
Asynchronous P Systems (Draft)

Tudor Bălănescu1, Radu Nicolescu2, and Huiling Wu2

1 Department of Computer Science, University of Piteşti,
Târgu din Vale 1, 110040 Piteşti, Romania,
tudor balanescu@yahoo.com

2 Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand,
r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

Summary. In this paper, we propose a new approach to fully asynchronous P sys-
tems, and a matching complexity measure, both inspired from the field of distributed
algorithms. We validate our approach by implementing several well-known distributed
depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results
show that our P algorithms achieve a performance comparable to the standard versions.

Key words: P systems, synchronous, asynchronous, distributed, depth-first search,
breadth-first search

1 Introduction

P systems is bio-inspired computational model, based on the way in which chem-
icals interact and cross cell membranes, introduced by Păun [20]. The essential
specification of a P system includes a membrane structure, objects and rules.
Cells evolve by applying rules in a non-deterministic and (potentially maximally)
parallel manner. These characteristics make P systems a promising candidate as
a model for distributed and parallel computing.

The traditional P system model is synchronous, i.e. all cells evolution is con-
trolled by a single global clock. P systems with various asynchronous features have
been investigated by recent research, such as Casiraghi et al. [3], Cavaliere et al.
[6, 4, 5], Freund et al. [11], Gutiérrez et al. [12], Kleijn et al. [13], Pan et al. [18],
Yuan et al. [24]. Here we are looking for similar but simpler definitions, closer to
the definitions used in the field of distributed algorithms [14, 22], which will enable
us to consider essential distributed feature, such as fairness, safety, liveness and
possibly infinite executions. In our approach, algorithms are non-deterministic, not
necessarily constrained to return exactly the same result.

Fully asynchronous P systems are characterized by the absence of any system
clock, much less a global one; however, an outside observer may very well use a
clock to time the evolutions. Our approach does not require any change in the



2 T. Balanescu, R. Nicolescu and H. Wu

static descriptions of P systems, only their evolutions differ (i.e. the underlying
P engine works differently):

• Local rules execution takes zero time units (i.e. it occurs instantaneously).

• The message delay is unpredictable, so outgoing objects can arrive at the target
cell in any number of time units (after being sent).

For the purpose of time complexity, the time unit is chosen greater than any
message delay, i.e. the delay between sending and receiving a message is any real
number in the closed interval [0, 1].

This paper is organized as follows. Section 2 gives a definition of a simple
P module, as a unified model of various P systems. Section 3 presents asynchronous
P systems and discusses a standard set of time complexity measures. Section 4 and
Section 5 discuss several well-known distributed DFS and BFS algorithms and pro-
pose corresponding asynchronous P system implementations. Section 6 compares
the complexity of our asynchronous P system algorithms with the theoretical com-
plexity of distributed DFS and BFS algorithms. Finally, Section 7 summarizes our
work and highlights future work.

2 Preliminary

In this paper, we use simple P modules, an umbrella concept, which is general
enough to cover several basic P system families, with states, priorities, promoters
and duplex channels. For the full definition of P modules and modular composi-
tions, we refer readers to [10].

Essentially, a simple P module is a system, Π = (O, σ1, σ2, . . . , σn, δ), where:

1. O is a finite non-empty alphabet of objects;
2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, where:

– Qi is a finite set of states;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects;
– Ri is a finite ordered set of rewriting/communication rules of the form:
s x →α s′ x′ (y)β |z, where: s, s′ ∈ Qi, x, x

′, y, z ∈ O∗, α ∈ {min,max},
β ∈ {↑, ↓, l}.

3. δ is a set of digraph arcs on {1, 2, . . . , n}, without reflexive arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send
messages to children and children to parents. Rules are prioritized and are applied
in weak priority order [19]. The general form of a rule, which transforms state s
to state s′, is s x→α s

′ x′ (y)βγ |z. This rule consumes multiset x, and then (after
all applicable rules have consumed their left-hand objects) produces multiset x′,
in the same cell (“here”). Also, it produces multiset y and sends it, by replication



Asynchronous P Systems 3

(“repl” mode), to all parents (“up”), to all children (“down”) or to all parents and
children (“up and down”), according to the target indicator β ∈ {↑, ↓, l}.

We also use a targeted sending, β = ↑j , ↓j , lj , where j is either an arc label
or a cell ID. If j is an arc label, y is sent via the arc labelled j, provided that
it points, respectively, up (to a parent), down (to a child) or in any direction (to
either a parent or a child). If j is a cell ID of a structural neighbor, y is sent to
that neighbor j, provided that it lies, respectively, up (j is a parent), down (j is a
child) or in any direction (j is either a parent or a child); nothing is sent if cell j
is not a structural neighbor (we do not use teleportation). More about cell IDs in
a following paragraph.

α ∈ {min,max} describes the rewriting mode. In the minimal mode, an ap-
plicable rule is applied once. In the maximal mode, an applicable rule is used as
many times as possible and all rules with the same states s and s′ can be applied
in the maximally parallel manner. Finally, the optional z indicates a multiset of
promoters, which enable rules but are not consumed.

Note

The algorithms presented in this paper make full use of duplex channels and work
regardless of specific arc orientation. Therefore, to avoid superfluous details, the
structure of our sample P systems will be given as undirected graphs, with the
assumption that the results will be the same, regardless of actual arc orientation.

Extensions

In this article, we use an extended version of the basic P module framework,
described above. Specifically, we assume that each cell σi ∈ K was “blessed” from
factory with a unique cell ID symbol ιi, which is exclusively used as an immutable
promoter. We also allow high-level rules, with a simple form of complex symbols
and free variable matching.

