
Notes About Spiking Neural P Systems

Mihai Ionescu1, Gheorghe Păun2,3

1 University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti
Romania
mihaiarmand.ionescu@gmail.com

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Summary. Spiking neural P systems (SN P systems, for short) are much investigated
in the last years in membrane computing, but still many open problems and research
topics are open in this area. Here, we first recall two such problems (both related to
neural biology) from [15]. One of them asks to build an SN P system able to store a
number, and to provide it to a reader without losing it, so that the number is available
for a further reading. We build here such a memory module and we discuss its extension
to model/implement more general operations, specific to (simple) data bases. Then, we
formulate another research issue, concerning pattern recognition in terms of SN P sys-
tems. In the context, we define a recent version of SN P systems, enlarged with rules able
to request spikes from the environment; based on this version, so-called SN dP systems
were recently introduced, extending to neural P systems the idea of a distributed dP
automaton. Some details about such devices are also given, as a further invitation to the
reader to this area of research.

1 Introduction

The present notes are only an invitation to the reader to a recent and vividly
investigated branch of membrane computing, inspired from the way the neurons
cooperate in large nets, communicating (among others) by means of spikes, elec-
trical impulses of identical shapes. In neural computing, this biological reality has
inspired a series of research which are considered “neural computing of the third
generation”, see, e.g., [5], [12]. In terms of membrane computing, the idea was cap-
tured in the form of so-called spiking neural P systems, in short, SN P systems,
introduced in [10] and then investigated in a large number of papers. We refer to
the Handbook [20] and to the membrane computing website [23] for details.

170 M. Ionescu, Gh. Păun

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)
along synapses (edges of the graph), under the control of firing rules. Such a rule
is of the form E/ac → ap; d, where E is a regular expression over the alphabet
{a} (a denotes the spike); such a rule can be used in a neuron if the number of
spikes present in the neuron is described by the regular expression E (if there
are k spikes in the neuron, then ak ∈ L(E), where L(E) is the regular language
identified by E), and using it means consuming c spikes (hence k− c remain) and
producing p spikes, which will be sent to all neurons to which a synapse exists
which leaves the current neuron, after a time delay of d steps (if d = 0, then the
spikes leave immediately). If a neuron can use a rule, then it has to use one, hence
the system is synchronized, in each time unit, all neurons which can spike should do
it. One starts from an initial configuration and one proceed by computation steps
as suggested above. One neuron is designated as the output neuron of the system
and its spikes can exit into the environment, thus producing a spike train. Two
main kinds of outputs can be associated with a computation in an SN P system:
a set of numbers, obtained by considering the number of steps elapsed between
consecutive spikes which exit the output neuron, and the string corresponding to
the sequence of spikes which exit the output neuron. This sequence is a binary
one, with 0 associated with a step when no spike is emitted and 1 associated with
a step when a spike is emitted.

Several variants were considered in the literature. We recall here the most
recent one, SN P systems with request rules, proposed in [9]: also rules of the form
E/λ ← ar are used, with the meaning that r spikes are brought in the neuron,
provided that its content is described by the regular expression E.

Such rules are essentially used in defining SN dP systems, a class of distributed
computing devices bridging the SN P systems area and the dP systems area – this
latter one initiated in [16] and then investigated in [4], [17], [18]. We recall here
the definition of SN dP systems from [9], as well an example from that paper.

Also, two research topics mentioned in the last years (especially in the frame-
work of the Brainstorming Week on Membrane Computing, organized at the begin-
ning of each February in Sevilla, Spain – see [23]) are briefly discussed, for the first
one also providing a preliminary answer (which, in turn, raises further questions).
Namely, the challenge was to define a SN P module which simulate the “memory
function” of the brain: stores a number, which can then be read by another “part of
the brain” without losing the respective number. Such a module is provided here,
but it suggests a series of continuations in terms of (simple) data bases, where
several “memory cells” can be considered, loaded and interrogated, removed and
added. Continuing our construction remains a task for the reader, and similarly
with the second problem: to construct an SN P system able to recognize patterns,
in a precise way which will be defined below.

In short, this is only a quick introduction to the study of SN P systems, by
giving a few basic definitions and a short list of recent notions and research topics.
The interested reader should look for further details in the domain literature.

