
Designing Tissue-like P Systems for Image
Segmentation on Parallel Architectures

Javier Carnero1, Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1 Computational Algebraic Topology and Applied Mathematics Research Group
Department of Applied Mathematics I
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
javier@carnero.net, sbdani@us.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

Summary. Problems associated with the treatment of digital images have several in-
teresting features from a bio-inspired point of view. One of them is that they can be
suitable for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image. In this paper we report a work-in-progress of a hardware
implementation in Field Programmable Gate Arrays (FPGAs) of a family of tissue-like
P systems which solves the segmentation problem in digital images.

1 Introduction

Membrane Computing is a computational paradigm inspired in the functioning of
living cells and tissues. One of its characteristic features is the use of parallelism as
a computation tool. In many of the models, the devices perform the computation
by applying parallelization in a double sense: on the one hand, several rules can be
applied simultaneously in each membrane; on the other hand, all the membranes
perform the computation at the same time.

In spite of recent efforts [15], it seems that in the next future there will not be
an implementation of P systems in vivo or in vitro. All the possible approaches to
the theoretical model lean on the current computer architectures.

In this line, many efforts have been made for obtaining a simulation of the
P system behavior with current computers [13, 16]. Most of these simulators are
thought for running on one-processor computers. These sequential machines only
perform one action per time unit and the parallelism of the membrane computing
devices is lost. This bottle-neck produces a serious discrepancy between the theo-



44 J. Carnero et al.

retical efficiency of the P systems and the realistic resources needed for performing
a computation.

In the last years, according with the development of new parallel architectures,
new attempts have been made for approaching the computation of P systems by
performing several actions in the same step. This does not mean a real implemen-
tation of the P system, but it can be considered as a new step toward a more
realistic simulation.

The first parallel and distributed simulators were presented in 2003. In [12],
a parallel implementation of transition P systems was presented. The program
was designed for a cluster of 64 dual processor nodes and it was implemented
and tested on a Linux cluster at the National University of Singapore. In [32],
a purely distributive simulator of P systems was presented. It was implemented
using Java’s Remote Methods Invocation to connect a number of computers that
interchange data. The class of P systems that the simulator can accept is a subset
of the NOP2(coo, tar) family of systems, which have the computational power of
Turing machines.

Also in 2003, Petreska and Teuscher [29] presented a parallel hardware im-
plementation of a special class of membrane systems. The implementation was
based on a universal membrane hardware component that allows efficiently run P
system on a reconfigurable hardware known as Field Programmable Gate Arrays
(FPGAs) [35]. Recently, a new research line has arisen due to a novel device ar-
chitecture called CUDATM , (Compute Unified Device Architecture) [39]. It is a
general purpose parallel computing architecture that allows the parallel compute
engine in NVIDIA Graphic Processor Units (GPUs) to solve many complex com-
putational problems in a more efficient way than on a CPU [5, 6, 7]. Following the
research line started in [29], Van Nguyen et al. have proposed the use hardware
implementation for membrane computing applications [22, 23, 24, 25] based on
reconfigurable computing technology called Reconfig-P.

In this paper, we also explore the possibilities of the Field Programmable Gate
Arrays (FPGAs) for building a hardware implementation of P systems. The P
system model chosen for the implementation has been tissue-like P systems and
as a case study we consider the segmentation problem in 2D images.

Segmentation in computer vision (see [31]), refers to the process of partitioning
a digital image into multiple segments (sets of pixels). The goal of segmentation
is to simplify and/or change the representation of an image into something that
is more meaningful and easier to analyze. Image segmentation is typically used to
locate objects and boundaries (lines, curves, etc.) in images. More precisely, image
segmentation is the process of assigning a label to every pixel in an image such
that pixels with the same label share certain visual characteristics. Technically,
the process consists on assigning a label to each pixel, in such way that pixels
with the same label form a meaningful region. There exist different techniques to
segment an image. Some techniques are clustering methods [1, 36], histogram-based
methods [34], Watershed transformation methods [33], image pyramids methods



Designing Tissue-like P Systems to Parallel Architectures 45

[18] or graph partitioning methods [37, 38]. Some of the practical applications of
image segmentation are medical imaging [36] or face recognition [17].