To explain these additional features, consider, for example, rule 3.1 of algorithm
2: S3 a nj →min S4 a (ci) ↓j |ιi. This rule uses complex symbols nj and ci, where
j and i are free variables, which, in principle, could match anything, but, in this
case, they will be only required to match cell IDs. Briefly, this rule, promoted by
ιi, consumes one a and one nj , produces another a and sends down a ci, where i
is the index of the current cell, to child j, if this child exists.

3 Asynchronous P Systems

In traditional P systems, a universal clock is assumed to control the application
of all rules, i.e. traditional P systems work synchronously, in lock-step. Practically,
such universal clock is unrealistic in many distributed computing applications,
where there is no such global clock and the communication delay is unpredictable.



4 T. Balanescu, R. Nicolescu and H. Wu

Thus, it is interesting to investigate P systems that work in the asynchronous
mode.

We define asynchronous P systems as follows. The rule format of asynchronous
P systems is the same as for synchronous P systems, i.e., s x →α s

′ x′ (y)βγ |z.
However, we focus on typical distributed systems, where communications take
substantially longer than actual local computations, therefore we consider that
the message delay is totally unpredictable. In such systems, we assume that rules
are applied in zero time and each message arrives in its own time t, t ∈ [0, 1].
Synchronous P systems are a special case of asynchronous P systems, where t =
1, for all evolutions. The runtime complexity of an asynchronous system is the
supremum over all possible executions. We typically assume that messages sent
over the same arc arrive in FIFO order (queue), or, as a possible extension—all
messages sent over the same arc eventually arrive, but in arbitrary order (multiset).

We illustrate these concepts by means of a basic algorithm, Echo [22], in two
distributed scenarios: (1) synchronous and (2) asynchronous, with a different (and
less expected) evolution. Essentially, the Echo algorithm starts from a source cell,
which broadcasts forward messages. These forward messages transitively reach
all cells and, at the end, are reflected back to the initial source. The forward
phase establishes a virtual spanning tree and the return phase is supposed to
follow up its branches. The tree is only virtual, because it does not involve any
structural changes; instead, virtual child-parent links are established by way of
pointer objects.

Scenario 1 in Figure 1 assumes that all messages arrive in one time unit, i.e. in
the synchronous mode. The forward and return phases take the same time, i.e. D
time units each, where D is diameter of the undirected graph, G. Scenario 2 in
Figure 2 assumes that some messages travel much faster than others, which is
bad, but possible in asynchronous mode: t = ε, where 0 < ε � 1. In this case,
the forward and return phases take very different times, D and N − 1 time units,
respectively, where N is the number of nodes of the undirected graph, G. The
P system rules of the Echo algorithm are presented in Section 5.3.

(a) (b) (c)

1

2

3

4

1

2

3

4

1

2

3

4

Time Unit = 1 Time Unit = 2 Time Unit = 3

1

2

3

4

Time Unit = 0

(d)

Fig. 1. Echo algorithm in synchronous mode—or in a “lucky” asynchronous mode, when
all messages are propagated with the same delay (1). Arcs with arrows indicate child-
parent arcs in the virtual spanning tree built by the algorithm. Thick arrows near arcs
indicate messages.



Asynchronous P Systems 5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) (b) (c) (d)

(e) (f) (g) (h)

Time Unit = ε Time Unit = 2ε Time Unit = 3ε Time Unit = 4ε

Time Unit = 2 Time Unit = 3 Time Unit = 4

1

2

3

4

Time Unit = 1

Fig. 2. Echo algorithm in asynchronous mode—one possible “bad” execution, among
the many possible. Dotted thick arrows near arcs indicate messages still in transit.

4 Distributed Depth-First Search (DFS)

Depth-first search (DFS) and breadth-first search (BFS) are graph traversal al-
gorithms, which construct a DFS spanning tree and a BFS spanning tree, re-
spectively. Figure 3 shows the structure of a sample P system, Π, based on an
“undirected” graph, G, and one possible virtual DFS spanning tree, T . We use
quotation marks to indicate that G actually is a directed graph, but we do not
care about arc orientation. The spanning tree is virtual, as it is described by “soft”
pointer objects, not by “hard” structural arcs.

1

2 3

6

4 5

Fig. 3. P system Π based on an “undirected” graph and one possible virtual DFS
spanning tree. Thick arrows indicate virtual child-parent arcs in this tree, linked by
pointer objects.

DFS is a fundamental technique, inherently sequential, or so it appears. Several
distributed DFS algorithms have been proposed, which attempt to make DFS run
faster on distributed systems, such as the classical DFS [22], Awerbuch’s DFS
[1], Cidon’s DFS [7], Sharma et al’s DFS [21], Makki et al’s DFS [15], Sense of
Direction (SOD) DFS [22]. This is vast topic, which is impossible to present here



6 T. Balanescu, R. Nicolescu and H. Wu

at the required length. Therefore, we refer the reader to the original articles, or to
a fundamental text, which covers all these algorithms, [22].

Several articles have proposed various synchronous P algorithms for DFS.
Gutiérrez-Naranjo et al. proposed a DFS algorithm [12], using inhibitors to avoid
visiting already-visited neighbor cells. Dinneen et al. [8] proposed a P algorithm
to find disjoint paths in a digraph, using a distributed DFS strategy, which avoids
visiting already-visited cells by changing the state of visited cells [9]. Bernardini et
al. proposed a DFS algorithm in the P system synchronization problem [2]. This
approach uses an operator, mark+, to select one not-yet-visited cell, indicated by
a 0 polarity, and then mark the cell as visited, by changing the polarity to +. In
this case, the cell that performs a mark+ operation, actually “knows” which child
cell has been visited or not, without any message exchanges. In fact, all above
mentioned P algorithms implement the classical DFS, which is discussed later in
Section 4.2.

