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The Dam Problem for Nonlinear Darcy’s Laws
and Dirichlet Boundary Conditions

JOSÉ CARRILLO - ABDESLEM LYAGHFOURI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (98), pp. 453-505

Abstract. We study a free boundary problem related to a steady state fluid flow
through a porous medium which is governed by a non linear Darcy’s law. A
Dirichlet boundary condition is imposed on the top of the dam. Our main results
are the continuity of the free boundary and the uniqueness of the S3-connected
solution in the two dimensional case. For the general case, we prove the existence
and uniqueness of a minimal solution.

Mathematics Subject Classification (1991): 31JXX, 76505.

Introduction

The fundamental law of the steady fluid flow through porous media was
originally discovered by Darcy on an experimental basis. The Darcy law relates
the velocity v of the fluid to its pressure p through the relation

where a denotes a positive number.
The classical mathematical study of the filtration through porous media

starts from this law. First Baiocchi [Bal], [Ba2] solved the case of a rectangular
dam problem. He introduced a transformation which reduced the problem to a
variational inequality. The dam with a general geometry was considered by H.W.
Alt [All], [A12], [A13], H. Brezis, D. Kinderlehrer and G. Stampacchia [BKS],
J. Carrillo and M. Chipot [CC 1 ], etc. A new formulation of the problem
was proposed. Existence, uniqueness of the solution and regularity of the free
boundary where studied.

Of course, the linear Darcy law is a first approximation for more compli-
cated relationships between S and p. In this paper we propose the following
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nonlinear law (see [AS], [V]): 
’

where m, a are positive numbers.
It is obvious that this law includes the linear case (m = 1). In addition,

we impose some boundary conditions for p or ~. We will treat here the case
of Dirichlet boundary conditions.

We shall begin by transforming the problem, usually stated in terms of the
pressure function, into a problem for the hydrostatic head u. Then we associate a
weak formulation to our physical model. In Section 2 we establish an existence
result and we prove various properties for the solutions. In particular we show
that the free boundary is a semi-continuous curve of the In

Section 2.3 we prove that (D is continuous in the two dimensional case. In

Section 2.4 we introduce the notion of S3-connected solution and pools like
in the linear case (see [CC 1 ] ) and prove that any solution can be written as
the sum of an S3-connected solution and pools. In the last section we derive
a comparison result which allows us to prove the existence and uniqueness of
a minimal solution which is an S3-connected solution. At last we prove the

uniqueness of the S3-connected solution in the two dimensional case.

ACKNOWLEDGMENTS. This work was done when the second author was

visiting the Universidad Complutense the Madrid. He would like to thank this
institution for providing him a nice working atmosphere. He also thanks the
European Science foundation for supporting his visit.

1. - Statement of the problem

Let S2 be a bounded, locally Lipschitz, domain in R" (n &#x3E; 2). Q represents
a porous medium. The boundary r of Q is divided into three parts: an

impervious part a part in contact with air S2, and finally a part covered by
fluid S3 (see fig. 1). For convenience, we assume that S3 is relatively open in r
and we denote the different connected components of S3 by S3, i , i = 1,..., N.

Fig. 1.
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Assuming that the flow in S2 has reached a steady state, we are concerned with
finding the pressure p of the fluid and the part of the porous medium where
some flow occurs, i.e., the wet subset A of S2. Let us first describe the strong
formulation of our problem.

1.1. - Strong formulation

The boundary of A that we denote by aA, is divided into four parts: an

impervious part, r 1, a free boundary, r2, a part covered by the fluid, r3, and
finally a seepage front, r4, where the fluid flows outside S2 but does not remain
there in a significant amount to modify the pressure (see fig. 1).

We will assume that the velocity S and the pressure of the fluid in A are
related by the following generalized Darcy law:

where m, a are positive numbers, x = (x 1, ... , xn ) denotes points in Setting
u = p + xn, the hydrostatic head, q = m -~ l, ( 1.1 ) becomes:

Note that we are looking for a p &#x3E; 0 or equivalently u &#x3E; xn . If the fluid that
we are considering is incompressible, then we have:

or

Next, on I’l UF2 there is no flux of fluid through this part of the boundary.
So, if v denotes the outward unit normal to a A, we have:

or by (1.2):

If we assume the exterior pressure normalized to 0, i.e. p = 0 on r2 U f 4,
then .

Moreover, on r4 the fluid is free to exit the porous medium and thus we
have:

which leads, again by (1.2) to:
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Let w be a nonnegative Lipschitz continuous function representing the pressure
on S2 U S3. We assume w - 0 on S2 and we still denote by w a lipschitz
continuous function defined on the whole domain Q which agrees with w on
S2 U S3. Usually, w is given by:

where hi denotes the level of the reservoir covering S3,i . Set 1/1 = w + x,.
Then we have:

So, the problem we would like to address is to find (u, A) such that (1.3)-(1.7)
hold. For this purpose we first transform our equations into a weak form.

1.2. - Weak formulation

Note that to find the pair (u, A) is equivalent to find (u, X (A~)), where
X(AC) denotes the characteristic function of the set A’ the complement of A
in Q. Then following [BKS], [A12], [CC 1 ], [CC2], [CL2], for any smooth

function ~ we have if a A is smooth enough:

So, if we also assume that u is a smooth function satisfing ( 1.1 )-( 1.7) and
a A smooth enough, we obtain:

and if we assume that:

we get by (1.6):

Now, (see (1.5)), assume that we have extended u by xn outside of A and
that we still denote by u this extention. Then, clearly, if u is smooth up to r2
we deduce from (1.9):
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where e is the vertical unit vector of R", i.e. e = (0, 1) with 0 E 
So, we are led to look for a pair (u, g) = (u, X(AC)) satisfying (1.10).

Recasting this with suitable spaces the problem becomes

We refer to (P) as the weak formulation of our initial problem. Clearly, if

( 1.1 )-( 1.7) has a solution (u, A) and if u also denotes the extention of u by
xn on S2 B A, then (u, X(AC)) is a solution of (P) and thus any solution to our
initial problem will be found among those of (P). The rest of this paper will be
devoted to the study of (P). We are first going- to establish an existence result.