Notes About SN P Systems 171

2 Formal Language and Automata Theory Prerequisites

We need below only a few basic elements of automata and language theory, and
of computability theory. It would be useful for the reader to have some familiarity
with such notions, e.g., from [21] and [22], but, for the sake of readability we
introduce here the notations and notions used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ; the
empty string is denoted by λ, and the set of all nonempty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then mi(x) = an . . . a2a1.

We denote by REG, RE the families of regular and recursively enumerable
languages. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

In the rules of spiking neural P systems we use the notion of a regular ex-
pression; given an alphabet V , (i) λ and each a ∈ V is a regular expression over
V , (ii) if E1, E2 are regular expressions over V , then (E1)(E2), (E1) ∪ (E2), and
(E1)+ are regular expressions over V , and (iii) nothing else is a regular expres-
sion over V . The non-necessary parentheses can be omitted, while E+

1 ∪ λ can
be written as E∗

1 . With each expression E we associate a language L(E) as fol-
lows: (i) L(λ) = {λ}, L(a) = {a}, for all a ∈ V , (ii) L((E1)(E2)) = L(E1)L(E2),
L((E1)∪ (E2)) = L(E1)∪L(E2), and L((E1)+) = L(E1)+, for any regular expres-
sions E1, E2.

The operations used here are the standard union, concatenation, and Kleene
+. We also need below the operation of the right derivative of a language L ⊆ V ∗

with respect to a string x ∈ V ∗, which is defined by

L/x = {y ∈ V ∗ | yx ∈ L}.

In the following sections, when comparing the power of two language generat-
ing/accepting devices the empty string λ is ignored.

3 Spiking Neural P Systems with Request Rules

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [10], [19], [2], etc.

An (extended) spiking neural P system (abbreviated as SN P system) with
request rules, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);

172 M. Ionescu, Gh. Păun

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the forms

(i) E/ac → ap, where E is a regular expression over a and c ≥ p ≥ 1
(spiking rules);

(ii) E/λ ← ar, where E is a regular expression over a and r ≥ 1 (request
rules);

(iii) as → λ, with s ≥ 1 (forgetting rules) such that there is no rule E/ac →
ap of type (i) or E/λ ← ar of type (ii) with as ∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/ac → ap is applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming
(removing) c spikes (thus only k − c remain in σi) and producing p spikes, which
will exit immediately the neuron. A rule E/λ ← ar is used if the neuron contains
k spikes and ak ∈ L(E); no spike is consumed, but r spikes are added to the spikes
in σi. In turn, a rule as → λ is used if the neuron contains exactly s spikes, which
are removed (“forgotten”). A global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized.

If a rule E/ac → ap has E = ac, then we will write it in the simplified form
ac → ap.

The spikes emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn,
i.e., if σi has used a rule E/ac → ap, then each neuron σj receives p spikes. The
spikes produced by a rule E/λ ← ar are added to the spikes in the neuron and to
those received from other neurons, hence they are counted/used in the next step
of the computation.

If several rules can be used at the same time, then the one to be applied is
chosen non-deterministically.

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is described
by the numbers n1, n2, . . . , nm.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

There are many possibilities to associate a result with a computation, in the
form of a number (the distance between two input spikes or two output spikes) or
of a string. Like in [3], we associate a symbol bi with a step of a computation when
i spikes exit the system, thus generating strings over an alphabet {b0, b1, . . . , bm},

Notes About SN P Systems 173

for some m ≥ 1. When one neuron is distinguished as an input neuron, then the
sequence of symbols bi associated as above with the spikes taken from the environ-
ment by this input neuron also forms a string. In both cases, we can distinguish
two possibilities: to interpret b0 as a symbol or to simply ignore a step when no
spike is read or sent out. The second case provides a considerable freedom, as the
computation can proceed inside the system without influencing the result, and this
adds power to our devices.

In what follows, we also consider an intermediate case: the system can work in-
side for at most a given number of steps, k, before reading or sending out a symbol.
(Note the important detail that this is a property of the system, not a condition
about the computations: all halting computations observe the restriction to work
inside for at most k steps, this is not a way to select some computations as correct
and to discard the others. This latter possibility is worth investigating, but we do
not examine it here.) The obtained languages, in the accepting and the generating
modes, are denoted La

k(Π), Lg
k(Π), respectively, where k ∈ {0, 1, 2, . . .} ∪ {∞}.