In the following sections, we present asynchronous P system implementations
of the well-known distributed DFS algorithms, which leverage the parallel and
distributed characteristics of P systems.

4.1 Discovering Neighbors

All our distributed DFS and BFS P algorithms, except the SoD algorithm, can,
if needed, start with the same preliminary Phase I, in which cells discover their
neighbors, i.e. their local topology. Nicolescu et al. have developed P algorithms
to discover local topology and local neighbors [16, 9]. In this paper, we propose a
crisper algorithm, Algorithm 1, with fewer symbols.

Algorithm 1 (Discovering cell neighbors)

Input: All cells start in the same initial state, S0, with the same set of rules.
Initially, each cell, σi, contains a cell ID object, ιi, which is immutable and used
as a promoter. Additionally, the source cell, σs, is decorated with one object a.

Output: All cells end in the same state, S3. On completion, each cell contains
the cell ID object, ιi, and objects nj , pointing to their neighbors. The source cell,
σs, is still decorated with object a. Table 1 shows the neighborhoods of Figure 3,
computed by Algorithm 1, in three P steps.

Table 1. Partial Trace of Algorithm 1 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S0 ι1a S0 ι2 S0 ι3 S0 ι4 S0 ι5 S0 ι6
3 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5



Asynchronous P Systems 7

0. Rules in state S0:
1 S0 a→min S1 ay (z) l
2 S0 z →min S1 y (z) l
3 S0 z →max S1

1. Rules in state S1:

1 S1 y →min S2 (ni) l |ιi
2 S1 z →max S2

2. Rules for state S2:
1 S2 →min S3

2 S2 z →max S3

In state S0, the source cell, σs, which is decorated by object a, broadcasts signal
z, to all cells, and enters state S1. Each cell receiving z produces one object y, and
changes to state S1. Superfluous signals z are discarded. Then, in state S1, each
cell that has object y, sends its own ID, which appears as subscript in complex
object ni, to all its neighbors. In state S2, cells accumulate the received neighbor
objects, discard superfluous objects z, and enter S3.

4.2 Classical DFS

The classical DFS algorithm is based on Tarry’s traversal algorithm, which tra-
verses all arcs sequentially, in both directions, using a visiting token [22]. Because
it traverses all arcs twice, serially, the classical DFS algorithm is not the most
efficient distributed DFS algorithm.

Algorithm 2 (Classical DFS)

Input: All cells start in the same quiescent state, S3, and with the same set of
rules. Each cell, σi, contains an immutable cell ID object, ιi. All cells know their
neighbors, i.e. they have topological awareness, which are indicated by pointer
objects, nj (as built by Algorithm 1). The source cell, σs, is additionally decorated
with one object, a, which triggers the search.

Output: All cells end in the same final state (S5). On completion, the cell IDs
are intact. Cell σs is still decorated with one a and all other cells contain DFS
spanning tree pointer objects, indicating predecessors, pj .

Table 2 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 2. Partial Trace of Algorithm 2 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

19 S5 ι1a S5 ι2p1 S5 ι3p2 S5 ι4p5 S5 ι5p3 S5 ι6p5



8 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state S3:
1 S3 anj →min S4 a (ci) ↓j |ιi
2 S3 cjnjnk →min S4 pj (ci) ↓k |ιi

4. Rules for state S4:

1 S4 cjnj →min S4 (xi) ↓j |ιi
2 S4 xjnk →min S4 (ci) ↓k |ιi
3 S4 xjpk →min S5 pk (xi) ↓k |ιi
4 S4 xj →min S5

4.3 Awerbuch DFS

Awerbuch’s algorithm [1] and other more efficient algorithms improve time com-
plexity by having the visiting token traversing tree arcs only, all other arcs are
traversed in parallel, by auxiliary messages. Specifically, in Awerbuch’s algorithm,
when the node is visited for the first time, it notifies all neighbors that it has been
visited and waits until it receives all neighbors’ acknowledgments. After that, the
node can visit one of its unvisited neighbors. Thus, the node knows exactly which
of its neighbors have been visited and avoids visiting the already-visited neighbors,
which saves time.

Algorithm 3 (Awerbuch DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S7. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 3 shows the resulting DFS spanning tree, for Figure 3. Table 16 from
Appendix A contains full traces for this algorithm, including the preliminary phase,
of Algorithm 1.

Table 3. Partial Trace of Algorithm 3 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

24 S7 ι1a . . . S7 ι2p1 . . . S7 ι3p2 . . . S7 ι4p5 . . . S7 ι5p3 . . . S7 ι6p5 . . .

3. Rules in state S3:

1 S3 nj →min S4 njmj

4. Rules in state S4:

1 S4 vj →min S4 uj (bi) ↓j |ιi
2 S4 nj →min S5 nj (vi) ↓j |aιi
3 S4 cjmjnj →min S5 pj
4 S4 nj →min S5 nj (vi) ↓j |tιi

5. Rules for state S5:

1 S5 nj →min S6 njwj

6. Rules for state S6:

1 S6 wj →min S7 |bj
2 S6 wjpk →min S7 wjpk|bl
3 S6 bj →min S7

4 S6 ujmj →min S7 uj
5 S6 amj →min S7 auj (cit) ↓j |ιi
6 S6 pkmj →min S7 pkuj (cit) ↓j |ιi
7 S6 pj →min S7 pj (xit) ↓j |ιi
8 S6 t→min S7