2. - Existence and properties

2.1. - Existence of a solution

From now on we will assume q &#x3E; 1. Then we have:

THEOREM 2.1. Assume that q; is a nonnegative Lipschitz function and q &#x3E; 1.

Then there exists a solution (u, g) for the problem (P).

We argue as in [CL2] and for s &#x3E; 0, we first introduce the following
approximated problem:

where G, : - L’(0) is defined for any V E Lq (0) and a.e. x E Q by:

Let us first reply a technical lemma which is proved in [Dia] for example.
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LEMMA 2. 2. Assume q &#x3E; 1. There exists J1- &#x3E; 0 such that for all (x, y) E (jRn)2
we have:

Then we can prove (see [CL2]):

THEOREM 2.3. There exists a solution for the problem (P£). Moreover:

where 1.ll,q denotes the usual norm of (Q) and C a constant independent of E.

PROOF OF THEOREM 2. l. First remark that G£(u£) is uniformly bounded
(0  G~ (u~)  1, see (2.1 )) and u, is bounded in (see (2.2)i)), thus
one has for some constant C independent of 8

So, due to the Rellich’s theorem, there exists a subsequence 8k and u E (Q),
g E L q(Q) such that:

We are going to show that (u, g) is a solution of (P).
Set

Since KI is closed and convex in it is weakly closed. Thus since
U£k E u is in this set so that

Next, the set
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being closed and convex, it is weakly closed in Lq’ (S2) and thus

Moreover, since:

we deduce from (2.3)-(2.4) that:

which leads by (2.5)-(2.6) to:

and thus (P) i), ii) follow. In order to conclude, we will need the following
strong convergence which can be proved as in [CL2].

LEMMA 2.4.

(uek) converges strongly to u in (Q).

We deduce from Lemma 2.4 that

and then in particular weakly in lLq’ (2).
Let then ~ E ~ ~ 0 on S2, ~ = 0 on S3 . We have from (2.2) iii):

Letting k -~ +oo, we get by (2.3) and (2.8):

which is (P)iii) and Theorem 2.1 is proved.
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2.2. - Some properties of solutions

Let us give some properties for the solutions of (P).
PROPOSITION 2.5. Let (u, g) be a solution of (P). Then we have in the distribu-

tional sense:

PROOF. i) Let ~ E 0(0), where 0(0) is the space of C°°-functions with

compact support. Since =b~ is a test function for (P), we have:

So

ii) Let ~ E ~ (S2), ~ &#x3E; 0. For any 8 &#x3E; 0, Ji(~ A ~) - ~ min ( u s n , ~ ) is a
test function for (P). So we have

The second integral in the left hand side of the above equality vanishes
since g . (u - xn ) = 0 a.e. in 0. So we get:

Moreover A~) E Wo ’q (S2) , then we have:

Now subtracting (2.13) from (2.12) we obtain:

which can be written:
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But by Lemma 2.2

and we obtain

Letting 6 ~ 0 in (2.14), we get:

which is (2.10). Combining (2.9) and (2.10) we get (2.11). 0

PROPOSITION 2.6. Let (u, g) be a solution of (P). If we denote by H a constant
such that

then we have:

PROOF. It is clear that (u - H)+ = 0 on S2 U S3, so ~(u - H)+ is a suitable
test function for (P) and we have:

But g. (u - H)+ = 0 and Vu = V (u - H) a.e. in SZ. Then (2.16) becomes:

from which we derive successively:

Hence (2.15) holds.
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REMARK 2.7. i) We deduce from (2.9), (2.11), (2.15) and the fact that
0  g  1 a.e. in S2 (see [Kl] [Ra]) that u E for all a E (0, 1) and
consequently the set [u &#x3E; xn ] is open. Moreover u is q-Harmonic in [u &#x3E; xn ]
and then (see [Dib], [Le]) u E &#x3E; for some f3 E (0, 1).

ii) If S c S2 (resp. S c S3 ) denotes a nonempty open set of class C2, then
we deduce from (2.9) (see [Du]) that u E U S) for some y E (0, 1).

iii) From (2.11), it is clear that g is nondecreasing in x,.
In what follows, we assume that:

(2.17) 
Vi = 1,..., N, S3,i I is of class C2 except on finite number of

(n-1 )-dimensional hypersurfaces.

We shall give some informations about the set [u &#x3E; xn ) .

THEOREM 2. 8. Let (u, g) be a solution of (P). If (xb, xon ) E [u &#x3E; xn ], then
there exists 8 &#x3E; 0 such that:

where Ce = (x’, xn ) E S2 / ~ x’ - xól  e , Xn  XOn + 8
Moreover ifu(xb, xon ) = XOn, then u(xb, xn ) = Xn V(xb, xn ) E Q, xon.

First we prove a lemma:

LEMMA 2.9. Let v be a q-Harmonic function in a domain C of R n such that
v &#x3E; Xn in C. Then we have:

PROOF. Assume that there exists xo = C such that v(xo) = xon
and let C’ be a subdomain of C such that xo E C’ and C’ c c C.

Since v E (see [Dib], [Le]), xn E C~(C~) and 
Vx E R’, we conclude by using Proposition 3.3.2 of [Tol] that v = xn in C’.
Hence v = xn in C. D

PROOF OF THEOREM 2.8. Using the continuity of u, there exists 8 &#x3E; 0 such
that the set Q, = { (x’, xn ) E 0 X’ - X’ 0 I  E, IXn - xOnl I  8} is included in

[u &#x3E; Then g = 0 a.e. in Q, and by (2.11) g = 0 a.e. in Cs. Taking into
account (2.9), we deduce that:

from which we get by Lemma 2.9 u(x) &#x3E; xn Vx E C,. 0
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REMARK 2.10. Using Remark 2.7 ii), (2.17) and Theorem 2.8, one can
prove for any solution (u, g) of (P) that u(x’, xn) &#x3E; xn dx’ E 1Tx,(S3), where
7rx, is the projection on the hyperplane [xn = 0], i.e. the region below S3 is
saturated.