Then, Lg
0 corresponds to the restricted case of [3] and Lg

∞ to the non-restricted
case (denoted Lλ in [3]).

The respective families of languages associated with systems with at most
m neurons are denoted by Lα

k SNPm, where α ∈ {g, a} and k is as above; if k
is arbitrary, but not ∞, then we replace it with ∗; if m is arbitrary, then we
replace it with ∗. (Note that we do not take here into account the descriptional
complexity parameters usually considered in this framework: number of rules per
neuron, numbers of spikes consumed or forgotten, etc.)

The computing power of the previous devices was preliminarily investigated in
[9], with many questions still remaining open. We do not recall them here, but,
instead, we mention the notion of a SN dP system introduced in [9].

4 SN dP Systems

We first recall from [9], without proofs, two basic results, because they provide a
way to find counterexamples in this area. Actually, they are extensions to SN P
systems with request rules of some results already proved in [3].

Lemma 1. The number of configurations reachable after n steps by an extended
SN P system with request rules of degree m is bounded by a polynomial g(n) of
degree m.

Theorem 1. If f : V + −→ V + is an injective function, card(V) ≥ 2, then there
is no extended SN P system Π with request rules such that Lf (V) = {x f(x) | x ∈
V +} = Lg

∗(Π).

Corollary 1. The following two languages are not in Lg
∗SNP∗ (in all cases,

card(V) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},
L2 = {xx | x ∈ V +}.

174 M. Ionescu, Gh. Păun

Note that language L1 above is a non-regular minimal linear one and L2 is
context-sensitive non-context-free.

We introduce now the mentioned distributed version of SN P systems:
An SN dP system is a construct

∆ = (O,Π1, . . . , Πn, esyn),

where (1) O = {a} (as usual, a represents the spike), (2) Πi =
(O, σi,1, . . . , σi,ki , syn, ini) is an SN P system with request rules present only in
neuron σini

(σi,j = (ni,j , Ri,j), where ni,j is the number of spikes initially present
in the neuron and Ri,j is the finite set of rules of the neuron, 1 ≤ j ≤ ki), and (3)
esyn is a set of external synapses, namely between neurons from different systems
Πi, with the restriction that between two systems Πi,Πj there exist at most one
link from a neuron of Πi to a neuron of Πj and at most one link from a neuron
of Πj to a neuron of Πi. We stress the fact that we allow request rules only in
neurons σini

of each system Πi – although this restriction can be removed; the
study of this extension remains as a task for the reader. The systems Πi, 1 ≤ i ≤ n,
are called components (or modules) of the system ∆.

As usual in dP automata, each component can take an input (by using request
rules), work on it by using the spiking and forgetting rules in the neurons, and
communicate with other components (along the synapses in esyn); the commu-
nication is done as usual inside the components: when a spiking rule produces
a number of spikes, they are sent simultaneously to all neurons, inside the com-
ponent or outside it, in other components, provided that a synapse (internal or
external) exists to the destination.

As above, when r spikes are taken from the environment, a symbol br is as-
sociated with that step, hence the strings we consider introduced in the system
are over an alphabet V = {b0, b1, . . . , bk}, with k being the maximum number of
spikes introduced in a component by a request rule.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn

over V if the components Π1, . . . , Πn, starting from their initial configurations,
working in the synchronous (in each time unit, each neuron which can use a rule
should use one) non-deterministic way, bring from the environment the substrings
x1, . . . , xn, respectively, and eventually halts.

Hence, the SN dP systems are synchronized, a universal clock exists for all
components and neurons, marking the time in the same way for the whole system.

In what follows, like in the communication complexity area, see, e.g., [8], we ask
the components to take equal parts of the input string, modulo one symbol. (One
also says that the string is distributed in a balanced way. The study of the unbal-
anced (free) case remains as a research issue.) Specifically, for an SN dP system ∆
of degree n we define the language L(∆), of all strings x ∈ V ∗ such that we can
write x = x1x2 . . . xn, with ||xi|− |xj || ≤ 1 for all 1 ≤ i, j ≤ n, each component Πi

of ∆ takes as input the string xi, 1 ≤ i ≤ n, and the computation halts. Moreover,
we can distinguish between considering b0 as a symbol or not, like in the previous
sections, thus obtaining the languages Lα(∆), with α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}.