7. Rules for state S7:



Asynchronous P Systems 9

1 S7 wj →min S7 |bj
2 S7 wjpk →min S7 wjpk
3 S7 pkmj →min

S7 pkuj (cit) ↓j |blιi
4 S7 pj →min S7 pj (xit) ↓j |blιi
5 S7 bj →min S7

6 S7 mkxj →min S7 uk (cit) ↓k |ιi
7 S7 pkxj →min S7 pk (xit) ↓k |ιi
8 S7 vj →min S7 uj (bi) ↓j |ιi
9 S7 ujmj →min S7 uj

10 S7 axj →min S7 a
11 S7 t→min S7

4.4 Cidon DFS

Cidon’s algorithm [7] improves Awerbuch’s algorithm by not using acknowledg-
ments, therefore removing a delay. The token holding cell does not wait for the
neighbors’ acknowledgments, but immediately visits a neighbor. However, it needs
to record the most recent neighbor used, to solve cases when visiting notifications
arrive after the visiting token.

Algorithm 4 (Cidon DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S5. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 4 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 4. Partial Trace of Algorithm 4 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

12 S5 ι1a . . . S5 ι2p1 . . . S5 ι3p2 . . . S5 ι4p5 . . . S5 ι5p3 . . . S5 ι6p5 . . .

3. Rules in state S3:
1 S3 nj →min S4 njmj

2 S3 a→min S4 at

4. Rules in state S4:
1 S4 anjmj →min

S5 avj (vicit) ↓j |tιi
2 S4 cknkmknjmj →min

S5 pkrjmj (vicit) ↓j |tιi
3 S4 ckmknjmj →min

S5 pkrjmj (vicit) ↓j |tιi
4 S4 cjnjmj →min S5 pj (xit) ↓j |tιi
5 S4 cjmj →min S5 pj (xit) ↓j |tιi
6 S4 mj →min S5 mj (vi) ↓j |tιi

7 S4 vjnj →min S4 vj
8 S4 t→min S5

5. Rules for state S5:
1 S5 rkvknj →min S5 rj (cit) ↓j |ιi
2 S5 rkvkpj →min S5 pj (xit) ↓j |ιi
3 S5 xjnkmk →min

S5 rkmk (vicit) ↓k |tιi
4 S5 xjpkrj →min

S5 pkrj (xit) ↓k |tιi
5 S5 cjpk →min S5 pkvj
6 S5 vjnj →min S5 vj
7 S5 axj →min S5 a
8 S5 t→min S5



10 T. Balanescu, R. Nicolescu and H. Wu

4.5 Sharma DFS

Sharma et al.’s algorithm [21] further improves time complexity, at the cost of
increasing the message size, by including a list of visited nodes when passing the
visiting token [23]. Thus, it eliminates unnecessary message exchanges to inform
neighbors of visited status.

Algorithm 5 (Sharma DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S4. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 5 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 5. Partial Trace of Algorithm 5 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

11 S4 ι1a . . . S4 ι2p1 . . . S4 ι3p2 . . . S4 ι4p5 . . . S4 ι5p3 . . . S4 ι6p5 . . .

3. Rules in state S3:

1 S3 anj →min S4 a (civit) ↓j |ιi
2 S3 nj →min S4 |tvj
3 S3 cj →min S4 pj (civit) ↓k |nkιi
4 S3 cj →min S4 pj (xivivjt) ↓j |ιi
5 S3 vj →min S4 vj (vj) ↓k |tnk
6 S3 t→min S4

4. Rules for state S4:
1 S4 nj →min S4 vj
2 S4 xj →min S4 (civit) ↓k |nkιi
3 S4 xj →min S4 (xivit) ↓k |pkιi
4 S4 vj →min S4 vj (vj) ↓k |tnk
5 S4 vj →min S4 vj (vj) ↓k |tpk
6 S4 t→min S4

7 S4 axj →min S4 a

4.6 Makki DFS

Makki et al.’s algorithm [15] improves Sharma et al.’s algorithm by using a dynamic
backtracking technique. It keeps track of the most recent split point, i.e. the lowest
ancestor node. When the search path backtracks to a node, if the node has a non-
tree edge to its split point, it backtracks to the split point directly via that edge,
rather than following the longer tree path to its split point.

Algorithm 6 (Makki DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S4. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 6 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.



Asynchronous P Systems 11

Table 6. Partial Trace of Algorithm 6 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

10 S4 ι1a . . . S4 ι2p1 . . . S4 ι3p2 . . . S4 ι4p5 . . . S4 ι5p3 . . . S4 ι6p5 . . .

3. Rules in state S3:
1 S3 anj →min S4 a (civisit) ↓j |ιi
2 S3 nj →min S4 |tvj
3 S3 cjsm →min

S4 pjrm (civisit) ↓k |nknlιi
4 S3 cjsl →min

S4 pjrl (civislt) ↓k |nkιi
5 S3 cj →min S4 pjrk (xivit) ↓k |skιi
6 S3 cj →min S4 pjrk (xivit) ↓j |skιi
7 S3 vj →min S4 vj (vj) ↓k |tnk
8 S3 vj →min S4 vj (vj) ↓k |tsk
9 S3 t→min S4

4. Rules for state S4:
1 S4 nj →min S4 vj
2 S4 xj →min S4 (civisit) ↓k |nknlιi
3 S4 xjrl →min

S4 (civisislt) ↓k |nkιi
4 S4 xj →min S4 (xivit) ↓k |rkιi
5 S4 xj →min S4 (xivit) ↓k |pkιi
6 S4 vj →min S4 vj (vj) ↓k |tnk
7 S4 vj →min S4 vj (vj) ↓k |trk
8 S4 vj →min S4 vj (vj) ↓k |tpk
9 S4 t→min S4

10 S4 axj →min S4 a

4.7 Sense of Direction DFS

With Sense of Direction (SOD), the node labeling is not required. Instead, arc
labeling is used, with the following properties:

• Edges are labeled with elements of a group G, typically G = Zn, where Zn =
{0, 1, . . . , n− 1}.

