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Summary. Smoothing is often used in Digital Imagery to reduce noise within an image.
In this paper we present a Membrane Computing algorithm for smoothing 2D images in
the framework of tissue-like P systems. The algorithm has been implemented by using a
novel device architecture called CUDATM, (Compute Unified Device Architecture). We
present some examples, compare the obtained time and present some research lines for
the future.

1 Introduction

The study of digital images [22] has seen a large progress over the last decades.
The aim of dealing with an image in its digital form is improving its quality, in
some sense, or to simply achieving some artistic effect. The physical properties
of camera technology are inherently linked to different sources of noise, so the
application of smoothing algorithm are necessary for an appropriate use of the
images. Smoothing is often used to reduce such noise within an image.

In this paper we use Membrane Computing4 techniques for smoothing 2D im-
ages in the framework of tissue-like P systems. The algorithm has been imple-
mented by using a novel device architecture called CUDATM, (Compute Unified
Device Architecture) [16, 23]. CUDATM is a general purpose parallel computing
architecture that allows the parallel NVIDIA Graphics Processors Units (GPUs)
4 We refer to [19] for basic information in this area, to [20] for a comprehensive presen-

tation and the web site [24] for the up-to-date information.
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to solve many complex computational problems5 in a more efficient way than on
a CPU . This parallel architecture has been previously used in Membrane Com-
puting [1, 2, 3] but, to the best of our knowledge, this is the first time that it is
used for implementing smoothing algorithms with tissue-like P systems.

Dealing with Digital Imagery has several features which make it suitable for
techniques inspired by nature. One of them is that it can be parallelized and
locally solved. Regardless how large the picture is, the segmentation process can be
performed in parallel in different local areas. Another interesting feature is that the
basic necessary information can be easily encoded by bio-inspired representations.

In the literature, one can find several attempts for bridging problems from
Digital Imagery with Natural Computing as the works by K.G. Subramanian et al.
[4, 5] or the work by Chao and Nakayama where Natural Computing and Algebraic
Topology are linked by using Neural Networks [6] (extended Kohonen mapping).
Recently, new approaches have been presented in the framework of Membrane
Computing [7, 11]. In [8, 9, 10], Christinal et al. started a new bio-inspired research
line where the power and efficiency of tissue-like P systems [12, 13] were applied
to topological processes for 2D and 3D digital images.

The paper is organised as follows: Firstly, we recall some basics of tissue-like
P systems and the foundations of Digital Imagery. Next we present our P systems
family and an easy example showing different results by using different thresholds.
In Section 3 we present the implementation in CUDATM of the algorithm and
show an illustrative example, including a comparative of the time obtained in the
different variants. The paper finishes with some final remarks and hints for future
work.

2 Preliminaries

In this section we provide some basics on the used P system model, tissue-like P
systems, and on the foundation of Digital Imagery.

Tissue-like P systems [14, 15] have two biological inspirations: intercellular com-
munication and cooperation between neurons. The common mathematical model
of these two mechanisms is a network of processors dealing with symbols and
communicating these symbols along channels specified in advance.

Formally, a tissue-like P system with input of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ ) is the input alphabet;
3. E ⊆ Γ is the alphabet of objects in the environment;
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5 For a good overview, the reader can refer to [17, 18].
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5. R is a finite set of communication rules of the following form:

(i, u/v, j)

for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cells

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use 0 to
refer to the label of the environment, iΠ denotes the input region and oΠ denotes
the output region (which can be the region inside a cell or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the P system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e., in each step we apply a maximal set of rules.

A configuration is an instantaneous description of the P system Π. Given a
configuration, we can perform a computation step and obtain a new configuration
by applying the rules in a parallel manner as it is shown above. A sequence of
computation steps is called a computation. A configuration is halting when no
rules can be applied to it. Then, a computation halts when the P system reaches
a halting configuration.

