Spiking Neural dP Systems

Mihai Ionescu!, Gheorghe Paun?3,

Mario J. Pérez-Jiménez?, Takashi Yokomori*
! University of Pitesti

Str. Targu din Vale, nr. 1, 110040 Pitesti

Romania

armandmihai.ionescu@gmail.com

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania
Research Group on Natural Computing

Department of Computer Science and Al

University of Sevilla

Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaunQus.es, marperQus.es

Department of Mathematics, School of Education
Waseda University, 1-6-1 Nishi-waseda, Shinjuku-ku
Tokyo 169-8050, Japan

yokomori@waseda. jp

Summary. We bring together two topics recently introduced in membrane computing,
the much investigated spiking neural P systems (in short, SN P systems), inspired from
the way the neurons communicate through spikes, and the dP systems (distributed P
systems, with components which “read” strings from the environment and then cooperate
in accepting their concatenation). The goal is to introduce SN dP systems, and to this
aim we first introduce SN P systems with the possibility to input, at their request, spikes
from the environment; this is done by so-called request rules. A preliminary investigation
of the obtained SN dP systems (they can also be called automata) is carried out. As
expected, request rules are useful, while the distribution in terms of dP systems can
handle languages which cannot be generated by usual SN P systems. We always work
with extended SN P systems; the non-extended case, as well as several other natural
questions remain open.

1 Introduction

We combine here two ideas recently considered in membrane computing, the spik-
ing neural P systems (in short, SN P systems) introduced in [9], and the dP systems
introduced in [13].

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)

194 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

along synapses (edges of the graph), under the control of firing rules. One neuron
is designated as the output neuron of the system and its spikes can exit into the
environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by
considering the number of steps elapsed between consecutive spikes which exit the
output neuron, and the string corresponding to the sequence of spikes which exit
the output neuron. This sequence is a binary one, with 0 associated with a step
when no spike is emitted and 1 associated with a step when a spike is emitted.

Actually, we use extended SN P systems, that is, we allow rules of the form
E/a® — aP, with the following meaning: if the content of the neuron is described
by the regular expression F, then c spikes are consumed and p are produced and
sent to the neurons to which there exist synapses leaving the neuron where the rule
is applied (more precise definitions will be given in Section 3). In this way, strings
over arbitrary alphabets can be obtained: if ¢ spikes are sent out at the same time,
then we say that the symbol b; was generated. The languages generated by SN P
systems in this way were investigated in [2] and [3]; see also [4].

In turn, a dP systems consists of several “modules” (usual P systems), which
communicate among them by means of antiport rules like in tissue P systems.
When only symport/antiport rules are used inside modules, then we can define a
language accepted by such a system: each component takes from the environment
sequences of symbols, they work separately and communicate through antiport
rules and, if the computation halts, then the concatenation of the input strings
is accepted. See [6], [13], [15], [16] for a series of results about such machineries;
in particular, [6] investigates the language families characterized by P and dP
automata, their relationships and place in Chomsky hierarchy.

There is an apparent difference between the two classes of P systems: SN P
systems generate strings, while dP systems accept them. There were considered
SN P systems also working in the accepting mode, with a spike train (a number is
encoded as the distance between two consecutive spikes) introduced in a specified
neuron of the system in the first steps of the computation. However, a more natural
way to proceed, more similar to the way the P automata take symbols from the
environment, is to consider a new type of rules in SN P systems, able to take spikes
from the environment. We consider such rules of a form rather similar to spiking
rules, namely, of the form E/A < a": if the contents of the neuron is described by
the regular expression E, then r spikes are brought from the environment. Such a
rule can be applied as a usual spiking rule (its use lasts one time unit, with the
spikes brought from the environment being added to the contents of the neuron
and ready to be used in the next step).

Now, the definition of an SN P system with request rules is rather natural: the
neurons which contain request rules are supposed as having a “synapse” also with
the environment such that they can take spikes from the environment, depending
on the number of spikes they contain. The computation proceeds as usual, starting
from the initial configuration. Both input and output spike trains can be associated
with the neurons linked with the environment. Also the step to SN dP systems

Spiking Neural dP Systems 195

(we can call them automata) is natural: take “modules” (or components) consisting
of neurons, with only one neuron of each component also having a synapse with
the environment (hence able to take an input); each component can be linked
with another component through synapses among their neurons (for simplicity, we
consider only the case when at most one synapse is available in each direction).
The components take strings from the environment and the concatenation of these
strings is accepted if the computation of the system halts.