Thanks to Theorem 2.8, we are now able to define a function 4$ on 
by:

where the function s- is defined by:

We also define the function:

We assume all along in this paper that s- (resp. s+) is continuous except on
a set of finite number of (n - I)-dimensional hypersurfaces S- (resp. S+).

We then have the following proposition like in [CC 1 ) :

PROPOSITION 2. 11. (D is lower semi-continuous (l. s. c) on except perhaps
on S-, so 4) is measurable. Moreover .

PROOF. Using Theorem 2.8, one can argue as in [CCI]. 0

Now, we give a key theorem which generalizes Theorem 3.7 of [CCI].

THEOREM 2.12. Let (u, g) be a solution of (P) and Ch a connected component
of [u &#x3E; xn] n [xn &#x3E; h] such that 7rx, (Ch) n Jrx,(S3) = 0.

If we set Zh = x (h, then we have

To prove this theorem we need the following lemma:

LEMMA 2.13. Under the assumptions of Theorem 2.12, let ~ be a nonnegative
function in fl C (Zh ) which vanishes on [xn = h]. Then we have:
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PROOF. For 3 &#x3E; 0, the function A ~) is a test function for

(P). So we have:

which leads to:

since g (u - xn ) = 0 a.e. in S2. Now, 
u xn 

n E Wo’q (Zh ) and then we have:since = 0 a.e. in 2. Now, 8 A E W(Z/) and then we have:

Subtracting (2.21) from (2.20) we get:

But by Lemma 2.2, the first integral of the above identity is nonnegative
and we obtain:

Note that:

Combining (2.22) and (2.23) we obtain:

Letting 3 ~ 0 in (2.24) we get the lemma.
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PROOF OF THEOREM 2.12. For 8 small enough, consider -

l) where d denotes the euclidean distance in and A the

complement of nxr (Ch) in jRn-l. Remark that:

and

and then (2.25) becomes

Now the right hand side of (2.26) can be written:

Applying Lemma 2.13 with § = (1 - h), we get:

Then using (2.27) and the above inequality, we derive from (2.26)

Letting 6 ~ 0 and using Lebesgue’s theorem, we get the required inequality. D
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With the same proof of Theorem 2.12 we have:

THEOREM 2.14. Let (u, g) be a solution of (P). Let (ai, h), (bi, h), i =

1, ... , n - 1 2n - 2 points of S2 such that:

Set Zh = Q n (I17::l (ai, bi) x (h, +00) ) and assume that 7r,, (Zh) n7r,, (S3) = 0
then we have: 

fO

In what follows we assume that there is no impervious part above Q. In

other words, the graph of the function s+ is composed only by S2 and S3. Then
we have:

THEOREM 2.15. Let (u, g) be a solution of (P), xo = (x’, a point in Q. We
denote by B, the open ball of center xo and radius r contained in Q. If u = Xn in
Br, then we have:

and

where

PROOF. Note that by Remark 2.10, we have necessarily:

Moreover we have by Theorem 2.8, u = xn in Dr. Next applying Theo-
rem 2.14 with domains of the type Zh c D,., we obtain:

from which we deduce that g = 1 a.e. in Zh. This reads for all domains

Zh C Dr, then g = 1 a.e. in Dr. 0

THEOREM 2.16. Let (u, g) be a solution of (P), xo = (xb, xon ) = (xol , ... , xon )
a point in SZ and Br the open ball in S2 of center xo and radius r. Then for all
i E f 1, . - . , n - 1 }, we cannot have the following occurences
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PROOF. (i) Let ~ Since ±~ is a test function for (P), we have:

But under assumption (i ), g = 0 a.e. in Br. Then (2.29) becomes:

from which we deduce that

But since in. Br we deduce from Lemma 2.9 a contradiction with
the maximum principle for q-Harmonic functions.

(ii) Let ~ E 0 (B,). We have by (2.29), for i E {I, ... , n - 1}:

which leads by assumption (ii) to:

where

and

Since the integral in the right side of (2.30) vanishes by Theorem 2.15, we ob-
tain : 

11r

which leads to

Thus we have 0 in and we derive a contradiction as

in (i). D

When the free boundary is a smooth surface, the theorem below gives the
form of the function g and shows that it is a characteristic function of the dry
set.
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THEOREM 2.17. Let (u, g) be a solution of (P). If the free boundary i.e. the set
S2 n a [u &#x3E; xn ] is o, f’Lebesgue measure zero, then we have:

PROOF. First we have g = 0 a.e. in [u &#x3E; 

Next let (xó, xon) e [u &#x3E; It is clear that there exists a ball Br of
center (xo, xon ) and radius r contained in &#x3E; xn ) . Then from Theorem 2.15
we have:

Note that 7r,, (D,) C Jrx,(S2) (see Remark 2.10). For 3 &#x3E; 0, set CX8(X) =

1) where d denotes the euclidean distance in and C the
6

complement of in Taking = X (D,-)as (x’) (xn - xon) as a test
function for (P), we get:

from wich we deduce g = 1 a.e. in Dr by letting $ go to 0.
Hence we have g = 1 a.e. in S2 B [u &#x3E; 

Now the set Q n 8[u &#x3E; xn ] being of measure zero, we get:

which is (2.31 ). D

2.3. - Regularity of the free boundary

In this section we assume that n = 2. The main resul is the continuity of
the free boundary.

THEOREM 2.18. Let (u, g) be a solution of (P). Then continuous

at any point xo e except perhaps at the point of S- U S+.

PROOF. Note that by Proposition 2.11 it is enough to prove that I&#x3E; is u. s. c.

i) Let xo = (xo, e S2 f1 a [u &#x3E; x2] with Let &#x3E; 0.