Notes About SN P Systems 175

Let us denote by LαSNdPn the family of languages Lα(∆), for ∆ of degree
at most n and α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}. An SN dP system of degree 1 is a usual
SN P system with request rules working in the accepting mode (with only one
input neuron). Thus, the universality of SN dP systems is ensured, for the case of
languages L∞(∆).

In what follows, we prove the usefulness of distribution, in the form of SN dP
systems, by proving that one of the languages in Corollary 1, can be recognized
by a simple SN dP system (with two components), even working in the Lk mode.

Proposition 1. {ww | w ∈ {b1, b2, . . . , bk}∗} ∈ Lk+2SNdP2.

Proof. The SN dP system which recognizes the language in the proposition is the
following:

∆ = ({a},Π1,Π2, {((2, 1), (1, 3)), ((1, 5), (2, 1))}), with the components
Π1 = ({a}, σ(1,1), . . . , σ(1,7), syn1, (1, 1)),

σ(1,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}),
σ(1,2) = (0, {a → a, a3 → a3}),
σ(1,3) = (0, {a → a, a3 → a3}),
σ(1,4) = (0, {a2 → λ, a6 → λ, a → a, a4 → a}),
σ(1,5) = (0, {a2 → λ, a6 → a, a6 → a3}),
σ(1,6) = (0, {a+/a → a}),
σ(1,7) = (0, {a+/a → a}),
syn1 = {((1, 1), (1, 2)), ((1, 5), (1, 1)), ((1, 2), (1, 4)), ((1, 4), (1, 6)),

((1, 4), (1, 7)), ((1, 6), (1, 7)), ((1, 7), (1, 6)), ((1, 2), (1, 5)),
((1, 3), (1, 4)), ((1, 3), (1, 5))},

Π2 = ({a}, σ(2,1), ∅, (2, 1)),

σ(2,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}).

The proof that this system works properly, recognizing indeed the language in
the statement of the proposition, can be found in [9].

Many problems can be formulated for SN P systems with request rules and for
SN dP systems. Several were formulated in [9], from where we recall the following
two general ones. :esides the synchronized (sequential in each neuron) mode of
evolution, there were also introduced other modes, such as the exhaustive one,
[11], and the non-synchronized one, [1]. Universality was proved for these types
of SN P systems, but only for the extended case. Can universality be proved for
non-extended SN P systems also using request rules?

176 M. Ionescu, Gh. Păun

5 Two Research Topics About SN P Systems

Many research topics and open problems about SN P systems can be found in the
literature. We mention here only the collection from [14], and we recall two of the
problems formulated in [15].

G. Continuing with SN P systems, a problem which was vaguely formulate
from time to time, but only orally, refers to a basic feature of the brain, the
memory. How can this be captured in terms of SN P systems is an intriguing
question. First, what means “memory”? In principle, the possibility to store some
information for a certain time (remember that there is a short term and also a
long term memory), and to use this information without losing it. For our systems,
let us take the case of storing a number; we need a module of an SN P system
where this number is “memorized” in such a way that in precise circumstances
(e.g., at request, when a signal comes from outside the module), the number is
“communicated” without “forgetting” it. In turn, the communication can be to
only one destination or to several destinations. There are probably several ways
to build such a module. The difficulty comes from the fact that if the number
n is stored in the form of n spikes, “reading” these spikes would consume them,
hence it is necessary to produce copies which in the end of the process reset the
module. This is clearly possible in terms of SN P systems, what remains to do
is to explicitly write the system. However, new questions appear related to the
efficiency of the construction, in terms of time (after getting the request for the
number n, how many steps are necessary in order to provide the information and
to reset the module?), and also in terms of descriptional complexity (how many
neurons and rules, how many spikes, how complex rules?). It is possible that a sort
of “orthogonal” pair of ideas are useful: many spikes in a few neurons (n spikes
in one neuron already is a way to store the number, what remains is to read and
reset), or a few spikes in many neurons (a cycle of n neurons among which a single
spike circulates, completing the cycle in n steps, is another “memory cell” which
stores the number n; again, we need to read and reset, if possible, using only a
few spikes). Another possible question is to build a reusable module, able to store
several numbers: for a while (e.g., until a special signal) a number n1 is stored,
after that another number n2, and so on.