Many questions arise in this framework. Compare usual SN P systems with SN
P systems having request rules, both in the generative and the accepting mode.
Do the additional facilities provided by the request rules help, e.g., from the point
of view of the descriptional complexity? What about imposing a bound on the
environment (considering that in the beginning it only contains a given number of
spikes, and further spikes can be there only if the system sends spikes out)? More
interesting: which is the power of SN dP systems? As expected, it is larger than
that of SN P systems (with the mentioning that we compare languages accepted
by SN dP systems with languages generated by SN P systems).

In this context, we introduce a refinement in the way of defining languages
associated with (extended) SN P systems. In between the restricted (in each step,
one symbol is produced) and the non-restricted case we can consider the languages
generated /accepted in the k-restricted way: between reading or producing two
symbols which are considered in the string, the system can work at most k steps
without reading or sending symbols out.

2 Formal Language and Automata Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [18] and [19], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V', V* denotes the set of all finite strings of symbols from V; the
empty string is denoted by A, and the set of all nonempty strings over V' is denoted
by V*. When V = {a} is a singleton, then we write simply a* and a™ instead of
{a}*, {a}t. Iz = ajas...a,, a; € V, 1 <i<n, then mi(z) = ay...aza;.

We denote by REG, RE the families of regular and recursively enumerable
languages. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

In most universality proofs in membrane computing, in particular, in the SN
P systems area, one uses register machines (several registers can contain natural
numbers; they are increased by one or decreased by one — the latter operation only
after checking whether the number stored in the register is different from zero —, by
means of labeled instructions; if the computation starting in an initial label with
all registers empty halts by reaching a special halting label, then the number stored
in the halting configuration by the first register is said to be computed/generated
by that computation.

196 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

Because our SN P systems can read at the same time several spikes, an op-
eration which corresponds to reading a symbol from an alphabet with several
elements, we will use in the universality proof a device more adequate to this
case: counter automata with an input tape. The version we choose is one with as
simple as possible instructions: check for zero, increment, decrement (by one in
both cases), read a symbol from the input tape, halt. Formally, such a device is a
construct M = (n,V, H,lo,ln, I), where n is the number of registers/counters, V is
the alphabet of the input tape, H is the set of labels, each one uniquely associated
with an instruction, [y is the initial label, {; is the halt label, and I is the set of
instructions of the following forms:

1. (I; : check(r),l;,l): when label I; is reached, the contents of register r is
compared to zero; if the register is empty, then the next label is [;, if the
contents of the register is strictly positive, then the next label is ly;

2. (l; - add(r),l;): add 1 to the contents of register r and pass from label I; to
label I;;

3. (I; : sub(r),l;): subtract 1 from the contents of register r and pass from label /;
to label [; (the operation is supposed to be possible, meaning that previously
the register was checked for zero by an instruction of the first type);

4. (l; : read(b),l;): read the symbols b € V from the tape and pass from label [;
to label ;;

5. Ilp : halt: when reaching [;, the computation halts; this is the only instruction
labeled by Ij,.

Without loss of the generality, we may assume that in all instructions the in-
volved labels are mutually different (this can be easily achieved by introducing
intermediate labels, involved in additional instructions performing “dummy” op-
erations, of the form “add 1 to register r, then subtract 1 from register r”.

We start with label {y (by applying the instruction with label ly), with all
counters empty (storing the number 0), with the “reading head” in front of the
first symbol of the input tape, where a string is written. We proceed as specified
by the instructions, under the control of labels. The process is deterministic and
the only branching is based on the check for zero of the registers. When the label
I, (hence the instruction I : halt) is reached, the computation stops and the
sequence of symbols read from the input tape is the string accepted by the counter
machine. The language of all such strings is denoted by L(M).

It is known that counter machines (with a small number of counters, but this is
not of interest below) with an input tape can recognize all recursively enumerable
languages. Details (variants and proofs) can be found in several places: [11], [5],
[7].