Since u (xo) - xo2 and u is continuous in Q, there exists a ball 

(s’ e (0, s)) such that:

and

Using Theorem 2.16 (i), there exists for example x = (x’, x2) E 
such that: x’  xo, u (x) = X2- Set:

and
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Since ~ = 0 on 9Z, ±~ is a test function for (P) and then we have:

Now one can easily check:

Subtracting (2.34) from (2.33), we get:

which can be written:

By Theorem 2.14 we have for Zh+£ _ ((:K’, x’) x (h + E, +oo)) n Q:

Consequently if we add (2.35) and (2.36) we obtain:

But

Moreover since v = E ~- h in Z n [v &#x3E; x2], we have
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Using (2.37)-(2.39), we get V(u - v)+ = 0 a.e. in Z n [v &#x3E; x2] and u  v
in Z n [h  x2  h -I- ~], which leads to in and by
Theorem 2.8 we obtain u = x2 in Z n [x2 &#x3E; h + ~].

Then we deduce from Proposition 2.11 h + E  ~ (xo) + 2E
Vx’ E (x’, xb). Hence (D is u.s.c on the left of xo. Now using Theorem 2.16
(ii) and arguing as above, one can prove that (D is u.s.c. on the right of x’
Thus 4) is continuous at xo.

ii) Let xb E S+ such that (xb, S2. Then 4$ is upper
semi-continuous at xo since s+ is continuous at xo.

iii) Let X’ E Int(lrx,(S2)) such that E S, B S-. Taking into
account Proposition 2.11, it suffices to prove that (D is u.s.c at x’

Let 8 &#x3E; 0. By continuity, there exists a ball + E)) (8’  E)
of center (x§, 4$(x§) + E) and radius E’ such that:

Using Theorem 2.16 (i), there exists for example x = (x’, x2) 
+ 8) n S2, x’  x, such that u (x) = x2. Set h = + 8),

and

The rest of the proof is identical to the one of i). 0

From Theorems 2.17 and 2.18, we have the following Corollary:

COROLLARY 2.19. Let (u, g) be a solution of (P). Then g is a characteristic

function of the dry set i.e.

2.4. - S3 -connected solution

In this section we make the following assumption:

Following [CC 1 ] we set:

DEFINITION 2.20. A solution (u, g) of (P) is called S3-connected solution
if for any connected component C of [u &#x3E; we have: # ø.

REMARK 2.21. Thanks to Remark 2.10, it is easy to see that if C is a

connected component of [u &#x3E; xn] such that # 0 for some
i E { l, ... , N{, then C contains the strip of S2 below S3,i and S3,i on its

boundary.
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THEOREM 2.22. Let (u, g) be a solution of (P) and C a connected component
of [u &#x3E; xn] such that n Jrx,(S3) = 0.

If we set hc = sup xn / (x’, xn ) E C }. Then we have:

PROOF. By assumption we have 7rx,(C) C 
If we denote by Z the strip:

then ±/(Z)(M 2013~) = =L~(C)(M 2013~) is a test function for (P) and we have:

Applying Theorem 2.12 to Z (one can remark that Z = Q n x

(h, +00)) where Ch = C is a connected component of [u &#x3E; xn] n [xn &#x3E; h] and
h = inf{ xn / (x’, xn) E Z }), we have:

Now adding (2.41) and (2.42), we obtain:

which can be written

This leads to

Vu = 0 a.e. in Z n [u &#x3E; xn ] = C and g = I a.e. in Z n [u = 

Thus we have

This leads to the following definition (see [CC 1 ]):
DEFINITION 2.23. We call a pool in Q a pair (u, g) of functions defined

in Q by:
u(x’, xn ) = (h - xn )+ + xn and g (x’, xn ) = 1 - x ([xn  h]) a.e. in Z,

u (x’, xn ) = xn and g (x’, xn ) = 1 a.e. in Q Z,
where Z = xR), C is a subdomain of Q, h = max ~xn / (x’, E C}
and Z n [xn  h] is connected.

REMARK 2.24. Thanks to this definition, Theorem 2.22 becomes: for all

solution (u, g) of P and all connected component C of [u &#x3E; xn] such that
n Jrx,(S3) = ø, (u, g) agrees with a pool in the strip Q x R).

So we can prove:
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THEOREM 2.25. All (u, g) solution of (P) can be written as the sum of an
S3-connected solution and pools.

PROOF. Denote by the different connected components of [u &#x3E; xn]
satisfying: 0, and by the connected components of

[u &#x3E; xn ] such that: 7rx, (cj) n Jrx,(S3) i= 0. Set:

Then all connected components of [u’ &#x3E; xn ] are components Cj ( j E J)
of [u &#x3E; xn]. We deduce that if (u’, g’) is a solution of (P), it will be an

83 -connected solution.
Let us prove that (u’, g’) is a solution of (P).
i) (u’, g’) E x L~(~) indeed:

ii) It is easy to see that u’ &#x3E; xn, 0  g’  1 and g’ (u’ - xn ) = 0 a.e. in S2.

iii) Let ~ E W 1’q (S2), ~ &#x3E; 0 on S2 and § = 0 on S3. Then by Theo-
rem 2.22 we have:

Thus the theorem is proved. D

3. - Comparison and uniqueness

3.1. - A comparison theorem

The main result of this paragraph is the following comparison result:

THEOREM 3.1. Let (u 1, gl ) and (u2, g2) be two solutions of (P). Then we have:

where

um and = 

We first give a proof when the free boundary is of Lebesgue’s measure
zero which is the case when n = 2 since the free boundary is continuous (see
Theorem 2.18). To do this, we need a lemma.
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LEMMA 3.2. Let (u 1, gl ) and (U2, g2) be two solutions of (P) and let (Di
(i = 1, 2) be the function associated to u i by (2.19).

