0122 0.1422 0.0070 0.1460 1.1448 1.0920

n = 250 C ∼U [0,4] −0.0031 0.0870 −0.0040 0.0828 0.0024 0.0836 1.1041 1.0841

C ∼U [0,3] −0.0042 0.0979 −0.0057 0.0904 0.0019 0.0922 1.1690 1.1290

n = 500 C ∼U [0,4] −0.0009 0.0593 −0.0004 0.0564 −0.0006 0.0590 1.1056 1.0121

C ∼U [0,3] −0.0022 0.0665 −0.0034 0.0616 −0.0012 0.0647 1.1635 1.0572
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Figure 2: Boxplots of the M = 1000 estimates of the transition probabilities of the three estimators, with

three different sample sizes and correlated exponential gap times. Censoring times were generated from

an uniform distribution on [0,3]. Horizontal solid red line corresponds to the true value of the transition

probability.
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Figure 3: Boxplots of the M = 1000 estimates of the transition probabilities of the three estimators, with

three different sample sizes and uncorrelated exponential gap times. Censoring times were generated from

an uniform distribution on [0,3]. Horizontal solid red line corresponds to the true value of the transition

probability.
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ric estimator achieve better results with less SD and less MSE. This can be seen by the

relative efficiency between the semiparametric estimator and the unsmoothed landmark

estimator that was measured by the ratio between their corresponding MSEs. The semi-

parametric estimators reported a smaller MSE in most cases. It can also be observed that

the relative advantages of the semiparametric estimator is greater for higher censoring

percentages. This advantage is also apparently greater when estimating the transition

probability p12(s, t).

For completeness purposes we show in Figures 2 and 3 the boxplots of the estimates

of the transition probabilities based on the 1000 Monte Carlo replicates for the three

estimators, with different sample sizes, for correlated exponential gap times (Figure 2)

and independent gap times (Figure 3). Plots shown in these figures were obtained for the

higher censoring levels (C ∼U [0,3]). In addition to the transition probabilities reported

in Table 1 this figure also show the performance of the transition probability p11(s, t)
for all methods. The boxplots shown in Figures 2 and 3 reveal some results which are

in agree with our findings reported in Table 1. From these plots it can be seen that all

methods have small bias and confirm the less variability of the semiparametric estima-

tors.

Despite of offering a small bias, the bias associated to presmoothed estimators is in

general larger than that of the unsmoothed landmark estimator. This bias component

may be larger when there is some miss-specification in the chosen parametric model.

Importantly, the validity of a given model for presmoothing can be checked graphically

or formally, by applying a goodness-of-fit tests (e.g. Hosmer and Lemeshow (1989)).

This implies that the risk of introducing a large bias through a miss-specified model can

be controlled in practice.

4. German breast cancer study

Breast cancer is one of the most commonly diagnosed cancers in women. Prognosis

of this carcinoma is related to a large variety of clinical and pathological factors such

as age, tumor size, histological grade, lymph node involvement, and hormone receptor

status. Another significant prognostic factor for these patients in overall survival is the

presence of a recurrence. Traditionally, the effect of these time-dependent covariates is

studied using extensions of the Cox proportional hazards model (Cox, 1972; Genser and

Wernecke, 2005). The analysis of such studies can also be successfully performed using

a multi-state model (Pérez-Ocón et al., 2001; Putter et al., 2007; Meira-Machado et al.,

2009).

Several studies have been developed over the last decades regarding breast cancer.

Between 1983 and 1989, four clinical trials were conducted by the German Breast Can-

cer Study Group (GBSG) including 2746 patients with primary node positive breast can-

cer. Details about these studies can be found in the paper by Schumacher et al. (1994).



392 Smoothed landmark estimators of the transition probabilities

Among other papers, these data were used by Schmoor et al. (2000) and Meier-Hirmer

and Schumacher (2013). In both cases the main goal was to evaluate the effect on future

prognosis of an isolated locoregional recurrence (ILRR). While Schmoor et al. (2000)

used a Cox proportional hazards model, Meier-Hirmer and Schumacher (2013) used an

illness-death model to investigate the influence of the time-dependent covariate ‘recur-

rence’. Both studies conclude, among other things, that the increased risk after ILRR

decreased significantly with increasing time since ILRR. In this paper we use data from

the second trial in which a total of 720 women with primary node positive breast cancer

is recruited in the period between July 1984 and December 1989. The data is available

at the University of Massachusetts website for statistical software information as well

as part of the R packages mfp, TH.data and flexsurv. The data which was also used by

Sauerbrei and Royston (1999) considers 686 patients who had complete data for the two

event times (time to recurrence and time to death). In this study, patients were followed

from the date of breast cancer diagnosis until censoring or dying from breast cancer.

From the total of 686 women, 299 developed a recurrence and 171 died. Besides the

two event times and the corresponding indicator statuses a vector of covariates includ-

ing age at acceptance tumor size, number of positive lymph nodes, progesterone and

estrogen receptor status, menopausal status and tumor grade are also available. The co-

variate ‘recurrence’ is the only time-dependent covariate, while the other covariates in-

cluded are fixed. This covariate can be considered as an intermediate transient state and

modeled using an illness-death model with states ‘Alive and disease-free’, ‘Alive with

Recurrence’ and ‘Dead’. In this section, we present plots for the three different methods

to estimate the transition probabilities described in Section 2. Figure 4 reports estimated

transition probabilities for p11(s, t), p12(s, t) and p23(s, t), for fixed values s = 365 and

s = 730 (days), along time t (corresponding to 1 and 2 years after surgery). Plots shown

in these figure also show the pointwise bootstrap confidence bands of the unsmoothed

method. Estimators for all three methods shown in these plots report roughly the same

estimates. Minor differences are appreciated when comparing the nonparametric un-

smoothed method with their counterparts (the semiparametric presmoothed approach

and the method based on cubic regression splines) which is in agree with our findings in

the simulation study.