In the following sections, when comparing the power of two language generat-
ing/accepting devices the empty string A is ignored.

Spiking Neural dP Systems 197

3 Spiking Neural P Systems with Request Rules

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [9], [14], [2], etc.

An (extended) spiking neural P system (abbreviated as SN P system) with
request rules, of degree m > 1, is a construct of the form

II=(0,01,...,0m,syn,ip),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0., are neurons, of the form

g; = (m,Rz),l S 7 S m,

where:
a) m; > 0 is the initial number of spikes contained in o;;
b) R; is a finite set of rules of the forms
(i) E/a® — aP, where E is a regular expression over ¢ and ¢ > p > 1
(spiking rules);
(ii) E/X\ < a", where E is a regular expression over a and r > 1 (request
rules);
(iii) a® — A, with s > 1 (forgetting rules) such that there is no rule E/a® —
aP of type (i) or E/X « a” of type (ii) with a® € L(E);
3. syn C{1,2,...,m}x{1,2,...,m} with ¢ # j for each (¢,5) € syn, 1 <i,j <m
(synapses between neurons);
4. ig € {1,2,...,m} indicates the output neuron (o;,) of the system.

A rule E/a® — aP is applied as follows. If the neuron o; contains k spikes,
and a* € L(E), k > ¢, then the rule can fire, and its application means consuming
(removing) ¢ spikes (thus only k — ¢ remain in o;) and producing p spikes, which
will exit immediately the neuron. A rule E/A < a” is used if the neuron contains
k spikes and a* € L(E); no spike is consumed, but 7 spikes are added to the spikes
in o;. In turn, a rule a® — X is used if the neuron contains exactly s spikes, which
are removed (“forgotten”). A global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized.

If a rule E/a® — aP has E = a°, then we will write it in the simplified form
a® — aP.

The spikes emitted by a neuron o; go to all neurons o, such that (¢,5) € syn,
i.e., if 0; has used a rule E/a® — aP, then each neuron o; receives p spikes. The
spikes produced by a rule E/\ < a” are added to the spikes in the neuron and to
those received from other neurons, hence they are counted/used in the next step
of the computation.

If several rules can be used at the same time, then the one to be applied is
chosen non-deterministically.

198 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is described
by the numbers ny,na, ..., Ny

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

There are many possibilities to associate a result with a computation, in the
form of a number (the distance between two input spikes or two output spikes) or
of a string. Like in [3], we associate a symbol b; with a step of a computation when
1 spikes exit the system, thus generating strings over an alphabet {bg,b1,...,bn},
for some m > 1. When one neuron is distinguished as an input neuron, then the
sequence of symbols b; associated as above with the spikes taken from the environ-
ment by this input neuron also forms a string. In both cases, we can distinguish
two possibilities: to interpret by as a symbol or to simply ignore a step when no
spike is read or sent out. The second case provides a considerable freedom, as the
computation can proceed inside the system without influencing the result, and this
adds power to our devices.

In what follows, we also consider an intermediate case: the system can work in-
side for at most a given number of steps, k, before reading or sending out a symbol.
(Note the important detail that this is a property of the system, not a condition
about the computations: all halting computations observe the restriction to work
inside for at most k steps, this is not a way to select some computations as correct
and to discard the others. This latter possibility is worth investigating, but we do
not examine it here.) The obtained languages, in the accepting and the generating
modes, are denoted L¢(II),LY(IT), respectively, where k € {0,1,2,...} U {oc}.
Then, L§ corresponds to the restricted case of [3] and L, to the non-restricted
case (denoted Ly in [3]).

The respective families of languages associated with systems with at most
m neurons are denoted by L}SNP,,, where a € {g,a} and k is as above; if k
is arbitrary, but not oo, then we replace it with *; if m is arbitrary, then we
replace it with *. (Note that we do not take here into account the descriptional
complexity parameters usually considered in this framework: number of rules per
neuron, numbers of spikes consumed or forgotten, etc.)

By the definitions, we have the following inclusions for all § € {1,2,...} U {x}:

LYSNP; C LYSNP; C LYSNP; C ... L*SNP; C L% SNP; C RE.