• Given labeled arcs a0
x1→ a1, a1

x2→ a2, . . . ak−1
xk→ ak, the path a0

x1→ a1
x2→

a2 . . . ak−1
xk→ ak has label x1 + x2 + . . .+ xk.

• Given labelled paths a
x⇒ b and c

x⇒ d, a = c if and only if b = d.

Thus, in search algorithms, path labels can very handily indicate the already-
visited nodes. Path labels are kept as a growing list and are appended when the
search path passes a node.

If the search path reaching the node, ak, wants to visit the node, ak+1, it first
checks whether ak+1 is an already-visited node, e.g., ai, 0 ≤ i ≤ n. The node ak
checks whether one of the partial path labels, e.g., xi+1 + . . .+ xk + xk+1, equals
zero. If yes, then ak+1 = ai, thus ak+1 is an already-visited node. We refer the
readers to [22] for more details about SOD.

Figure 4 shows a sample P system based on directed graph with SOD arc labels.

Algorithm 7 (Sense of Direction DFS)

For this particular algorithm, here, we only present a P system-like high-level
pseudo-code. Additional investigation is required to achieve an efficient translation
to usual rewriting rules.



12 T. Balanescu, R. Nicolescu and H. Wu

1

2 3

6

5 4

1

1

3

3

4
1

1

2

2

Fig. 4. A sample P system based on a SOD structure, with arc labelling, indicated by
gray arrows. Thick arc arrows indicate a possible virtual DFS tree.

Input: All cells start with the same set of rules and start in the same quiescent
state, S0. Initially, all cells contain objects indicating the labels of neighbor arcs:
objects oj for outgoing arcs and objects ej for incoming arcs. The source cell, σs,
is additionally decorated with one trigger object, a.

Output: All cells end in the same final state, S1. On completion, cell σs is still
decorated with one a. All other cells contain DFS spanning tree pointer objects,
indicating its tree predecessors: pj , for incoming arcs and qj , for outgoing arcs.
Also, cells may contain “garbage” objects, which can be cleared, in a few more
steps.

Table 7 shows one possible DFS spanning tree, built by this algorithm, for the
P system of Figure 4.

Table 7. Partial Trace of Algorithm 7 for Figure 4.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S0ao1o4 S0e1o1o3 S0e1o1o2o3 S0e1o1o2 S0e1e2e3e4 S0e2e3
11 S1 a . . . S1 p1 . . . S1 p1 . . . S1 p1 . . . S1 p1 . . . S1 p2 . . .

The ruleset below uses a few additional “magical” algebraic operators and
prompters, which do fit properly into the basic framework outlined in Section 2
(or not yet).

• Operation π⊕ j adds j, modulo n, to every element in list π and also appends
+j to list π.

• Operation π 	 j subtracts j, modulo n, from every element in list π and also
appends n− j (i.e. −j modulo n) to list π.

• Complex promoters π ⊕ j? and π 	 j? enable the associated rule only if the
resulting list does not contain any 0.

0. Rules in state S0:

1 S0 aoj →min S1 a (cjb⊕j) ↑j
2 S0 bπojckek →min

S1 pk(cjbπ⊕j) ↑j |π⊕j?

3 S0 bπejckek →min

S1 pk(ljbπ	j) ↓j |π	j?
4 S0 bπoj lkok →min

S1 qk(cjbπ⊕j) ↑j |π⊕j?



Asynchronous P Systems 13

5 S0 bπej lkok →min

S1 qk(ljbπ	j) ↓j |π	j?
6 S0 bπcjej →min S1 pj(xjbπ	j) ↓j
7 S0 bπljoj →min S1 pj(xjbπ⊕j) ↑j

1. Rules in state S1:

1 S1 bπxkoj →min

S1 (cjbπ⊕j) ↑j |π⊕j?
2 S1 bπxkej →min

S1 (ljbπ	j) ↓j |π	j?
3 S1 bπxkpj →min S1 pj (xjbπ	j) ↓j
4 S1 bπxkqj →min S1 qj (xjbπ⊕j) ↑j
5 S1 axj →min S1 a

5 Distributed Breadth-First Search (BFS)

BFS is a fundamental technique, inherently parallel, or so it appears. There are
a number of distributed BFS algorithms to make BFS run faster on parallel and
distributed systems, such as Synchronous BFS [22], Asynchronous BFS [22], an
improved Asynchronous BFS with known graph diameter [22], Layered BFS [22],
Hybrid BFS [22].

Our previous research proposed a P algorithm to find disjoint paths using BFS,
and empirical results show that BFS can leverage the parallel and distributed
characteristics of P systems [17]. In this paper, we first present a P implementa-
tion of synchronous BFS (SyncBFS) and discuss how SyncBFS succeeds in the
synchronous mode but fails in the asynchronous mode. Next, we propose a P im-
plementation of an algorithm which works correctly in the asynchronous mode,
the simple Asynchronous BFS (AsyncBFS) algorithm, and we show how it works
in both synchronous and asynchronous scenarios.

5.1 Synchronous BFS

Initially, the source cell broadcasts out a search token. On receiving the search
token, an unmarked cell marks itself and chooses one of the cells from which
the search token arrived as its parent. Then in the first round after the cell gets
marked, it broadcasts a search token to all its neighbors [14]. SyncBFS is a “wave”
algorithm and it produces a BFS spanning tree in synchronous mode, as shown in
Figure 5. However, it often fails in asynchronous mode, as shown in Figure 6.