If the sets a [ui &#x3E; xn ] (i = 1, 2) are both of Lebesgue’s measure zero, then we
have for all ~ n C(S2), ~’ &#x3E; 0:

where

PROOF. For E &#x3E; 0, we consider $ = min (, UiE m . . Since I; = 0 on

S2 U S3, ~ç is a suitable test function for (P). So we have for i, j = 1, 2 with
i =A j:

But we integrate only on the set [ui - um &#x3E; 0] where um - uj. So (3.2)
becomes

which can be written

By Lemma 2.2 the second integral in the above equality is nonnegative, so

On the set xn] we have ui &#x3E; xn and gi = = 0. On [um = xn] we
have gM = 1 by (2.31). So the right hand side of (3.3) reads:
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Moreover one can check:

Combining (3.4) and (3.5), we obtain:

and (3.3) becomes:

Letting - - 0 and using Lebesgue’s theorem we get the lemma. D

PROOF OF THEOREM 3. 1. Let ~ E C 1 (S2), ~ &#x3E; 0. Set

For 3 &#x3E; 0, set as (x) = (l - where Am = xnl We have:

Applying Lemma 3.2, we have:

Since (I - a6)~ is a test function for (P), we have:
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Remark that ( 1 - as ) vanishes on the set Am, so:

Then if we subtract (3.9) from (3.8), we get:

Taking into account (3.6), (3.7) and (3.10), we get:

which leads by letting 8 go to 0 and using Lebesgue’s theorem:

Taking M - in (3.11), where M = sup , we obtain:
fi

By density, (3.12) holds for all ~ E W 1’q (S2), ~ &#x3E; 0.
For any ~ E remark that: ~ = ~+ - ~ - with ~- = (

and (3.12) holds for ~ + and ~ - . Thus:

Now we give the proof for the general case without any assumption on the
free boundary and without assumptions (2.17) and (2.18). However we shall

make some other assumptions. Let us first introduce the following notations:

and assume that:
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We also assume that:

where v denotes the outward unit normal to S1.

REMARK 3.3. i) Recall that (3.13) means 
is dense in (see [Ad]). Moreover when q &#x3E; n the only (1, q’)-polar
set of SZ is the empty set. So we assume that q  n.

ii) Assumption (3.14) means that the impervious part S, of must be
located at the bottom of our porous medium.

The proof uses some idea of [C2] and consists on doubling of variables.
It will be performed in several steps and we shall need some lemmas.

LEMMA 3.4. Let (u, g) be a solution of (P), then we have:

PROOF. First ~ is a test function for (P), then we have:

which is (3.15) for ~. = 1.
Next, for E &#x3E; 0, the nonnegative function vanishes on 8Q

Then we have from (2.10):

Moreover, we have:

Subtracting (3.18) from (3.17), we get:

Since the second integral in the above inequality is nonnegative (see Lemma 2.2),
we obtain by letting s --* 0 _

which is (3.15) for ~, = 0.
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Now due to (3.13), we can assume, without loss of generality, that Eo =
d( supp(~), S1 U S3) &#x3E; 0. Let us extend u (resp. g) outside Q by xn (resp. 1)
and still denote by u (resp. g) this function. For E E (0, Eo/2), let ps E D(RI)
with C be a regularizing sequence and let f, = Pe * f for a
function f. Then from (3.16) and (3.19) we deduce that:

for all ~ E Ð(JRn), ~ ~ 0, d( supp()) , So &#x3E; 0, where 
For £ E [0, 1 ], we have:

Adding (3.20) and (3.22), we get

Note that (3.21) and (3.23) are still true for functions of the type K~ with
K a 0 and K e Whence we deduce for K = min (À - g~ )+ /S, 1 ~ ,
~&#x3E;0:

Set Is = = Ii + J2 with:

which converges to:

when 8 - 0, by the Lebesgue theorem and:

which converges to 0, when 3 - 0, by Lebesgue’s theorem.
Thus, letting successively 52013~0 and s ~ 0 in (3.24), we get:

v

which is (3.15).
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LEMMA 3.5. Let (u, g) be a solution of (P) and let g E L‘-’’° (S2) such that:

Then we have:

where H denotes the maximal monotone graph associated to the Heaviside function
and

PROOF. From (3.25), we have immediately:

Since 1)~ = 0 on and g. (u - xn ) = 0 a.e. in Q, we have:

This proves (3.26) for k &#x3E; 0 since in this case £ = 0.
For k = 0 and ~ _ ~1, (3.29) becomes:

Moreover, we have:
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Subtracting (3.31) from (3.30), we get:

which can be written:

Now, letting 8 ~ 0 in (3.32), we obtain:

Applying Lemma 3.4 for ~l and À, we have:

Using (3.28), (3.29), (3.33) and the last inequality, we get the lemma. 0

LEMMA 3.6. Let (u, g) be a solution of (P) and let 0 E f1 such
that: 9(0) = 0, o’ &#x3E; 0, o  1. Then we have:

PROOF. Let ~ be as in Lemma 3.6. Let = 1). Since

::l::(1 - 8 (u - xn) is a test function for (P), we have:

Note that g = 0 almost every where 0. Then (3.35) becomes:
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Now, we have:

Subtracting (3.37) from (3.36), we get:

By Lemma 2.2, the first integral in the left side of (3.38) is nonnegative.
Then we obtain by letting e - 0:

which leads to

~ ( 1 - e (u - x~ ) ) .~ being a test function for (P), we have:
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Subtracting (3.40) from (3.39) and taking into account the fact that 
0(u - x,,)).) = a.e. in Q, we get:

for any ~ e D(R"), ~ ~ 0, (1 - Ð(u - xn)).ç - 0 on S2 U S3 . Moreover due
to (3.13) one can assume that Eo = d( supp(~), S2) &#x3E; 0.