H. The previous problem can be placed in a more general set-up, that of mod-
eling other neurobiological issues in terms of SN P systems. A contribution in
this respect is already included in the present volume, [13], where the sleep-awake
passage is considered. Of course, the approach is somewhat metaphorical, as the
distance between the physiological functioning of the brain and the formal struc-
ture and functioning of an SN P system is obvious, but still this illustrates the
versatility and modeling power of SN P systems. Further biological details should
be considered in order to have a model with some significance for the brain study
(computer simulations will then be necessary, like in the case of other applications
of P systems in modeling biological processes). However, also at this formal level
there are several problems to consider. For instance, what happens if the sleeping

Notes About SN P Systems 177

period is shortened, e.g., because a signal comes from the environment? Can this
lead to a “damage” of the system? In general, what about taking the environment
into account? For instance, we can consider a larger system, where some modules
sleep while other modules not; during the awake period it is natural to assume
that the modules interact, but not when one of them is sleeping, excepting the
case of an “emergency”, when a sleeping module can be awakened at the request
of a neighboring module. Several similar scenarios can be imagined, maybe also
coupling the sleep-awake issue with the memory issue.

The first of these problems will be answered below.

6 A Memory Module

We start by directly given the memory module which answers the requests of
problem G from [15]; we present it in a graphical form, in Figure 1, using the
standard way of representing SN P systems (neurons as nodes of a graph, linked
by arrows which represent synapses, with the rules of each neuron written in the
respective nodes, together with the spikes initially present there; input and output
neurons have incoming or outgoing arrows, respectively).

The system in Figure 1 works as follows. The number n is introduced in the
memory module, in the form of a spike train containing n occurrences of 1, one
after the other. The computation starts when the first spike enters the system – at
that moment, rule a5/a3 → a is enabled. For the other spikes, the rule a3/a → a is
used, always two spikes remaining inside neuron σ1. If no spike enters the system,
then the two existing spikes are removed. If, at a subsequent step, any spike enters
neuron σ1, then it is forgotten, too, by means of the rule a → λ. Thus, the number
to be stored should be introduced as a compact sequence of spikes.

Each input spike is doubled by neurons σ2, σ3, and in this way 2n spikes are
accumulated in neuron σ4. They can stay here forever, unchanged. If the trigger
neuron, σ9, receives a spike (we assume that this happens after completing the
introduction of the n spikes in neuron σ1), then a further spike is sent to neuron
σ4. With an odd number of spikes inside, neuron σ4 consumes two by two the
spikes, moving in this way n spikes in the “beneficiary” neuron σ10, at the same
time moving 2n spikes to neuron σ8. Note that after exhausting the spikes of
neuron σ4, one further spike is produced by σ7, hence in the end neuron σ8 gets
an odd number of spikes. In the same way as σ4 has moved its contents to σ8,
now the reverse operation takes place, hence σ4 will end with 2n spikes inside
(and σ8 is empty). Therefore, the “cell memory” is restored, the number n can be
read again, when the trigger gets one further spike. Always, the number n is made
available outside the memory module, but the module “remembers” the number,
for a further usage.

Now, may extensions can be imagined, for instance, towards data bases. A
table in a data base can be imagined as a sequence of “memory cells” (modules),
each one with its own label and value (number stored) and subject to updating

178 M. Ionescu, Gh. Păun

#

"

Ã

!

º

¹

·

¸

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸

º

¹

·

¸

'

&

$

%

'

&

$

%

'

&

$

%

º

¹

·

¸

?

´
´

´
´

´
´

´
´

´
´

´
´́+

¶
¶

¶
¶

¶
¶¶/

¢
¢

¢
¢

¢®
@

@R

XXXXXXXXXXXXz¤
¤
¤
¤¤²

A
AAU

£
£°C

C
C
C
C
C
C
C
CO

A
AU

¢
¢®

¡
¡ª

S
Sw

?