Algorithm 8 (Synchronous BFS)

Input: Same as in Algorithm 2.

Synchronous output: All cells end in the same final state, S5. On completion,
each cell, σi, still contains its cell ID object, ιi. The source cell, σs, is still decorated
with one a. All other cells contain BFS spanning tree pointer objects, indicating
predecessors, pj . Also, cells may contain “garbage” objects, which can be cleared,
by using a few more steps.

Table 8 shows the BFS spanning tree built by this algorithm (in the syn-
chronous mode), for the P system of Figure 5 (there is only one BFS tree in this
case).



14 T. Balanescu, R. Nicolescu and H. Wu

1

2

3 4 5 6

7 8

9 10

Fig. 5. BFS spanning tree.

Table 8. Partial Trace of Algorithm 8 for Figure 5 in synchronous mode.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

8 S5 ι1p2 . . . S5 ι2a . . . S5 ι3p4 . . . S5 ι4p2 . . . S5 ι5p2 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

8 S5 ι6p5 . . . S5 ι7p4 . . . S5 ι8p5 . . . S5 ι9p7 . . . S5 ι10p8 . . .

3. Rules in state S3:
1 S3 a→min S4 a
2 S3 cjnj →min S4 pj

4. Rules for state S4:

1 S4 nj →min S5 (ci) ↓j |ιi
2 S4 →min S5

5. Rules for state S5:
1 S5 cj →min S5

However, if Algorithm 8 runs in asynchronous mode, the result is still a span-
ning tree, but not necessarily a BFS spanning tree, as illustrated in Table 9 and
Figure 6. The search token from cell σ2 to σ5 is delayed and arrives in cell σ5 after
σ5 records its parent as σ8. The resulting spanning tree is not a BFS spanning
tree.

Table 9. Partial Trace of Algorithm 8 for Figure 6 in asynchronous mode.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

14 S5 ι1p1 . . . S5 ι2a . . . S5 ι3p4 . . . S5 ι4p2 . . . S5 ι5p8 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

14 S5 ι6p5 . . . S5 ι7p4 . . . S5 ι8p7 . . . S5 ι9p7 . . . S5 ι10p8 . . .



Asynchronous P Systems 15

1

2

3 4 5 6

7 8

9 10

Fig. 6. BFS spanning tree output of Algorithm 8 in an asynchronous scenario.

5.2 Asynchronous BFS

Asynchronous BFS (AsyncBFS) algorithm is not just a asynchronous version of
SyncBFS [14], as previously discussed in the asynchronous mode of SyncBFS. It
has modifications to correct the parent destination, therefore obtaining a BFS
spanning tree.

Although the known problem of AsyncBFS is that there is no way to know
when there are no further parent corrections to make, i.e. it never produces the
tree structure output. However, in P systems, there is no such problem, because
the objects in cells are actually the tree link output. Thus, P systems provides a fa-
vorable way to implement this algorithm, which does not require other augmenting
approaches, such as adding acknowledgments, convergecasting acknowledgments,
bookkeeping, etc [14].

Algorithm 9 (Asynchronous BFS)

Input: Same as in Algorithms 2 (and 8).

Output: Similar to Algorithm 8 (running in synchronous mode), but the final
state is S4. Also, cells may contain “garbage” objects, which can be cleared, by
using a few more steps.

Table 10 shows the BFS spanning tree built by this algorithm, for the P system
of Figure 5 (there is only one BFS tree in this case).

Table 10. Partial Trace of Algorithm 9 for Figure 5.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

5 S4p2 . . . S4a . . . S4p4 . . . S4p2 . . . S4p2 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

5 S4 ι6p5 . . . S4 ι7p4 . . . S4 ι8p5 . . . S4 ι9p7 . . . S4 ι10p8 . . .



16 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state S3:
1 S3 →min S4 h|a
2 S3 nj →min

S4 mj (citgguu) ↓j |aιi
3 S3 cjnj →min S4 pjmj |t
4 S3 →min S4 (cit) ↓j |tnjιi
5 S3 gu→min S4 h (gguu) l |t
6 S3 gu→max S4 h (gu) l |t
7 S3 nj →min S4 mj |t
8 S3 t→max S4

4. Rules for state S4:

1 S4 gh→max S4 |t
2 S4 pj →min S4 |ht
3 S4 cjmj →min S4 pj |ht
4 S4 cj →min S4 |t
5 S4 mj →min S4 (cit) ↓j |htιi
6 S4 u→min S4 h (gguu) l |ht
7 S4 u→max S4 h (gu) l |ht
8 S4 h→max S4 |t
9 S4 gu→max S4

10 S4 gu→max S4|t
11 S4 t→max S4

5.3 Echo Algorithm

The Echo algorithm shares the similar “wave” characteristics of distributed BFS
algorithms, but, as discussed in Section 3, it only builds a spanning tree, not
necessarily a BFS spanning tree.

Algorithm 10 (Echo Algorithm)

Input: Same as in Algorithms 2 (and 8).

Output: All cells end in the same final state, S4. On completion, each cell,
σi, still contains its cell ID object, ιi. he source cell, σs, is still decorated with
an object, a. All other cells contain a spanning tree pointer objects, indicating
predecessors, pj .

Table 11 and 12 show two spanning trees, built by this algorithm, for the
P system of Figures 1 and 2, in synchronous and asynchronous modes, respectively.

Table 11. Partial Trace of Algorithm 10 for Figure 1 in synchronous mode.