Let us extend g by 0 outside Q and still denote by g this function.
For 8 E (0, ~o /2), let ps be a regularizing sequence with supp (p£ ) c
B(0, s). Set 

From (3.41), we easily deduce that for any k E R and for any nonnegative
smooth function K, we have:

Taking K = min (ge - À)+ /8, 1) for 6 &#x3E; 0, we can prove as in the proof of
Lemma 3.3, by letting successively 8 - 0 and E - 0 in (3.42), that:

which leads to:

This proves (3.34) for k = 0.
Assume that k &#x3E; 0. Then £ = 0 and (g-À)+=g. Since ±min ( kW u xn ))+ , 1 . ( 1-

is a suitable test function for (P), we have:

which can be written by taking into account that g.(u - xn ) = 0 a.e. in Q:

by (3.41) and the lemma follows for k &#x3E; 0. D

Then, we can prove, using the notations of Theorem 3.1:
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LEMMA 3.7. Let B be a bounded open subset ofjRn such that either B n r = ~Q
or B n r is a Lipschitz graph. Then we have:

PROOF. Let us consider (u 1, gl ) and (U2, g2) as two pairs defined almost
everywhere in Q x Q in the following way:

Let v E Ð(B), v &#x3E; 0, supp(v) n (SI U S3) = 0. Let P6 E 0 (R), 0,
= 1, supp (ps ) C B(X8,8) where xs - 0 when 3 - 0, is such

that:

Set ~(x, y) = v(XiY)p8(X;Y). Then for 8 small enough, ~ E 0 (B x B)
and satisfies:

Then, for almost every y E Q we can apply Lemma 3.4 to (u 1, gl ) with:

So we get for a.e. y E Q:

where ( a , ,... , a ~ .where V, = 
I 

... , axn
Then by integrating over Q, we obtain:

Similarly, for almost every x E S2, we apply Lemma 3.5 to (U2, g2), with:



483

Then we have:

for a.e. x E Q, where Vy = (-aa ,... , £) .y 
= 

ayl , 
* * * , ayn .

This inequality becomes by integrating over Q:

Since u 1 does not depend on y and U2 does not depend on x, and

min «u 1-xn ~-~u~-yn ~~+ , 1 ) § = 0 on (a S2 x Q)U(QxaQ), we have:

Now since (oX + Vy)ul = Vxuj and (V,c + Vy)u2 = VyU2, we get by
adding (3.48), (3.49), (3.50) and (3.51)
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which can be written:

since we have a.e. in Q x Q:

Note that we have (see 3.27):
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Then we get by the Lebesgue theorem:

whence by letting E - 0 in (3.52), we obtain:

Then, let us introduce the following change of variables:

Moreover, let:

where y is the characteristic function of SZ. Then (3.53) leads to:

and by letting 6 - 0, we get:

since u2 leads to U2 = um and (g2 - gl )+ - -gl + max(gl, g2) =

Thus we have proved (3.44). D
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LEMMA 3.8. Let B be a bounded open subset of R’ such that either B n r = Q~
or B n r is a Lipschitz graph. Let g E L ’ (0) such that:

Then we have:

PROOF. We consider (u 1, gl ) and (U2, g2) as two pairs of functions defined
in S2 x Q like in (3.45). Let v be like in (3.55), let ps E 0,

= 1, supp (ps ) C where xs - 0 when 8 - 0, is such
that: 

I I

For 3 small enough, let us define ~ x B) by:

Then we have:

Now, since supp(v) f1 U s2) = 0, we can find a such that

if supp(v) n S3)  0. Then, let 9 be a function such that:

If supp(v) n s3) = o then supp(v) n (~2 U s3) = o and we can take 8 = 0.
Consequently, for 8 small enough we deduce from (3.57) and (3.58):

and from (3.56):
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Using (3.56), for a.e. y E S2, we can apply Lemma 3.4 to (u 1, gl ) with:

So we get for a.e. y E S2:

and by integrating over Q, we obtain:

Similarly, for a.e. x E S2, we apply Lemma 3.5 to (u2, g2), with

Then we have:

and by integrating over Q, we get:

Since - 0 a.e. in S2 and u2 does not depend on x, we deduce
from (3.56):
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Adding (3.61) and (3.62), we get by taking into account (3.63) and (3.64):

Then by letting 3 - 0 in (3.65), we obtain:
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Since ± min( (Ul - 8 U2)+ and ±min( (Ul - 8 U2)+ xn ) are

test functions, we have by taking into account that gi (ui - xn) = 0 a.e. in Q:

and

Using (3.67) and (3.68), we deduce by letting 8 - 0 in (3.66)

which proves (3 .5 5 ) . 0

From the above lemma we can prove the following result:
LEMMA 3.9. Let B be a bounded open subset of R n such that B n r = 0 or

B n r is a Lipschitz graph. Then we have:

PROOF. Let v 0, supp ( v ) n (s, U s2)=O. Let 0, E 
defined by:

and let  = {jc EQ  8}.
Then, from Lemma 3.7, we have for i = 1, 2:
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From Holder and Poincare inequalities we deduce the existence of a constant
C such that:

Using (3.71) and (3.72) we obtain:

which leads to (3.69) by letting 8 go to 0. 0

By the same proof than for Lemma 3.9, we can prove, since the Poincar6
inequality holds for a function satisfying supp(v) n (o-1 U S2 U s3) = ø:

LEMMA 3. 10. Let B be a bounded open subset such that B f1 f = 0 or
B rl r is a Lipschitz graph. Then we have

PROOF OF THEOREM 3.1. Let v 0. Using (3.13) we deduce
that there exists a sequence (vp)p of nonnegative functions 
such that:

By means of partition of the unit we can write:

where

whence we get for i = 1, 2:

and by letting p - 00, we get (3.74) for v. By density (3.74) is still true for
all v a 0.

Now let M = supv. Applying (3.74) for M - v, we get:
~2

By density we get (3.1 ) for all v E v &#x3E; 0. To conclude, remark
that v = v + - v - . 0
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As a direct consequence of Theorem 3.1, we have:

COROLLARY 3.11. Let (u 1, gl ) and (u2, g2) be two solutions of (P). Then

(min(ul, u2), max(gl, g2)) is also a solution of (P).
The following paragraph is devoted to prove the uniqueness of a minimal

solution in a determined sense.

3.2. - Existence and uniqueness of a minimal solution

In the case where n &#x3E; 3, we assume that (3.13), (3.14) are satisfied and
q  n. Then we, consider:

s = {(M, g) / (u, g ) is a solution of (P) }

and define a functional J on S by:

Then, we have:

THEOREM 3.12. There exists a unique minimal solution (um, gM ) of (P) in the
following sense:

To prove Theorem 3.12, we need a lemma:

LEMMA 3.13. J is strictly monotone in the following sense:

Moreover

and

PROOF. Let (u 1, gl ), (u2, g2) E S such that: u2 and g, a.e. in Q.