4 Some Preliminary Results for the Generating Case

In general, the results which were obtained for SN P systems without request
rules are expected to hold — maybe with simplified proofs — also for SN P systems
with request rules. However, some differences exist. For instance, it is observed in

Spiking Neural dP Systems 199

[2] that the language {0,1} cannot be generated by an SN P system (the output
neuron cannot choose between spiking or not spiking in the first step), but this
language can be generated by the system

({a}, (1,{a —a, /A —a}),0,1),

because of the possibility of choosing between spiking or bringing a spike inside
(the system halts after the first step). However, this is mainly due to the definition
— allowing a nondeterministic choice between spiking and forgetting rules will lead
to a similar result also for SN P systems without request rules.

Returning to the extension of results to the new class of SN P systems, we
consider here three results from [3], as they are significant below.

Lemma 1. The number of configurations reachable after n steps by an extended
SN P system with request rules of degree m is bounded by a polynomial g(n) of
degree m.

Proof. The same as in [3], with the observation that the number of spikes in the
system is increased in two cases: when a neuron spikes, hence it introduces a well
defined number of spikes in all neurons with which it has synapses, or when it
brings spikes from the environment; in this case, the spikes, again a well defined
number, are introduced in the neuron which has used the request rule. The rest of
the argument remains the same as in [3]. O

Theorem 1. If f : V¥ — V7 is an injective function, card(V) > 2, then there
is no extended SN P system II with request rules such that Ly(V) = {z f(z) |z €
V*ty=LI(I).

Proof. Assume that there is an extended SN P system IT of degree m, with re-
quest rules, such that L] (IT) = Ly(V) for some f and V as in the statement of
the theorem and some k > 1. According to the previous lemma, there are only
polynomially many configurations of II which can be reached after n steps. Take
some n of the form n = km. The string generated after n steps is of length at
least m. However, there are card(V)™ > 2™ = 2"/* strings of length m in V+.
Therefore, for large enough m there are two strings w1, ws € VT, w; # we, such
that after n steps the system IT reaches the same configuration when generating
the strings w; f(w1) and ws f(ws), hence after step n the system can continue any
of the two computations. This means that also the strings wy f(ws) and ws f(wy)
are in LY (II). Due to the injectivity of f and the definition of L(V') such strings
are not in Ly (V), hence the equality L(V) = L{(IT) is contradictory. O

Corollary 1. The following two languages are not in LISNP, (in all cases,
card(V) =k >2):

Ly = {zmi(x) |z € VT},
Ly={zz |z eV}

200 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

Note that language L; above is a non-regular minimal linear one and Lo is
context-sensitive non-context-free.

Theorems 3 and 4 from [3] (characterizing regular languages, modulo a symbol
added to their strings), and Theorem 5 (generating non-semilinear languages),
always in the restricted mode, can now be written in the form:

Theorem 2. LY SNP, C REG C LISNP;.

5 The Accepting Case

In order to have a definition of the language accepted by a given SN P system
with request rules, we have to distinguish a neuron as the input one, and only the
sequence of symbols taken from the environment by that neuron is introduced in
the language. The other neurons are allowed to bring spikes from the environment,
but those spikes are not defining symbols for the processed string.

First, let us notice that Lemma 1 and Theorem 1 remains true also in the
accepting case, hence the languages in Corollary 1 cannot be recognized.

Also the characterization of RE from [3] remains true. However, this proof is
rather complex: one takes symbols from the environment, in the form of packages of
spikes, but for a string w over an alphabet with k symbols, one passes to valgy(w),
the numerical value of w when considered as a number written in base k + 1, and
one accepts w if and only if valyi1(w) is accepted (a language L is in RE if and
only if valg41(L) is in NRE). Then, handling numbers is reduced to simulating
register machines (basically, counter machines without an input tape). Here we
will proceed in a direct way, proving that SN P systems with request rules can
recognize all RE languages by starting from counter automata with input tape.

Theorem 3. L2 SNP, = RE.

Proof. Let us consider a counter automaton M = (n,V, H,l,,1;,I) as introduced
in Section 2, with V' = {by,...,br}. We construct modules simulating instruction
of the first four types mentioned in Section 2 — no halting module is necessary,
we just ignore the halting instruction. Let us denote by II the SN P system we
construct.