Step# σ1 σ2 σ3 σ4

0 S3 ι1an2n3n4 S3 ι2n1n3n4 S3 ι3n1n2n4 S3 ι4n1n2n3

4 S4 ι1a S4 ι2p1 S4 ι3p1 S4 ι4p1

Table 12. Partial Trace of Algorithm 10 for Figure 2 in asynchronous mode.

Step# σ1 σ2 σ3 σ4

0 S3 ι1an2n3n4 S3 ι2n1n3n4 S3 ι3n1n2n4 S3 ι4n1n2n3

4 S4 ι1a S4 ι2p1 S4 ι3p2 S4 ι4p3



Asynchronous P Systems 17

3. Rules in state S3:
1 S3 nj →min S4 wj (cit) ↓j |aιi
2 S3 cjnjnk →min

S4 pjwk (cit) ↓k |ιi
3 S3 cjnj →min S4 pj (cit) ↓j |ιi
4 S3 nj →min S4 wj (cit) ↓j |tιi
5 S3 t→max S4

4. Rules for state S4:
1 S4 wj →min S4 |cj
2 S4 wjpk →min S4 wjpk
3 S4 wja→min S4 wja
4 S4 cj →min S4

5 S4 pj →min S4 pj (cit) ↓j |tιi
6 S4 t→max S4

6 Complexity

All our distributed DFS and BFS implementations, except the SoD implementa-
tion, assume that each cells knows the IDs of its neighbors (parents and children).
Our SoD implementation assumes that each cell knows the labels of its adjacent
arcs (incoming and outgoing). In the complexity analysis, we skip over a prelimi-
nary phase which could build such knowledge, see Algorithm 1.

All our P system DFS implementations take one final step, to prompt the
source cell to discard the token; we also omit this step in the complexity analysis.
Moreover, there is one beginning step in our implementations for Awerbuch (rule
3.1) and Cidon (rules 3.1, 3.2), which instantiates initial list objects. These steps
can be included in Algorithm 1. However, we do not follow this approach, because
we want to keep Algorithm 1 a common preliminary phase for all our algorithms.
We also skip these beginning steps, in the complexity analysis.

Table 13 shows the resulting complexity of our P system DFS implementations,
in terms of P steps. The runtime complexity of our P system implementations is
exactly the same as for the standard distributed DFS algorithms. The complexity
of our SOD algorithm must be considered with a big grain of salt, for the reasons
explained in the description of Algorithm 7 (high-level pseudo-code).

Table 13. DFS algorithms comparisons and complexity (P steps) of Figure 3.

Algorithm P Steps Time units Messages Notes

Classical 18 2M 2M Local cell IDs

Awerbuch 22 4N − 2 4M Local cell IDs

Cidon 10 2N − 2 ≤ 4M Local cell IDs

Sharma 10 2N − 2 ≤ 2N − 2 Global cell IDs

SOD 10? 2N − 2 ≤ 2N − 2 Sense of Direction (Zn)

Makki 9 (1 + r)N (1 + r)N Global cell IDs (or SOD)

Table 14 shows the runtime complexity of our P system SyncBFS and AsyncBFS
implementations, which is consistent with the runtime complexity of the standard
algorithms.



18 T. Balanescu, R. Nicolescu and H. Wu

Table 14. BFS algorithms comparisons and complexity (P steps) of Figure 5.

Algorithm P Steps Time units Messages Notes

Sync 8 O(D) O(M) Local IDs

Simple Async 5 O(DN) O(NM) Local IDs

Simple Async2 ? O(D2) O(DM) D and Local IDs

Layered Async ? O(D2) O(M +DN) Local IDs

Hybrid Async ? O(Dk +D2/k) O(Mk +DN/k) Local IDs

7 Conclusions

We proposed a new approach to fully asynchronous P systems, and a matching
complexity measure, both inspired from the field of distributed algorithms. We val-
idated our approach by implementing several well-known distributed depth-first
search (DFS) and breadth-first search (BFS) algorithms. We believe that these
are the first P implementations of the standard distributed DFS and BFS algo-
rithms. Empirical results show that, in terms of P steps, the runtime complexity
of our distributed P algorithms is the same as the runtime complexity of standard
distributed DFS and BFS.

Several interesting questions remain open. We intend to complete this quest
by completing the implementation of the SOD algorithm and by implementing
three other, more sophisticated, distributed BFS algorithms and compare their
performance against the standard versions. We also intend to elaborate the foun-
dations of fully asynchronous P systems and further validate this, by investigating
a few famous critical problems, such as building minimal spanning trees. Finally,
we intend to formulate fundamental distributed asynchronous concepts, such as
fairness, safety and liveness, and investigate methods for their proofs.

References

1. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20(3), 147 – 150 (1985), http://www.sciencedirect.com/science/
article/B6V0F-482R9G2-S/2/22537b651ddd5c1a0e3ae5d5ba723079

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci. 19(5), 1183–
1198 (2008)

3. Casiraghi, G., Ferretti, C., Gallini, A., Mauri, G.: A membrane computing system
mapped on an asynchronous, distributed computational environment. In: Freund, R.,
Paun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing.
Lecture Notes in Computer Science, vol. 3850, pp. 159–164. Springer (2005)

4. Cavaliere, M., Egecioglu, O., Ibarra, O., Ionescu, M., Pun, G., Woodworth, S.: Asyn-
chronous spiking neural p systems: Decidability and undecidability. In: Garzon, M.,
Yan, H. (eds.) DNA Computing, Lecture Notes in Computer Science, vol. 4848,
pp. 246–255. Springer Berlin / Heidelberg (2008), http://dx.doi.org/10.1007/

978-3-540-77962-9_26



Asynchronous P Systems 19

5. Cavaliere, M., Ibarra, O.H., Pun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural p systems. Theor. Comput. Sci. 410, 2352–2364 (May
2009), http://portal.acm.org/citation.cfm?id=1539070.1540146

6. Cavaliere, M., Sburlan, D.: Time and synchronization in membrane systems. Fundam.
Inf. 64, 65–77 (July 2004), http://portal.acm.org/citation.cfm?id=1227085.