Segmentation in Digital Imagery has several features which make it suitable
for techniques inspired by nature. One of them is that it can be paralleled and
locally solved. Regardless how large is the picture, the segmentation process can
be performed in parallel in different local areas of it. Another interesting feature
is that the basic necessary information can be easily encoded by bio-inspired rep-
resentations.

In the literature, one can find several attempts for bridging problems from
Digital Imagery with Natural Computing as the works by K.G. Subramanian et
al. [8, 9] or the work by Chao and Nakayama where Natural Computing and Al-
gebraic Topology are linked by using Neural Networks [10] (extended Kohonen
mapping). In this paper, we will use an information encoding and techniques bor-
rowed from Membrane Computing. This paper is a new step in the research started
at [4], where the authors present an implementation of a membrane solution of a
segmentation problem using hardware programming. In this paper, we present a
different family of tissue-like P systems to solve the problem and report the hard-
ware implementation. In what follows we assume the reader is already familiar
with the basic notions and the terminology underlying P systems3.

The paper is organized as follows: firstly, we present our bio-inspired formal
framework. Next, we present a family of tissue-like P systems designed to obtain
an edge-based segmentation of a 2D digital image. Then, general considerations
about designing hardware P systems are studied, focusing on the segmentation
problem. The paper finishes with some conclusions and future work.

2 Formal Framework: Tissue-like P Systems

Tissue-like P systems were presented by Mart́ın–Vide et al. in [21]. They have
two biological inspirations (see [20]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a network of processors dealing with symbols and communicating these symbols
along channels specified in advance.

The main features of this model, from the computational point of view, are
that cells do not have polarization and the membrane structure is a general graph.

Formally, a tissue-like P system with input of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ ) is the input alphabet;

3 We refer to [26] for basic information in this area, to [28] for a comprehensive presen-
tation and the web site [40] for the up-to-date information.



46 J. Carnero et al.

3. E ⊆ Γ (the objects in the environment);
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5. R is a finite set of communication rules of the following form:

(i, u/v, j)

for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cells

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use 0 to
refer to the label of the environment, iΠ denotes the input region and oΠ denotes
the output region (which can be the region inside a cell or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the P system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e., in each step we apply a maximal set of rules.

A configuration is an instantaneous description of the P system Π. Given a
configuration, we can perform a computation step and obtain a new configuration
by applying the rules in a parallel manner as it is shown above. A sequence of
computation steps is called a computation. A configuration is halting when no
rules can be applied to it. Then, a computation halts when the P system reaches
a halting configuration.

3 Segmenting Digital Images

A point set is simply a topological space consisting of a collection of objects called
points and a topology which provides for such notions as nearness of two points,
the connectivity of a subset of the point set, the neighborhood of a point, boundary
points, and curves and arcs.

The most common point sets occurring in image processing are discrete subsets
of N -dimensional Euclidean space Rn with n = 1, 2 or 3 together with the discrete
topology. There is no restriction on the shape of the discrete subsets of Rn used
in applications of image algebra to solve vision problems.



Designing Tissue-like P Systems to Parallel Architectures 47

For a point set X in Z, a neighborhood function from X in Z, is a function
N : X → 2Z . For each point x ∈ X, N(x) ⊆ Z. The set N(x) is called a
neighborhood for x.

There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore
neighborhood. The first one N : X → 2Z

2
is defined by N(x) = {y : y =

(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.
While the Moore neighborhood M : X → 2Z

2
is defined by M(x) = {y : y =

(x1±j, x2±k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann and
Moore neighborhood are also called the four neighborhood (4-adjacency) and eight
neighborhood (8-adjacency), respectively. In this paper, we work with 4-adjacency.
The point sets with the usual operations has an algebra structure (see [30]).

An Z-valued image on X is any element of ZX . Given an Z-valued image
I ∈ ZX , i.e. I : X → Z, then Z is called the set of possible range values of I
and X the spatial domain of I. The graph of an image is also referred to as the
data structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
pixel. The first coordinate x of a pixel is called the pixel location or image point,
and the second coordinate I(x) is called the pixel value of I at location x.

For example, X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N, N3, etc. So, given an image I ∈ ZZ

2
, a pixel of I

is the form ((i, j), I(x)), which will be denoted by I(x)ij . We call the set of colors
or alphabet of colors to the image set of the function I with domain X and the
image point of each pixel is called associated color. We can consider an order in
this set. In this paper, we denote Z as CI . Usually, we consider in digital image a
predefined alphabet of colors C. We define h = |C| as the size (number of colors) of
C. In this paper, we work with images in grey scale, then C = {0, . . . , 255}, where
0 codify the black color and 255 the white color.