Since ~(ui - ~) (i = 1, 2) is a test function for (P), we have:

from which we deduce by (3.1 ):
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Since = 0 a.e. in Q, (3.78) leads to:

Using (6.79), we derive:

Now if u 2, then g2. Indeed assume that g 1 - g2 and take

+(uj - u2) as a test function written for u I and u 2 respectively. Then subtract
the equations, we get:

Using Lemma 2.2 and the fact that u j I = U 2 on S2 U S3, we deduce that u j I = ~2.
Since g2 :::; g, and g, 0 92, we have  0 i.e. 

J(U2, 92)- D

PROOF OF THEOREM 3.12. Set:

Since we have:

we deduce that there exists a sequence such that:

By induction, we construct a nonincreasing sequence fk ) E S in the fol-
lowing way:

and

Using Corollary 3.11, we have (Vk, fk) E S dk E N. By construction, we have:

and
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which leads by monotonicity of J to:

and

Now by (3.82), we have also:

and

from which we easily deduce by Beppo-Levi’s theorem, since for a.e. in 0

by (2.15) and 0  fk  1, that there exists (v, f ) E Lq (S2) 
such that:

(3.85) 
vk - v strongly in Lq(0) and a.e. in Q

(3.85) 
fk - f strongly in L~ / (Q) and a.e. in Q.

Otherwise, we have:

and so:

Then, we can extract a subsequence (Vkp ) such that:

(3.86) vkp 
~ v weakly in 

Let us show that (v, f ) is a solution of (P). Since we have:

we deduce by letting p -~ and using (3.85)-(3.86):

and

Let E such that, &#x3E; 0 on S2 and = 0 on S3. We have:
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So to conclude, it is sufficient to prove that:

Since v) is a suitable test function for (P), we have:

which leads to:

Using (3.85) and (3.86), we have immediately:

Then, from (3.89) and (3.90), we deduce that

which leads to (3.88) (see [Br]) and by letting p - +00 in (3.87) we get:

Finally (v, f ) is a solution of (P).
Now from (3.85) and (3.88) we deduce that:

Let (u, g) be any element in S. By Corollary 3.11, we have:

(w, h) = (min(u, v), max(g, f)) E S and J(w, h)  J(v, f) =a  J(w, h).

So J(w, h) = J(v, f). But since w  v and f  h, this leads by Lemma 3.13
to v = w = min(u, v) and v  u a.e. in S2.

Using (3.79) for (w, h) and (v, f ), we get f = h = max(g, f ) and g  f
a.e. in S2. Hence we deduce that (v, f) = (um, gM) is unique and satisfies:

u, g  gM a.e. in Q. D

3.3. - Uniqueness of the S3-connected solution

In this paragraph we assume that n = 2 and that w is given by (2.40).
From (2.17) it is clear that for all i E {1, ... , N} there exists xi E S3,i, ri &#x3E; 0

and ai E (0, 1] such that ri) n i is of class 
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Then we have the following uniqueness theorem:

THEOREM 3.14. There is one and only one S3-connected solution of (P).

Note that we have restricted ourselves to the two dimensional case since
our proof uses some properties relative to q-Harmonic functions which are true
in two dimension and are unknown in dimensions greater than 2. The proof
needs some lemmas:

LEMMA 3.15. Let (u, g) be an S3 -connected solution of (P). For i E { 1, ... , N},
let Ci be the connected component of [u &#x3E; X2] such that S3,i. Then we have
for all i E {I, ... , N}:

i) either 3x; E B (xi , ri) n S3, i , B~ E (0, ri ) : dx E r;) n Q ~ u (x ) ~ 0

ii) or u = hi in Ci.

PROOF. i) First note that for all r E (0, ri) we have u E (B(xi, r) n Q)
(see [Lb], [Tol]. Next assume that there exists X’ E B (xi , ri ) f1 S3, i such that

0. Then there exists r’ E (0, ri ] such that:

ii) Assume that Vu(x) = 0 Vx E B(xi, ri ) n S3,i. Then we have

Since u - hi = 0 and V(u - hi)(x) = 0 on B(xi, we can extend u - hi i
by 0 into B (xi , to get a function u - h i E ri)).

Moreover u - hi is q-Harmonic in

Then we deduce that u - hi is q-Harmonic in B(xi, ri) (see [K2]). But since
the zeros of the gradient of a nonconstant q-Harmonic function are isolated
(see [K2], [M]), we have u - hi = 0 in B(xi, ri).

In the same way, u - hi is a q-Harmonic function in Ci such that u - hi - 0
in B (xl , ri ) n Ci . So u - hi = 0 in Ci. 0

LEMMA 3.16. Let (u, g) be an S3-connected solution of (P). If u is not constant
in Ci or um is not constant in Cmi (i E {I, ... , N}), where Ci and Cmi are respec-
tively the connected component of [u &#x3E; X2] and [um &#x3E; X2] satisfying Ci :) S3,i and
Cmi D S3~i . Then there exists X’ E B(xi, ri ) f1 S3, i, r’ E (0, ri ), ko, XI 1 &#x3E; 0 such

that:

where ~,(x) = fo, IVWt(x)IQ-2dt and wt = tu -f- (1 - t)um Vt E [0, 1].
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PROOF. We shall consider only the case where u is not constant in Ci.
So we are in the situation i ) of Lemma 3.15. Moreover Vu is continuous in

fl S2 for all r E (0, ri ) . Then there exists X’ E B (xi, E (0, ri ),
ci, c~ &#x3E; 0 such that:

Using the continuity of Vum in n Q, we have also for some constant
c~ &#x3E; 0:

From (3.93)-(3.94), we have:

Let us distinguish two cases:

Using (3.95) we have:

Since x H ~ IVwt(x)IQ-2 is continuous in Ki, b’t E [o, 1 ], we deduce from (3.96)
that x - £(x) is continuous in Ki.