0x1n0y

1

a4

a5/a3 → a

a3/a → a

a2 → λ

a → λ

2

a → a

3

a → a

4

(aa)∗a/a2 → a

a3 → a

5

a → a

6

a → a

7

a2/a → a

a → a

8

(aa)∗a/a2 → a

a3 → a

10

9

a → a

0x+n+y1

memory module

trigger reading

beneficiary
store (2n)

restore

Fig. 1. A memory module

and interrogating operations. Modules can also be inserted and removed. Each of
these operations are done by means of a specialized module, one for updating,
one for interrogating, and so on, always specifying first the “address” (the label,
the ID) of the cell which is operated. The construction becomes complex (only
the indicated modules should be modified, although the trigger for the respective
operation can do the same with all other modules), but presumably feasible; we
leave this task to the reader.

Another direction of research is to consider other “brain modules” or functions
and implement them in terms of SN P systems. An example is that from [13], where

Notes About SN P Systems 179

the sleeping activity of the brain is modeled, but many others can be addressed:
learning, getting tired, taking the task of another part of the brain.

7 Pattern Recognition

One function of the brain which we have not mentioned above is pattern recogni-
tion. Neural computing is especially concerned with this task, and learning (train-
ing the net) is an essential step of pattern recognition. Although the problem is
so natural, only a few efforts were paid in SN P systems area to incorporating
the learning feature, see, e.g., [7]. In turn, nothing was done in what concerns the
patterns recognition, that it why we call here the attention about this problem.

A simple framework for that concerns handling – generating or recognizing
– arrays, pictures realized by marking the positions of a grid with symbols of a
given alphabet, in the sense of array grammars and languages. For instance, we
can imagine the following task. Consider a language of arrays, for instance, the
letters of the Latin alphabet, each one written in a rectangle with black and white
lattice positions. We can interpret a marked spot (black) as a spike and a non-
marked one (white) as no spike. Let us construct an SN P system having certain
input neurons aligned, able to read one by one the rows of the array picture. The
reading can be done in consecutive steps or internal computations are allowed
between reading two neighboring rows. After reading the whole array, the system
can continue working and, if the computation halts, the input array is recognized.

The difficulty of constructing such an SN P system lies in the fact that we
have to recognize several different letters. A variant is to construct a system which
recognizes only one of the letters, say A, but of different sized. In this latter case,
the number of input neurons should be large enough for reading all possible sizes
of the letter, and the difficulty lies again in the fact that the same neurons can
behave differently for letters of different sizes.

Anyway, we find the construction of such patter recognition SN P systems
interesting, non-trivial and rather instructive, a good exercise for understanding
the functioning of SN P systems, and, hopefully, a way to find applications for
them.

8 Final Remarks

We insist about the fact that this is only an invitation to a dynamical research area
of membrane computing, trying to convince the reader that there are interesting
problems to address and providing a few bibliographical hints. For comprehen-
sive presentations and references, the reader should consult the domain literature,
available at [23] (for instance, all brainstorming volumes can be found there, in a
downloadable form).

180 M. Ionescu, Gh. Păun

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352–2364.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162

3. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

4. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University. Mathematics-Informatics Series, 63 (2009),
5–22.

5. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

6. R. Gutierrez-Escudero et al.: Proceedings of the Seventh Brainstorming Week on
Membrane Computing. Sevilla, 2009, 2 volume, Fenix Editora, Sevilla, 2009.

7. M.A. Gutierrez-Naranjo, M.J. Pérez-Jiménez: A first model for Hebbian learning with
spiking neural P systems. In Proc. 6th Brainstorming Week on Membrane Computing,
Sevilla, 2008.

8. J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

9. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez T. Yokomori: Spiking neural dP systems.
In Proc. 9th Brainstorming Week on Membrane Computing, Sevilla, January 31–
February 4, 2011.

10. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

11. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

12. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, 1999.
13. J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal and

new issues. In [6], vol. 2, 59–72.
14. Gh. Păun: Twenty six research topics about spiking neural P systems. In Proceedings

of the Fifth Brainstorming Week on Membrane Computing, Fenix Editora, Sevilla,
2007, 263–280

15. Gh. Păun: Some open problems collected during 7th BWMC. In [6], vol. 2, 197–206.
16. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

Notes About SN P Systems 181

17. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Lecture Notes in
Computer Science, 6570, in press.

18. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
systems. Theoretical Computer Sci., in press.

19. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

20. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

21. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

22. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
23. The P Systems Website: http://ppage.psystems.eu.