By technical reasons, we use below different ways to codify a same pixel. For ex-
ample, if we take the pixel ((i, j), a) we could codify with the following expressions:
aij , Aij , a′ij , aij , (a, l)ij with l ∈ N, etc.

A region could be defined by a subset of the domain of I whose points are all
mapped to the same (or similar) pixel value by I. So, we can consider the region
Ri as the set {x ∈ X : I(x) = i} but this kind of regions has not to be connected.
We prefer to consider a region r as a maximal connected subset of a set like Ri.
We say two regions r1, r2 are adjacent when at less a pair of pixel x1 ∈ r1 and
x2 ∈ r2 are adjacent. We say x1 and x2 are border pixels. If I(x1) < I(x2) we say
x1 is an edge pixel. The set of connected edge pixels with the same pixel value is
called a boundary between two regions.

From a general point of view, segmentation refers to the process of partitioning
a digital image into multiple regions. Thresholding is a method of image segmenta-
tion whose basic aim is to obtain a binary image from a colour one. The idea is to
split the set of pixels into two sets (black and white) depending on its bright and a
fixed valued, the threshold. If the bright of the pixel is greater than the threshold,



48 J. Carnero et al.

then the pixel is labelled as object. Otherwise, it is labelled as background. After
labelling, a new binary image is created by colouring each pixel white or black,
depending on the label.

The basic thresholding method can be generalized in a natural way. Instead
of getting a binary image by labelling the original set of pixels by {0, 1}, we can
consider a larger set of labels, {1, . . . , k} so we obtain a final image with k levels.
Another natural generalization is to replace the colour information by another
scale on the features of the pixel (bright, intensity, gray scale, etc.).

Edge detection is an important operation in a large number of image processing
applications, such as image segmentation, character recognition and scene analysis.

In this paper we work with the first one, the edge-based segmentation of 2D
digital images problem (2D-ES problem), which is described as follows: Given a
digital 2D image with pixels of (possibly) different colors, obtain the boundaries of
regions in that image.

In order to provide a logarithmic-time uniform solution to our problem, we
design a family of tissue-like P systems, Π. Given an image I of size n2, we take
the P system Π(n, k) of the family to work with I. The input data (image I) is
codified by a set of objects a′ij , with a ∈ C and 1 ≤ i, j ≤ n and k is referred to
the number of processing cells. So, when we work with a parallel architecture we
do not have to know previously an exact number of processors to work. Then, we
introduce the parameter k to solve this problem.

The functioning of a P system of the family consists of the following stages:

• First of all, the P system generates 8 auxiliary copies of the input data. Then,
we have 9 codifications of the input image, but one of them is distinguished
of the rest. So, we can work with each pixel without taking into account what
happens with the rest of the image.

• Second, the P system applies a basic noise filter in order to eliminate some
pickle noise that could affect the segmentation process. The P system will
apply the largely used average filter because of its simplicity and good results.
For each pixel, the process consists of calculating the average average of its
adjacent pixels. If the distance between the pixel and its average is greater
than a threshold ρ, the pixel will be considered as noise and it will be replaced
by its average colour.

• Next, the P system performs a thresholding of the image to solve the problem
of degradation of colours of pixels in the boundary of adjacent regions with
different colours.

• Once this process is finished, the P system applies a translation of rules defined
in [11] obtaining an edge-based segmentation of the image took of the previous
stage.

The family Π = {Π(n, k) : n, k ∈ N} of tissue-like P systems of degree k + 1 is
defined as follows:

For each n, k ∈ N,

Π(n, k) = (Γ,Σ, E , w1, . . . , wk+1,R, iΠ , oΠ),



Designing Tissue-like P Systems to Parallel Architectures 49

defined as follows:

• Γ = Σ ∪ {aij , a
′′
ij , āij , Aij , A

′
ij , A

′′
ij , Aij , Aij , (a, 1)ij , (a, 2)ij , (a, 3)ij : 1 ≤ i, j ≤

n, a ∈ C} is the working alphabet;
• the input alphabet is Σ = {a′ij : 1 ≤ i, j ≤ n, a ∈ C, I(i, j) = a};
• the environment alphabet is E = Γ \Σ;
• the multisets of the cells are w1 = {{ν3

ij , ν
3
ji : i = 0, n + 1, 0 ≤ j ≤ n + 1}},

w2 = · · · = wk+1 = T dn
2/ke, respectively. We call to the last k cells as processing

cells;
• R is the following set of communication rules:

1. (1, a′ij/a8
ijAij , 0)

for 1 ≤ i, j ≤ n.
These rules are used to generate new elements, so the P system can work in
parallel with each pixel and forget what happen with the rest of the image.
The P system first uses these elements to work with the noise of our image.

2.


1,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

li+1j−1 hi+1j gi+1j+1

/ T, t




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, l ∈ C ∪ {ν}.
This type of rules are used to translate each object Aij and one copy of their
neighbours (objects) to a processing cell. We are sure that all the pixels not
go to the same cell, because our P system has n2 or n2 +1 objects T spread
over processing cells, each one with a similar number of copies of T .

3.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

li+1j−1 hi+1j gi+1j+1

/ α′ij , 0




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, l ∈ C ∪ {ν},
– We take µ as the number of pixels with colors in C and ν = 0. Then,

av(a) = (b + c + d + e + f + g + h + i)/µ,
– α is the nearest colour in C to the average colour av(a) with |α−av(a)| >

ρ, with ρ ∈ R.

4.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

ii+1j−1 hi+1j gi+1j+1

/ a′ij , 0




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, i ∈ C ∪ {ν},



50 J. Carnero et al.

– We take µ as the number of pixels with colors in C and ν = 0. Then,
av(a) = (b + c + d + e + f + g + h + i)/µ,

– |a− av(a)| ≤ ρ, where ρ1 ∈ R.

This set of rules is used to detect the noise and correct it with the average
colour of its adjacent pixels. We find here a local thresholding (with respect
to the colors) with predefined threshold ρ. In fact, we are simulating one
of the more typical algorithms to remove noise. The P system changes the
notation of the objects which are codifying pixels and they adopt the form
a′ij , with a ∈ C.

5. (t, b′ij/A
′
ij , 0)

for
– 1 ≤ i, j ≤ n,
– τ = (|C|/ρ2), l = 0, 1, 2, . . . , ρ2,
– If b ∈ C then a ∈ C (a < b ≤ a + (τ − 1) and a = τ · l) or (b = a = τ · l),
– If b = ν then A = ν.

These rules are used to discretize the colors dividing the set of colors in ρ2

subsets of length ν. We find here a general thresholding (with respect to
the colors) with predefined threshold ν.

6. (t, A′ij/T, 1)
for
– 0 ≤ i, j ≤ n + 1, 2 ≤ t ≤ k + 1,
– a ∈ C.
This set of rules are used to send our transformed image to the cell 1. Now,
the objects A′ij encode the pixels of our image.

7. (1, A′ij/A
′′
ijAija

8
ij , 0)

for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate enough copies of our image to
perform the segmentation process in the cells 2, . . . , k and k+1. The objects
A′′ij are used in the second part of the segmentation. The rest of the objects
are used in the first part of the segmentation.

8.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij f ij+1

ii+1j−1 hi+1j gi+1j+1

/ T, t




for
– 1 ≤ i, j ≤ n,
– and a, b, c, d, e, f, g, h, i ∈ C ∪ {ν}.
These rules are defined to send new objects to the processing cells to do
the first part of the segmentation. We look for edge pixels.



Designing Tissue-like P Systems to Parallel Architectures 51

9. (t, Aijbkl/Aijbkl, 0),
for
– 1 ≤ i, j, k, l ≤ n, (i, j), (k, l) adjacent pixels,
– a, b ∈ C and a < b.

These rules are used to mark edge pixels. In fact, the the P system brings
from the environment an object of the form Aij for each edge pixel. Our
problem is the edge pixels not always are adjacent. So, we do not have an
only one set of connected edge pixel forming a boundary. Then, we should
add the necessary pixel to connect all the edge pixels of a boundary.

10. (t, Aij/T, 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.
These rules send the edge pixels to the cell 1.

11. (1, Aij/(a, 1)2ij , 0)
for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate two copies of our edge pixels to
perform the second part of the segmentation in processing cells.