Set:

and

Then we have: ~. (x )  k I t/x E Ki. Now Ào = ~, (x* ) and ~,1 I = ~, (x * )
with x*, x * E Ki, so  and Ào &#x3E; 0. Indeed if q = 2, Ào = 1 and if

q &#x3E; 2:

2 d CASE: 1  q  2

In this case (3.95) leads to:

We are going to prove that:

for some ri’ E (0, r’].
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For x E Ki, set a (x ) = and _ ~ (u - u m ) (x ) . Then one has:

Two cases will be distinguished:

i) = 0

So = = 0, Vt E [o, 1].
We claim that:

Indeed, if (3.99) is not true, we would have:

Since [0, 1] is compact, there exists a subsequence such that t~k 2013~ ~
in [0, 1] when k 2013~ +00. 

_______

Now X£k e bk e N. So X£k 2013~ xi in B(xi, ri) n Q when k -~ +00.
Since u, um e we get:

Hence (3.99) is true and we have:

from which we deduce:

which is (3.98) in this case.

Using the continuity of Vu and Vum in Ki, we deduce that there exists
ri’ E (0, r’], coi &#x3E; 0 such that:



498

Now we have:

So

since q - 2  0 and 

Then we have by (3.100): 
lfi 12 

*

- If k (x )  0, we have for x E K’:

- If k (x ) E (0, 1), we have for x E Kl:

- If k (x ) &#x3E; 1, we have for x E K::
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Using (3.102)-(3.104) we get:

This achieves the proof of Lemma 3.16. 0

LEMMA 3.17. Let (u, g) be an S3-connected solution of (P). For all i E

{ 1, ... , N } there exists X’ E B (xi , ri) f1 S3, i, r’ E (0, ri) such that:

PROOF. If u is constant in Ci and um constant in Cmi, then we have

necessarily u = hi in Ci and um = hi in Cmi and Lemma 3.17 follows in this
case.

In the following we assume that u or um is not constant respectively in Ci
and Cm i .

By Lemma 3.16 we know that there exists X’ E B(xi , ri ) i and r’ E
(0, ri), Ào, Àl &#x3E; 0 such that:

Since r~) n Q c Ci n Cmi and g = = 0 a.e. in Ci f1 Cmi, we deduce
from (3.1 ):

with A(h)= Ihlq-2h for h E R~.
Set w = a (x) = aij (x) and remarkfo, a 

xj

that for X E r,) n Q, we have:

which leads by (3.106) to:

Note that for h E R~ B {OJ, i, j E {I, 2}, we have:
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From (3.108), it is clear that a (x) is a symmetric matrix. Let us show that

a (x ) is uniformly strictly elliptic in n Q. To do this we first prove
that:

We also deduce from (3.108), for all x E Cmi : *

which leads for all y = (yl , y2) E to:

Now one can easily show:

Note that:

Combining (3.111) and (3.112), we get:

Thus (3.109) holds from (3.110) and (3.113).
Using (3.105) and (3.109), we get:

where £i = min (1, q - and ~,’ = I)À1.
Since w = 0 on R(x;, r~) n s3,i, we can extend w by 0 into 

and the extension belongs to 
Now we extend a(x) into by ~0~2. So (3.107) becomes:

and (3.114) leads to:

Since w &#x3E; 0 in r) and w = 0 in rl ) B Q, we deduce from (3.115)-
(3.116) and the strong maximum principle for linear elliptic equations that w = 0
in r;) and u = u m in r;) n Q. D
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PROOF OF THEOREM 3.14. Let (u, g) be an S3 -connected solution of (P).
For i E { 1, ... , N}, let Ci (resp. Cmi ) be the connected component of [u &#x3E; x2]
(resp. [um &#x3E; x2) such that Ci D S3,i (resp. Cmi D S3~i ).

First note that since u in Q, we have Cmi c Ci. We want to prove
that u = um in Cmi.

. If u and um are constant respectively in Ci and Cmi , then it is clear by
Lemma 3.15 that u = u m = hi i in Cmi..

. If u is not constant in Ci or um is not constant in Cmi, then the zeros
of Vu or Vum are isolated in Cmi.

Let C be a subdomain of Cmi such that C n r~) ~ 0 and C c Cmi..
Set C’ = { x E C B S / w (x ) = 0 } 1 where S - { x E Cmi -

Vum (x) = 0 }. Note that S is a discrete set.

It is clear that C’ is connected and closed relative to C B S. Moreover by
Lemma 3.16 we have w = 0 in r~) n Q and since S consists on isolated
points, we deduce that C’ # 0.

We shall prove that C’ = C B S. To do this it suffices to prove that C’ is
also an open set relative to C B S. So consider xo E C’. Since W E Cl (C’),
w &#x3E; 0 and w(xo) = 0, we get Vw(xo) = 0 i.e. Vu(xo) = 0

(xo ¢ S).
Then we have 0, Vt E [0, 1].
Arguing as in the proof of Lemma 3.16, one can prove:

with E small enough to have B(xo, s) C C B S.
Now using (3.117) we have:

which leads to:

From (3.1), we can derive (see the proof of Lemma 3.17):

with a(x) = and 

Using (3.118) and (3.109) we have:

with q-1). min(m¡-2, M~ ~) and Mq 2).
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Now w satisfies:

Moreover from (3.120), a is uniformly strictly elliptic in B(xo, 8). So by the
strong maximum principle for linear elliptic equations w = 0 in B(XO,8) which
leads to B(xo, 8) C C’.

We have proved that C’ is an open set relative to C B S. Thus C’ = C B S
and w = 0 in C B S. But w being continuous and S discrete, we have w = 0
in C. Thus w = 0 in i.e. u = um in Cmi.

Finally one can prove that Ci - Cmi . Indeed Cmi is a nonempty open set
in the connected set Ci. It suffices to prove that Cmi is also closed relative
to cl.

Let be a sequence of Cmi which converges to an element x in Ci.
Since u(xp) = u m (x p ) ‘v’p E N, we deduce by continuity that u (x ) = u m (x ) .

So um (x) &#x3E; x2 and x E Cmi.. Thus Cmi = Ci and u = um in Cml - Ci
Vi ~ {1,... , N } . Hence in S2 .

From Corollary 2.19, we deduce that g in Q. 0
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