Next we recall some basics on Digital Imagery6.
A point set is simply a topological space consisting of a collection of objects

called points and a topology which provides for such notions as nearness of two
points, the connectivity of a subset of the point set, the neighborhood of a point,
boundary points, and curves and arcs. For a point set X in Z, a neighborhood
function from X in Z, is a function N : X → 2Z . For each point x ∈ X, N(x) ⊆ Z.
The set N(x) is called a neighborhood for x.

There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore
neighborhood. The first one N : X → 2Z

2
is defined by N(x) = {y : y =

(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.
While the Moore neighborhood M : X → 2Z

2
is defined by M(x) = {y : y =

(x1 ± j, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann
6 We refer the interested reader to [21] for a detailed introduction.



320 F. Peña-Cantillana et al.

and Moore neighborhood are also called the four neighborhood (4-adjacency) and
eight neighborhood (8-adjacency), respectively.

An Z-valued image on X is any element of ZX . Given an Z-valued image
I ∈ ZX , i.e. I : X → Z, then Z is called the set of possible range values of I
and X the spatial domain of I. The graph of an image is also referred to as the
data structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
pixel. The first coordinate x of a pixel is called the pixel location or image point,
and the second coordinate I(x) is called the pixel value of I at location x.

For example, X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N or N3, etc. So, given an image I ∈ ZZ

2
, a pixel of

I is the form ((i, j), I(x)), which be denoted by I(x)ij . We call the set of colors
or alphabet of colors of I, CI ⊆ Z, to the image set of the function I with domain
X and the image point of each pixel is called associated color. We can consider
an order in this set. Usually, we consider in digital image a predefined alphabet of
colors C ⊆ Z. We define h = |C| as the size (number of colors) of C. In this paper,
we work with images in grey scale, then C = {0, . . . , 255}, where 0 codify the black
color and 255 the white color.

A region could be defined by a subset of the domain of I whose points are all
mapped to the same (or similar) pixel value by I. So, we can consider the region
Ri as the set {x ∈ X : I(x) = i} but we prefer to consider a region r as a maximal
connected subset of a set like Ri. We say two regions r1, r2 are adjacent when at
less a pair of pixel x1 ∈ r1 and x2 ∈ r2 are adjacent. We say x1 and x2 are border
pixels. If I(x1) < I(x2) we say x1 is an edge pixel. The set of connected edge pixels
with the same pixel value is called a boundary between two regions.

The purpose of image enhancement is to improve the visual appearance of
an image, or to transform an image into a form that is better suited for human
interpretation or machine analysis. There exists a multitude of image enhance-
ment techniques, as are averaging of multiple images, local averaging, Gaussian
smoothing, max-min sharpening transform, etc.

One of the form to enhancement an image could be eliminate non important
regions of an image, i.e., remove regions which do not provide relevant information.
This technique is known as smoothing.

2.1 A Family of Tissue-like P Systems

Given a digital image with n2 pixels and n ∈ N we define a tissue-like P system
whose input is given by the pixels of the image encoded by the objects aij , where
1 ≤ i, j ≤ n and a ∈ C. Next, we shall give some outlines how to prove that our
smoothing problem can be solved in a logarithmic number of steps using a family
of tissue-like P systems Π.

We define a family of tissue-like P systems to do an smoothing of a 2D image.
For each image of size n2 with n ∈ N, we consider the tissue-like P system with
input of degree 1:
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Π(r, n) = (Γ, Σ, E , w1,R, iΠ , oΠ),

where

• Γ = Σ ∪ E ,
• Σ = {aij : a ∈ C, 1 ≤ i, j ≤ n},
• E = {aij : 1 ≤ i, j ≤ n, a ∈ C},
• w1 = ∅,
• R is the following set of communication rules:

– (1, aijbkl/aijakl, 0),
· for 1 ≤ i, j ≤ n,
· a, b ∈ C, a < b and d(a, b) ≤ r,
These rules are used to simplify the image. If we have two colors whose
distance in the alphabet of colors of the image is small, then we change
the high color by the small one. Of this manner, we change the regions
structure.

• iΠ = oΠ = 1.