12. (1, A′′ij/(a, 2)2ij , 0)
for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate enough copies of our image to
perform the second part of the segmentation in processing cells.

13.
(

1,
(a, 1)i−1j−1 (a, 2)i−1j

(b, 2)ij−1 (a, 1)ij
/ T, t

) (
1,

(b, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (a, 2)ij
/ T, t

)

(
1,

(a, 1)i−1j−1 (b, 2)i−1j

(a, 2)ij−1 (a, 1)ij
/ T, t

) (
1,

(a, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (b, 2)ij
/ T, t

)

for
– 1 ≤ i, j ≤ n,
– a, b ∈ C.
These rules are defined to send new objects to the processing cells to do
the second part of the segmentation. We look for new edge pixels.

14.
(

1,
(a, 1)i−1j−1 (a, 2)i−1j

(b, 2)ij−1 (a, 1)ij
/

(a, 3)i−1j−1 (a, 3)i−1j

(b, 2)ij−1 (a, 3)ij
, t

)

(
1,

(b, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (a, 2)ij
/

(b, 2)i−1j−1 (a, 3)i−1j

(a, 3)ij−1 (a, 3)ij
, t

)



52 J. Carnero et al.

(
1,

(a, 1)i−1j−1 (b, 2)i−1j

(a, 2)ij−1 (a, 1)ij
/

(a, 3)i−1j−1 (b, 2)i−1j

(a, 3)ij−1 (a, 3)ij
, t

)

(
1,

(a, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (b, 2)ij
/

(a, 3)i−1j−1 (a, 3)i−1j

(a, 3)ij−1 (b, 2)ij
, t

)

for
– 1 ≤ i, j ≤ n,
– a, b ∈ C.
These rules are used to complete the set of edge pixels of our image.

15. (t, (a, 3)ij/λ, 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.
These rules send to the cell 1 the edge pixels.

16. We can find more than one copy of an specific edge pixel, so if we wish only
one copy of each edge pixel we can add a new type of rules:
(t, (a, 3)ij(a, 3)ij/(a, 3)ij , 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.

• iΠ = oΠ = 1.

4 The Hardware Design

In [11], some preliminary segmentation results were obtained using the tissue sim-
ulator developed in [3]. Such a tissue simulator follows one of the common features
of the first generation of simulators of P systems (see [13]): the lack of efficiency
in favor of expressiveness. Therefore, experiments performed using this tool were
extremely slow, and it could only use synthetic images of at most 30 × 30 pix-
els. Recently, a new sequential software was presented in [14], implementing ideas
borrowed from [11].

In order to make the hardware design of a tissue-like P system there are several
considerations that must be considered:

1. On a tissue-like P system, not only each cell evolve in a parallel manner. Every
rule in every cell must be executed as many times as possible at each step.
Thus, if we want that the hardware system to work exactly like the theoretical
model, the system has to implement as many minimal computation units as
the maximum number of rules in all the cells that could be executed in the
same step in order to be fully parallel. If we are designing a general tissue-like
P system which we want to use to configure different tissue-like P systems that
solve specific problems, this is probably the main problem, as this number is
defined by each P system configuration. In this case, the only way to do this is



Designing Tissue-like P Systems to Parallel Architectures 53

to design the minimal computation units as small as possible in terms of chip
area, in order to have the maximum number of them. Then, if this number is
not enough to solve our problem, the system can be designed in order to do
the following:
• Separate each conflicting step, into two or more sub-steps. So, in the first

sub-step the system executes all the possible rules, using a piece of memory
to save the results, and then it continues executing the rest of the rules that
could not be executed before due to insufficient minimal computation units
.

• Connect with other clone system(s) to solve the hole problem using more
computation capacity. This options is not always possible and, in general,
it is more difficult to design that the first one, but it can be the best choice
dealing with hard computation problems.

On the other hand, if we want to design a specific P system, usually the best
choice to deal with this issue is finding sets of rules that are mutually exclusive,
that is, rules that we know that if the executing condition is true for one of
them, then we know that the other ones in the same set cannot be executed.
Thus, in fact we have only to design one minimal computation unit for each
set of rules, optimizing the system area. This is the case of the described
segmentation problem, in which we know that we can define only one set of
rules mutually exclusive for each pixel, so in fact the system will have as many
minimal computation units as the biggest segmentation. So the computational
order will be constant, and the spatial order will be lineal.