For each counter r of M, IT contains a neuron o,,1 < r < n; if the value of the
counter will be at some moment m, then the associated neuron will contain 2m
spikes. For each label [€ H, we also introduce in IT a neuron o;. All neurons of the
system are empty in the beginning of the computation, except neuron o;,, which
contains one spike. Having a spike inside, this neuron is active; in general, when a
neuron o;,l € H, receives one spike, then it is active, the associated module will
start working, simulating the instruction identified by the label [. There is a unique
input neuron, with the label in, and oy, is the only neuron of II which contains
request rules. Several other auxiliary neurons are involved in the modules. They
and the synapses among all these neurons are specified below.

Spiking Neural dP Systems 201

We do not give formally the modules, but in a graphical form.

Let us start with a CHECK instruction, (I; : check(r),l;, x). We construct the
module shown in Figure 1.

Fig. 1. The CHECK module

As long as the contents of a neuron o, is an even number, no rule can be
applied in it. If o;, becomes active, it sends a spike to o, hence the number of
spikes becomes odd. If this number is 1, hence the counter was empty, then a
spike will eventually arrive in oy,. If the counter was non-zero, then only o4, will
spike. In this way, it activates the neuron o;, and also restores the contents of
counter r, putting back the two spikes consumed by the rule a(aa)*/a® — a. The
continuation is correct in both cases.

The new neurons, o,_,1 < s < 8, are uniquely associated with this module (it
would be more rigorous to label them, say, by (I;,s),1 < s <8, but we prefer the
simple writing). All the three label neurons in Figure 1 can have incoming synapses
from various other neurons, but each such neuron has only one associated module
which is triggered by it. These remarks are valid for all modules constructed below.

Because several CHECK instructions (also several SUB instructions — see be-
low) can act on the same counter r, it means that o, can have synapses to several

202 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

neurons of type o4, in various modules. However, this entails nothing wrong,
because the spike produced by o,, will be erased in both neurons oy, 0.

The modules for the ADD and SUB instructions are rather simple — they are
given in Figure 2 (for (I; : add(r),!;)) and Figure 3 (for (I; : sub(r),;); remember
that, before activating a SUB instruction, we assume that we have checked whether
the operation can be done, that is, whether the counter is non-zero, hence we can
assume that always the operation asked for by the instruction (I; : sub(r),l;) is
possible).

Fig. 2. The ADD module

In the SUB case, we have reproduced both rules of o, used in the CHECK
module, as the first one is also used in the SUB case (but the produced spike is
“lost”, as explained before when discussing the CHECK module); the second rule,
a — A, cannot be used, as we know in advance that the substraction is possible,
hence the neuron is not empty.

Fig. 3. The SUB module

Spiking Neural dP Systems 203

Only the READ instructions (I; : read(bs),l;),1 < s < k, remains to be
considered. For such an instruction, we build a module like in Figure 4. Note that
the module contains several neurons, depending on s, and that the input neuron,
labeled with in, is unique for the whole system.

. a— a

a
1 C2k+1-2s
_D
d2k+172s

Fig. 4. The READ module

After activating oy,, s spikes reach o;,, and in this way the input neuron can
take from the environment the correct number of spikes (reading in this way the
symbol by). Because the input neuron can be used in any further step, it should be
left empty after simulating the instruction (I; : read(bs),!;), and to this aim the
use of the forgetting rule a?**! — X is made possible, after receiving from neurons
o4,,1 <t <2k+1—2s, the corresponding number of spikes. One of these neurons,
the last one, also sends a spike to oy, in order to continue the computation as
requested by the READ instruction.

By repeatedly using these modules, the computation in M is correctly simu-
lated; as pointed out above, there is no misleading interaction between modules.
When the label [; is reached in M, the unique neuron associated with a label
which has a spike inside is oy, , where we provide no rule, hence the computation
halts also in IT. Consequently, the recognized string is the same, L(M) = L2 (IT),
and this completes the proof. 0O

Note the interesting fact that in the previous construction we only use non-
extended spiking rules, always producing only one spike. If we allow the use of

204 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

extended rules, then some of the constructions can be slightly simplified (this is
the case, for instance, with the modules CHECK).

6 SN dP Systems

We pass now to the main goal of our paper, introducing the SN P systems counter-
part of dP systems from [13]. We directly introduce the definition of the systems
we investigate.