Plots shown at the top of Figure 4 provide the probabilities of being alive and without

recurrence for the individuals who are disease free 1 year (Figure 4, top left) and 2

years (Figure 4, top right) after surgery (i.e. p11(s, t)). These are monotonous decreasing

curves. The curve do not decrease to zero due to a (disease free) censoring rate of about

56.4% (387 woman remain alive and disease free until the end of study). In addition,

one can observe that these probabilities increase with an increase of the value of s.

Similar conclusions can be obtained from the plots shown at the bottom of Figure 4, in

which the transition probability p23(s, t) is estimated through the three methods. These

plots report one minus the survival fraction along time, among the individuals in the

recurrence state 1 year (Figure 4, bottom left) and 2 years (Figure 4, bottom right) after

surgery. It can be observed from these plots that the survivorship is smaller for the first
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Figure 4: Estimates of the transition probabilities p11(s, t), p12(s, t) and p23(s, t) for s = 365 (left) and

s = 730 (right) using the three methods (landmark, presmoothing and cubic regression splines). Pointwise

confidence intervals of the landmark method is also shown. Breast cancer data.
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Figure 5: Landmark estimates of the conditional transition probabilities p12(s= 365, t = 1500 | size) (left)

and p12(365, t | size) (right). Breast cancer data.

group for lower values of t, suggesting a negative impact of an earlier recurrence time. In

contrast to these plots, curves for the transition probability p12(s, t) are not necessarily

monotonous. Plots shown for this transition probability allows for an inspection along

time of the probability of being alive with recurrence for the individuals who are disease

free at 1 and 2 years after surgery. Since the recurrence state is transient, in general,

this curve is first increasing and then decreasing. However, in this case, for s = 365, the

curve has a rapid increase at lower times and afterwards remain roughly constant. The

increase is more gradual for s = 730. The reason why the curve does not decreases can

be explained by the percentage of about 46% of woman that remain in the recurrence

state at the end of study. Departures between estimated curves can be more appreciated

for larger time values where the censoring effects are stronger.

Figure 5 depict the landmark estimates of the conditional transition probability on

the recurrence transition. Plot shown at the left depicts the estimates of the transition

probability p12(size;365,1500) as functions of the covariate tumor size together with a

95% pointwise confidence bands based on simple bootstrap which resamples each datum

with probability 1/n. Plot at the right depicts the estimates of the transition probability

p12(365, t) conditional on the covariate tumor size. The effects of tumor size according

to three groups depicted in these plots, which are purely nonparametric, indicate the real

influence of this covariate in the recurrence transition. Both plots are in agreement and

indicate that patients with higher tumor sizes have a larger probability of recurrence.

To compute the conditional transition probabilities shown in this figure we have used a

common bandwidth selector and Gaussian kernels. To this end we have used the dpik

function which is available from the R KernSmooth package.
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5. Software development

To provide the biomedical researchers with an easy-to-use tool for obtaining estimates

of the transition probabilities we develop an R package called tprob. This package can

be used to implement all nonparametric and semiparametric estimators for the transition

probabilities discussed in Section 2. In addition, estimators are also implemented that

account for the influence of covariates. Bootstrap confidence bands are provided for

all methods. This package is composed by several functions that allow users to obtain

estimates and plots of the transition probabilities. Details on the usage of these functions

can be obtained with the corresponding help pages. The CPU time needed for running

some of the proposed methodologies varies according to whether bootstrap confidence

bands are requested or not, the sample size, and the type of processor in the computer. To

minimize these problems the most computationally demanding parts of the code were

developed and implemented in the C programming language. This software is available

at the author web site http://w3.math.uminho.pt/˜lmachado/R/tprob.

6. Discussion

There have been several recent contributions for the estimation of the transition proba-

bilities in the context of non-Markov multi-state models. Meira-Machado et al. (2006)

introduced a substitute for the Aalen-Johansen estimator in the case of a non-Markov

illness-death model. They showed that the new estimator may behave much more effi-

ciently than the Aalen-Johansen when the Markov assumption does not hold. However,

the proposal of Meira-Machado et al. (2006) has the drawback of requiring that the sup-

port of the censoring distribution contains the support of the lifetime distribution, other-

wise they only report valid estimators for truncated transition probabilities. Recently, the

problem of estimating the transition probabilities in a non-Markov illness-death model

has been reviewed, and new estimators have been proposed which are consistent regard-

less the Markov condition and the referred assumption on the censoring support. These

estimators are built by considering specific subsets of individuals (namely, those ob-

served to be in a given state at a prespecified time point s for which the ordinary Kaplan-

Meier survival function leads to a consistent estimator of the target. As a weakness, it

provides large standard errors for large values of s and higher censoring percentages.

In this article we propose two approaches that can be used to reduce the variability of

the proposed estimator. A simple approach is based on spline smoothing (cubic regres-

sion splines). Another valid approach is to consider a semiparametric estimator based on

a presmoothed version of the Kaplan-Meier estimator. The provided simulations suggest

that both approaches are preferable to the original nonparametric estimator, since they

often have less variance while providing more reliable curves. Between the two new

methods, the one based on presmoothing is recommended.
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