2. The copy rules are necessary in the theoretical tissue-like P system, but in the
hardware design it is not necessary in general to implement them as rules like
the other ones, since they can be seen as parallel readings of some informa-
tion.
So usually those rules can be ignored in the design, seeing them as multi-
lectures of the data that is trying to copy the rule. Also is easily to transform
those rules into asynchronous rules. That is the segmentation case that we
present, where main rules are synchronized by the clock system represent-
ing the synchronous P system, and the copy rules are asynchronous and are
implicit in the interconnection circuit of the design.

3. Depending on the variant of tissue-like P systems we work with, cells could
create or remove other cells during the execution in order to solve the problem.
This is one of the biggest problems when simulating tissue-like P systems in
software in a efficient way, but could not be the case in hardware. The FPGAs
can be reconfigured while the system is still working. This feature help us to
design the addition or removal cell rules as partial on air reconfigurations of
the system on air easily. The only thing that we have to worry about is that
those operations are not fast in terms of time, so the steps with those rules will
be slower than the other ones. Because of that, trying to avoid those kind of
rules while defining the P system is a good practice. The segmentation problem
described has no rule of this kind.



54 J. Carnero et al.

4. The halting condition can be redefined in order to save some final computation
step. This is the case of rule 9 on the segmentation problem. In most of
synchronous P systems, we can know that the system has finished without
make an explicit operation. For example, in our design we know that the
system stops three clock cycles after the beginning. Another simple option
can be found by observing the system behavior.

5. The system has to be always running while there are instances of the problem
that does not have been solved yet. In fact that is a consideration that have to
be done every time a hardware design is made, besides designing the P system
it is important that it can return the results whereas the system is starting
with a new problem. So, perhaps this is a consideration that has to be only
considered not only in the design step, but in the previous theoretical P system
definition before.

4.1 Segmentation Problem Design Based on FPGA

Following the segmentation example, an formal hardware system design based on
the tissue-like P system described above is shown in Figures 1, 2, 3 and 4. It
has been done by following the previous considerations. The system consists on
processing units capable of dealing with 4×4 images. These units can be combined
like a puzzle in order to process n×m images.

Each pixel in the image is codified with 56 bits in order to represent the theo-
retical objects (it contains color information, original color information, and type
of object). Using this codification, a 4 × 4 section of the initial image is passed
through the image port of each processing unit. Also additional information about
the neighborhood of the 4 × 4 is required in order to work correctly, using the
blec, blrec, trec, tlec, and bb, rb, tb, lb buses for that. If the neighborhood (or a part
of it), does not exist those inputs will be at high impedance (ghost pixel).

The t and k ports specify the maximum distance between the pixel and its
average (noise filter), and the number of different levels for the thresholding re-
spectively. The different system steps are controlled by the clock signal (CLK).

As it is shown in figure 1, inside the processing unit are 16 pixel processing
units capable of execute any rule for each pixel and each step (using the tech-
niques described before in the first point.). The signal change is used to feed this
units with the input data (the original image), or feed them with its own output
(representing in that way the copy rules as described before in item two).

These pixel processing units shown in figure 2 receives a pixel and its neighbor-
hood, and the t, k and CLK signals, and send this information to four units that
implements the four sets of rules mutually exclusive mentioned before. The results
are collected and processed as output. In general a fixed group of pixel processing
units will represent a fixed group of cells in the theoretical model. But looking
at the described tissue-like P, we have that each cell except cells zero and one is
representing the computation of one pixel, so there is exactly one pixel processing



Designing Tissue-like P Systems to Parallel Architectures 55

Fig. 1. Processing unit, and neighborhood of an image

unit for each cell. Then we can say that these units represents each cell in the
theoretical model except zero and one.

The four units that implement the four sets of rules mutually exclusive are
shown in figure 3: removing noise rules (types 3 and 4), thresholding rules (type
5), rules of the first part of the segmentation (type 9) and rules of the second
part of the segmentation (type 14). The rest of rules of the theoretical family of
systems are rules of coping and sending objects. These units detect automatically
if the input data is a corner, an edge, or an interior pixel. Finally, in order to
deal with bigger images, we can use the blec, blrec, trec, tlec, and bb, rb, tb, lb buses
to interconnect as many as processing units we need (figure 4). A very simple
interconnection circuit is necessary in order to give the input data to the different
processing units.