An SN dP system is a construct

A= (Oaﬂla"'aHnaesyn)a

where (1) O = {a} (as usual, a represents the spike), (2) II;, =
(0,0i1,...,0ik,syn,in;) is an SN P system with request rules present only in
neuron oy, (0;; = (n; j, Ri j), where n; ; is the number of spikes initially present
in the neuron and R; ; is the finite set of rules of the neuron, 1 < j < k;), and (3)
esyn is a set of external synapses, namely between neurons from different systems
II;, with the restriction that between two systems II;, II; there exist at most one
link from a neuron of II; to a neuron of II; and at most one link from a neuron
of II; to a neuron of II;. We stress the fact that we allow request rules only in
neurons o;,, of each system II; — although this restriction can be removed; the
study of this extension remains as a task for the reader. The systems I1;,1 < i < n,
are called components (or modules) of the system A.

As usual in dP automata, each component can take an input (by using request
rules), work on it by using the spiking and forgetting rules in the neurons, and
communicate with other components (along the synapses in esyn); the commu-
nication is done as usual inside the components: when a spiking rule produces
a number of spikes, they are sent simultaneously to all neurons, inside the com-
ponent or outside it, in other components, provided that a synapse (internal or
external) exists to the destination.

As above, when r spikes are taken from the environment, a symbol b, is as-
sociated with that step, hence the strings we consider introduced in the system
are over an alphabet V' = {bg, by, ...,b;}, with k being the maximum number of
spikes introduced in a component by a request rule.

A halting computation with respect to A accepts the string x = z125... 2,
over V if the components Iy, ..., II,, starting from their initial configurations,
working in the synchronous (in each time unit, each neuron which can use a rule
should use one) non-deterministic way, bring from the environment the substrings
T1,...,Tyn, respectively, and eventually halts.

Hence, the SN dP systems are synchronized, a universal clock exists for all
components and neurons, marking the time in the same way for the whole system.

In what follows, like in the communication complexity area, see, e.g., [8], we ask
the components to take equal parts of the input string, modulo one symbol. (One

Spiking Neural dP Systems 205

also says that the string is distributed in a balanced way. The study of the unbal-
anced (free) case remains as a research issue.) Specifically, for an SN dP system A
of degree n we define the language L(A), of all strings € V* such that we can
write £ = 2122 . .. &y, with ||z;| —|z;|| < 1for all 1 <i,j < n, each component IT;
of A takes as input the string x;,1 <1 < n, and the computation halts. Moreover,
we can distinguish between considering by as a symbol or not, like in the previous
sections, thus obtaining the languages L, (A), with oo € {0,1,2,...} U {00, *}.

Let us denote by L SNdP, the family of languages L, (A), for A of degree at
most n and « € {0,1,2,...} U{oo,*}. An SN dP system of degree 1 is a usual SN
P system with request rules working in the accepting mode (with only one input
neuron), as considered in Section 5. Thus, the universality of SN dP systems is
ensured, for the case of languages Lo, (A).

In what follows, we prove the usefulness of distribution, in the form of SN dP
systems, by proving that one of the languages in Corollary 1, can be recognized
by a simple SN dP system (with two components), even working in the Lj mode.

Proposition 1. {ww | w € {b1,b2,...,bp}*} € Ly 12 SNAP;.

Proof. The SN dP system which recognizes the language in the proposition is the
following:

= ({a}, I, 15, {((2,1),(1,3)), ((1,5),(2,1))}), with the components
= ({a}, 00,1y, 00,7), syn1, (1,1)),
oo =B {a*/A—a" |1 <r<k}u{a'at/a— a, a* — a*}),
o) = (0,{a — a, a* — a}),
=(0,{a — a, a® — a®}),
=(0,{a* =\, a® =)\, a — a, a* — a}),
a5 = (0, {a*> =)\, a® — a, a® — d?}),
= (0,{a"/a — a}),
oan = (0,{a*/a — a}),
syny = {((1,1),(1,2)), ((1,5),(1,1)), ((1,2),(1,4)), ((1,4),(1,6)),
((1,4),(1,7)), ((1,6),(1,7)), ((1,7),(1,6)), ((1,2),(1,5)),
((1,3),(1,4)), ((1,3),(1,5))},
= ({a},0(2,1),0,(2,1)),
2,1 = (3, {a®/N—a" |1 <r<Ek}u {a4a+/a —a, a* — a®}).
For an easier reference, the system is also presented graphically, in Figure 5.
Assume that we are in a configuration where both neurons o(; 1) and o3)
contain three spikes, as in the beginning of the computation. Each neuron can
bring spikes inside, by using the rules a®/\ « a"; if they bring the same number

of spikes, then the system will return to a configuration as the one we started with,
hence the computation can continue, otherwise the system will never halt.