Each P system works as follows: We take pairs of adjacent pixels and change
the color of the pixel with lower color. We do it in a parallel way with all the
possible pairs of pixels. In the next step, we will repeat the previous process, but
the colors of the pixels have could to be changed. So, we need, in the worst case,
a linear number of steps to do all the possible changes to obtain an smoothing of
our image.

Fig. 1. An example

2.2 An Easy Example

In this section, we show the results obtained by the application of our method.
Our input image (of size 30×30) can be seen in Figure 1. In this case, 0 represents
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to white color and 30 represents to black color, i.e., the inverse order for C is
considered.

Fig. 2. Theoretical Smoothness of the Figure 1.

Working with different thresholds provides different results as we can observe
in Figure 2. If we take r = 5, then we get the first image, and when the threshold
is r = 10 the second image is obtained. By using this method, it is clear that
the structure of regions is (more or less) conserved with a threshold of r = 5 and
we need to a high number to obtain a more simplified image. Moreover, we can
observe in both cases the color of regions is similar to the regions of input image
in this method. Therefore, we can use this technique for smoothing images, and
clarify the structure of a region without eliminate important information.

Bearing in mind the size of the input data is O(n2), |C| = h and r is the
threshold used with both membrane solutions. The amount of necessary resources
for defining the systems of our families and the complexity of our problem is
determined in the following table:

Smoothing Problem
Complexity Dynamical
Number of steps of a computation O(n)
Necessary Resources
Size of the alphabet n2 · h
Initial number of cells 1
Initial number of objects 0
Number of rules O(n2 · h)
Upper bound for the length of the rules 4

3 Parallel Implementation

GPUs constitute nowadays a solid alternative for high performance computing, and
the advent of CUDATM allow programmers a friendly model to accelerate a broad
range of applications. The way GPUs exploit parallelism differ from multi-core
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CPUs, which raises new challenges to take advantage of its tremendous computing
power. GPU is especially well-suited to address problems that can be expressed
as data-parallel computations. GPUs can support several thousand of concurrent
threads providing a massively parallel environment. This parallel computation
model leads us to look for a highly parallel computational technology where a
parallel simulator can run efficiently.

In this paper, we present a parallel software tool based in our membrane solu-
tion for smoothing images. It has been developed by using Microsoft Visual Studio
2008 Professional Edition (C++) with the plugging Parallel Nsight (CUDATM) un-
der Microsoft Windows 7 Professional with 32 bits.

To implement the P systems, CUDATM C, an extension of C for implemen-
tations of executable kernels in parallel with graphical cards NVIDIA has been
used. It has been necessary the nvcc compiler of CUDATM Toolkit. Moreover, we
use libraries from openCV to the treatment of input and output images. Microsoft
Visual Studio 2008 is responsible for calling to the compilers to build the objects,
and to link them with the final program. This allows us to deal with images stored
in .BMP, .DIB, .JPEG, .JPG, .JPE, .PNG, .PBM, .PGM, .PPM, .SR, .RAS, .TIFF
and .TIF formats

The experiments have been performed on a computer with a CPU Intel Pentium
4 650, with support for HT technology which allows to work like two CPUs of 32
bits to 3412 MHz. Computer has 2 MB of L2 cache memory and 1 GB DDR
SDRAM of main memory with 64 bits bus wide to 200 MHz. Moreover, it has a
hard disc of 160 GB SATA2 with a transfer rate of 300 Mbps in a 8 MB buffer.

The graphical card (GPU) is an NVIDIA Geforce 8600 GT composed by 4
Stream Processors with a total of 32 cores to 1300 MHz and executes 512 threads
per block as maximum. It has a 512 MB DDR2 main memory, but 499 MB could
be used by processing in a 128 bits bus to 700 MHz. So, the transfer rate obtained
is by 22.4 Gbps. For constant memory used 64 KB and for shared memory 16 KB
(It is not a good data for a good CUDATM graphical card). Its Compute Capability
is 1.1 (from 1.0 to 2.1), then we can obtain a lot of improvements in the efficiency
of the algorithms.