The implementation of this hardware tool allows the system to apply the max-
imum number of rules at each moment, using the pixel units to solve the whole
problem. Therefore, the system works exactly like the theoretical model in terms
of complexity, time, concurrency and results. As said before, the implementation



56 J. Carnero et al.

Fig. 2. Pixel Processing Unit

Fig. 3. Chips that implements the sets of rules mutually exclusive

of this design reveals that in fact the system is able to process any image of size
n×m by using at most four clock cycles.

In figure 5, it is shown a simulation of the code following the described design
that deals with 16×16 images, and some simple results using a SP605 Xilinx board
with a Spartan 6 XC6SLX45T FPGA chip.



Designing Tissue-like P Systems to Parallel Architectures 57

Fig. 4. Processing Units Interconnection

Fig. 5. Hardware design

Fig. 6. 16x16 black and white image segmentation

Fig. 7. 16x16 black and white image segmentation



58 J. Carnero et al.

Fig. 8. 16x16 color image segmentation

5 Conclusions and Future Works

Problems associated with the treatment of Digital Images have several interesting
features from a bio-inspired point of view. One of them is that they can be suitable
for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image.

In this paper, we study the advantages and drawbacks of considering a hard-
ware implementation of tissue-like P systems solving the segmentation problem on
a hardware programming tool (FPGA). The theoretical study has been made via
the language programming VHDL [2] and currently we are in the process of the
real hardware implementation.

In addition, although the segmentation example showed here is a synchronous
tissue-like P system, we want in the next future to work with asynchronous tissue-
like P systems in order to optimize performance.

Many questions remains open as future work. One of them is the treatment
of the noise in images with Membrane Computing techniques, or the paralleliza-
tion and automatization of the choice of the threshold by artificial intelligence
techniques.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN-2009-13192 of the
Ministerio de Ciencia e Innovación of Spain and the support of the Project of
Excellence of the Junta de Andalućıa, grant P08-TIC-04200. JC acknowledges the
support of the project MTM2009-12716 of the Ministerio español de Educación
y Ciencia, the project PO6-TIC-02268 of Excellence of Junta de Andalućıa, and
the Computational Topology and Applied Mathematics PAICYT research group
FQM-296.

References

1. Abdala, D.D., Jiang, X.: Fiber segmentation using constrained clustering. In: Zhang,
D., Sonka, M. (eds.) ICMB. Lecture Notes in Computer Science, vol. 6165, pp. 1–10.
Springer (2010)



Designing Tissue-like P Systems to Parallel Architectures 59

2. Ashenden, P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edn. (2001)

3. Borrego-Ropero, R., Dı́az-Pernil, D., Pérez-Jiménez, M.J.: Tissue simulator: A graph-
ical tool for tissue P systems. In: Vaszil, G. (ed.) Proceedings of the International
Workshop Automata for Cellular and Molecular Computing. pp. 23–34. MTA SZ-
TAKI, Budapest, Hungary (August 2007), satellite of the 16th International Sympo-
sium on Fundamentals of Computational Theory

4. Carnero, J., Dı́az-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired
by cellular models using hardware programming. Image-A 1(3), 143–150 (2010)

5. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means
of GPUs. In: Păun et al. [27], pp. 227–241

6. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325
(2010)

7. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mat́ınez-de-Amor, M.A., Pérez-Hurtado,
I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes on CUDA.
Briefings in Bioinformatics 11(3), 313–322 (2010)

8. Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–
328 (2003)

9. Ceterchi, R., Mutyam, M., Păun, Gh., Subramanian, K.G.: Array-rewriting P sys-
tems. Natural Computing 2(3), 229–249 (2003)

10. Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast com-
putation of homology groups. In: 13th International Conference on Pattern Recog-
nition (ICPR’96). vol. IV, pp. 190–194. IEEE Computer Society, IEEE Computer
Society, Los Alamitos, CA, USA (1996)

11. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) CIARP. Lecture
Notes in Computer Science, vol. 5856, pp. 169–176. Springer (2009)

12. Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. In: Mart́ın-
Vide et al. [19], pp. 123–139

13. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Mario J.
Pérez-Jiménez, M.: Software for P systems. In: Păun et al. [28], pp. 437–454

14. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired
software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K.,
Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications BIC-TA. vol. 2, pp. 1377 –
1381. IEEE Computer Society (2010)

15. Gershoni, R., Keinan, E., Păun, Gh., Piran, R., Ratner, T., Shoshani, S.: Research
topics arising from the (planned) P systems implementation experiment in Tech-
nion. In: Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-
Hurtado, I., Riscos-Núñez, A. (eds.) Sixth Brainstorming Week on Membrane Com-
puting. pp. 183–192. Fénix Editora, Sevilla, Spain (2008)

16. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.)
Applications of Membrane Computing, pp. 411–436. Natural Computing Series,
Springer (2006)



60 J. Carnero et al.

17. Kim, S.H., Kim, H.G., Tchah, K.H.: Object oriented face detection using colour trans-
formation and range segmentation. Electronics Letters, IEEE 34, 979–980 (1998)

18. Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution image segmentations in
graph pyramids. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory
in Computer Vision and Pattern Recognition, Studies in Computational Intelligence,
vol. 52, pp. 3–41. Springer (2007)

19. Mart́ın-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Mem-
brane Computing, International Workshop, WMC 2003, Tarragona, Spain, July 17-
22, 2003, Revised Papers, Lecture Notes in Computer Science, vol. 2933. Springer
(2004)

20. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

21. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

22. Nguyen, V., Kearney, D., Gioiosa, G.: Balancing performance, flexibility, and scal-
ability in a parallel computing platform for membrane computing applications. In:
Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Work-
shop on Membrane Computing. Lecture Notes in Computer Science, vol. 4860, pp.
385–413. Springer (2007)

23. Nguyen, V., Kearney, D., Gioiosa, G.: An algorithm for non-deterministic object
distribution in p systems and its implementation in hardware. In: Corne, D.W.,
Frisco, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5391, pp. 325–354. Springer
(2008)

24. Nguyen, V., Kearney, D., Gioiosa, G.: A region-oriented hardware implementation
for membrane computing applications. In: Păun et al. [27], pp. 385–409

25. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant ap-
proach to hardware source code generation in reconfig-P. Journal of Logic and Alge-
braic Programming 79(6), 383–396 (2010)

26. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

27. Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.): Membrane Computing, 10th International Workshop, WMC 2009, Curtea de
Arges, Romania, August 24-27, 2009. Revised Selected and Invited Papers, Lecture
Notes in Computer Science, vol. 5957. Springer (2010)

28. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

29. Petreska, B., Teuscher, C.: A reconfigurable hardware membrane system. In: Mart́ın-
Vide et al. [19], pp. 269–285

30. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Computer
Vision, Graphics, and Image Processing 49(3), 297–331 (1990)

31. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)

32. Syropoulos, A., Mamatas, L., Allilomes, P.C., Sotiriades, K.T.: A distributed simu-
lation of transition P systems. In: Mart́ın-Vide et al. [19], pp. 357–368

33. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of
hyperspectral images using Watershed transformation. Pattern Recognition 43(7),
2367–2379 (2010)



Designing Tissue-like P Systems to Parallel Architectures 61

34. Tobias, O.J., Seara, R.: Image segmentation by histogram thresholding using fuzzy
sets. IEEE Transactions on Image Processing 11(12), 1457–1465 (2002)

35. Trimberger, S.M.: Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Norwell, MA, USA (1994)

36. Wang, D., Lu, H., Zhang, J., Liang, J.Z.: A knowledge-based fuzzy clustering method
with adaptation penalty for bone segmentation of ct images. In: Proceedings of the
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. pp. 6488–
6491 (2005)

37. Yazid, H., Arof, H.: Image segmentation using watershed transformation for facial
expression recognition. In: IFMBE Proceedings, 4th Kuala Lumpur International
Conference on Biomedical Engineering. pp. 575–578 (2008)

38. Yuan, X., Situ, N., Zouridakis, G.: A narrow band graph partitioning method for
skin lesion segmentation. Pattern Recognition 42(6), 1017–1028 (2009)

39. NVIDIA Corporation. NVIDIA CUDATM Programming Guide.
http://www.nvidia.com/object/cuda home new.html

40. P system web page. http://ppage.psystems.eu