206 M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

In

-

Fig. 5. The SN dP system from the proof of Proposition 1

For instance, assume that o(; ;) brings inside r; spikes and o5 1) brings ro
spikes. These spikes are moved one by one (at most k steps in total, where k is
the cardinality of the alphabet) to neurons o(;) and o, 3, respectively, by using
the rules a*at/a — a, and from here, duplicated, in neurons 0(1,4),0(1,5), Where
they are removed by the forgetting rules a®> — \. If r; = 75, then the neurons
0(1,1),0(2,1) use at the same time the rules a* — a3, and after one further step six
spikes reach both o(; 4y and o(; 5); in the former neuron the spikes are forgotten, in
the latter one can use the rule a® — a3, which will send three spikes to 0(1,1)50(2,1)-
The process can continue, one reads one further symbol of the string. If r{ # ro,
then one of o1 1),0(2,1) produces one spike and the other three, hence four spikes
arrive in neuron oy 4); this neuron sends a spike to o(;) and o(; 7), and these
neurons will exchange forever spikes, hence the computation never halts.

Spiking Neural dP Systems 207
If, instead of the rule a® — a3, neuron 0(1,5) uses the rule a® — a, then the
computation stops, because the input neurons cannot fire having inside only one
spike. This is the only way to stop the computation, hence the strings read by the
two components are equal.

Note that after introducing some r spikes in each component of the system, we
need 7 — 1 steps for using the rules a*a*/a — a, one step for the rule a* — a® (at
most & steps in total), then two more steps for sending three spikes (one in the end)
to neurons o(1,1) and o (3 1). Therefore, {ww | w € {b1,ba,...,bx}*} € Ly 2SNdPs,
and the proposition is proved. 0O

7 Final Remarks

Many problems can be formulated for SN P systems with request rules and for SN
dP systems. Several were already mentioned in the previous sections. Let us close
by recalling the fact that besides the synchronized (sequential in each neuron)
mode of evolution, there were also introduced other modes, such as the exhaustive
one, [10], and the non-synchronized one, [1]. Universality was proved for these
types of SN P systems, but only for the extended case. Can universality be proved
for non-extended SN P systems also using request rules?

Acknowledgements

The work of M. Tonescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Paun was supported by Proyecto de Excelencia con Investigador
de Reconocida Valia, de la Junta de Andalucia, grant P08 — TIC 04200.

References

1. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Paun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352-2364.

2. H. Chen, R. Freund, M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141-162.

3. H. Chen, T.-O. Ishdorj, Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241-265.

4. H. Chen, T.-O. Ishdorj, Gh. Paun, M.J. Pérez-Jiménez: Handling languages with
spiking neural P systems with extended rules. Romanian J. Information Sci. and
Technology, 9, 3 (2006), 151-162.

5. P.C. Fischer: Turing machines with restricted memory access. Information and Con-
trol, 9 (1966), 364-379.

208

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori

R. Freund, M. Kogler, Gh. Paun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University. Mathematics-Informatics Series, 63 (2009),
5-22.

J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, Mass., 1979.

J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

M. Ionescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

M. Ionescu, Gh. Paun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135-154.

M. Minsky: Computation — Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

Gh. Paun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

Gh. Paun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane
computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238-252.

Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975-1002.

Gh. Paun, M.J. Pérez-Jiménez: P and dP automata: A survey. Lecture Notes in
Computer Science, 6570, in press.

Gh. Paun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
systems. Theoretical Computer Sci., in press.

Gh. Paun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

A. Salomaa: Formal Languages. Academic Press, New York, 1973.

The P Systems Website: http://ppage.psystens.eu.