If we compare CPU and GPU, we observe that the former has two cores to
3412 MHz and the latter has 32 to 1300Mhz and has larger memory.

We have developed two applications of our P systems. In this case, we consider
the natural order in the set of colors C = {0, . . . , 255}. In the first one, we have
considered a deterministic implementation, where we work with the Moore neigh-
borhood. So, the system checks if the rules can be applied for eight adjacent pixels.
In the second one, we have considered an random selection of an adjacent pixel
to work. Then, the system checks only one possibility chosen in an random way.
Of this form, we simulate the characteristic non determinism of P systems with
random. Moreover, we have decided to stop the system before the halting config-
uration, because more than an appropriate number of parallel steps of processing
could be non-operative. In fact, in the deterministic version, the process could fin-
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ish before the pre-fixed number of steps. So, the system needs some time to check
this possibility. In the second one, it is not necessary to look at this question.

Fig. 3. Original image

Fig. 4. Deterministic version, Threshold 50: 0, 5, 10, 20, 32 and 44 steps, respectively.

Fig. 5. Deterministic version. First: Threshold 75, step 193. Second: Threshold 125, step
193.
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We consider the image of size 640 × 400 in Figure 3. When we take the de-
terministic application of our software, we can check that if we use an threshold
r = 50, our software smooths the original image (see Figure 4) using 44 parallel
steps. Nonetheless, when we work with a higher threshold, new important regions
are changed, and the output image is different. (See the images of Figure 5).

When we consider the random version of our software, we can check that if we
use an threshold r = 50 we need 300 steps, but the differences with the resulting
image with 150 or 200 steps are minimum, as we can see in Figure 6. When we
take higher thresholds, as in the Figure 7, we can check that new regions change
of colors.

Fig. 6. Random version, Threshold 50: 0, 50, 100, 150, 200 and 300 steps, respectively.

Fig. 7. Random version.First: Threshold 75, step 1000. Second: Threshold 125, step 800.

We present a study the running time of our software for both cases with differ-
ent thresholds, showed in the above examples, with the next table. We can observe
that deterministic version of our software needs less time with respect to the ran-
dom version. In the first one, it applies eight rules for each pixels while, in the
second one, it applies only one rule for each pixel. Moreover, we need a running
time to implement the random in each step for each pixel.
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Version \ Thresholds Computation steps Running Time
Determ. \ 50 44 536.522 ms
Determ. \ 75 193 1582.098 ms
Determ. \ 125 193 1563.660 ms
Random \ 50 300 6823.683 ms
Random \ 75 1000 21537.701 ms
Random \ 100 800 17332.891 ms

Finally, we have done some experiments with our software to know what hap-
pened if we work with images of different size. We have checked our software with
images until size 512 in both version. The deterministic version needs much time
with bigger images, and the random version does not work with those images. This
is a physical problem our graphical card, because the shared memory is small.

Fig. 8. Comparatives.

4 Conclusions and Future Work

In this paper, three emergent research fields are put together. Firstly, as pointed in
[8, 10], Membrane Computing has features as the encapsulation of the information,
a simple representation of the knowledge and parallelism, which are appropriate
with dealing with digital images. Nonetheless, the use of the intrinsic parallelism of
Membrane Computing techniques cannot be implemented in current one-processor
computers, so the potential advantages of the theoretical design are lost.

In this paper we show that the drawback of using one-processor computers for
implementing Membrane Computing designs can be avoided by using the parallel
architecture CUDATM. This new technology provides the hardware needed for a
real parallel implementation of Membrane Computing algorithms.
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Considering this paper as a starting point, several research lines are open:
From Digital Imagery, new parallel algorithms can be proposed adapted to the
new technology, from the Membrane Computing side, new design or different P
system models can be explored. From the hardware point of view, the advances
in the new technology CUDATM with the new boards Tesla and Fermi open new
possibilities for going on with the research.
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