1227092

7. Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process. Lett.
26, 301–305 (1988)

8. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems.
Electronic Proceedings in Theoretical Computer Science 40, 121–141 (2010)

9. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and vertex-disjoint paths in P mod-
ules. In: Ciobanu, G., Koutny, M. (eds.) Workshop on Membrane Computing and
Biologically Inspired Process Calculi. pp. 117–136 (2010)

10. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzan-
tine agreement. Journal of Logic and Algebraic Programming 79(6), 334–
349 (2010), http://www.sciencedirect.com/science/article/B6W8D-4YPPPW1-2/
2/17b82b2cdd8f159b7fea380939193e4d

11. Freund, R.: Asynchronous p systems and p systems working in the sequential mode.
In: Mauri, G., Paun, G., Prez-Jimnez, M., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing, Lecture Notes in Computer Science, vol. 3365, pp. 36–62. Springer
Berlin / Heidelberg (2005), http://dx.doi.org/10.1007/978-3-540-31837-8_3

12. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Depth-first search with p systems.
In: Proceedings of the 11th international conference on Membrane computing. pp.
257–264. CMC’10, Springer-Verlag, Berlin, Heidelberg (2010), http://portal.acm.
org/citation.cfm?id=1946067.1946090

13. Kleijn, J., Koutny, M.: Synchrony and asynchrony in membrane systems. In: Mem-
brane Computing, WMC2006, Leiden, Revised, Selected and Invited Papers, LNCS
4361. pp. 66–85. Springer (2006)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1996)

15. Makki, S.A.M., Havas, G.: Distributed algorithms for depth-first search. Inf. Process.
Lett. 60, 7–12 (October 1996), http://portal.acm.org/citation.cfm?id=244081.
244085

16. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Discovering the membrane topology of
hyperdag P systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozen-
berg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lecture Notes in
Computer Science, vol. 5957, pp. 410–435. Springer-Verlag (2009)

17. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. Report
CDMTCS-399, Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, The University of Auckland, Auckland, New Zealand (March 2011), http:

//www.cs.auckland.ac.nz/CDMTCS//researchreports/399radu.pdf

18. Pan, L., Zeng, X., Zhang, X.: Time-free spiking neural p systems. Neural Com-
putation 0(0), 1–23 (2011), http://www.mitpressjournals.org/doi/abs/10.1162/
NECO_a_00115

19. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, G. (eds.) Applications of Membrane Computing, pp. 1–42. Natural Com-
puting Series, Springer-Verlag (2006)

20. Păun, G., Centre, T., Science, C.: Computing with membranes. Journal of Computer
and System Sciences 61, 108–143 (1998)



20 T. Balanescu, R. Nicolescu and H. Wu

21. Sharma, M.B., Iyengar, S.S.: An efficient distributed depth-first-search algorithm. Inf.
Process. Lett. 32, 183–186 (September 1989), http://portal.acm.org/citation.

cfm?id=69686.69691

22. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (2000)
23. Tsin, Y.H.: Some remarks on distributed depth-first search. Inf. Process. Lett. 82,

173–178 (May 2002), http://portal.acm.org/citation.cfm?id=585580.585581
24. Yuan, Z., Zhang, Z.: Asynchronous spiking neural p system with promoters. In:

Proceedings of the 7th international conference on Advanced parallel processing
technologies. pp. 693–702. APPT’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://portal.acm.org/citation.cfm?id=1785246.1785331

A Appendix



Asynchronous P Systems 21

T
a
b
le

1
5
.

A
w

er
b
u
ch

D
F

S
a
lg

o
ri

th
m

tr
a
ce

s
(s

te
p
s

0
,

..
.,

1
5
)

o
f

F
ig

u
re

3
in

sy
n
ch

ro
n
o
u
s

m
o
d
e,

w
h
er

e
σ
1

is
th

e
so

u
rc

e
ce

ll
.

S
te
p
σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

0
S
0
a
ι 1

S
0
ι 2

S
0
ι 3

S
0
ι 4

S
0
ι 5

S
0
ι 6

1
S
1
a
ι 1
y

S
0
ι 2
z

S
0
ι 3

S
0
ι 4
z

S
0
ι 5

S
0
ι 6

2
S
2
a
ι 1
z
2

S
1
ι 2
n
1
y
z

S
0
ι 3
z
2

S
1
ι 4
n
1
y
z

S
0
ι 5
z

S
0
ι 6

3
S
3
a
ι 1
n
2
n
4

S
2
ι 2
n
1
n
4
z

S
1
ι 3
n
2
n
4
y
z

S
2
ι 4
n
1
n
2
z
2

S
1
ι 5
n
4
y
z

S
0
ι 6
z
2

4
S
4
a
ι 1
m

2
m

4
n
2
n
4

S
3
ι 2
n
1
n
3
n
4

S
2
ι 3
n
2
n
4
n
5
z

S
3
ι 4
n
1
n
2
n
3
n
5

S
2
ι 5
n
3
n
4
z

S
1
ι 6
n
3
n
5
y

5
S
5
a
ι 1
m

2
m

4
n
2
n
4

S
4
ι 2
m

1
m

3
m

4
n
1
n
3
n
4

v
1

S
3
ι 3
n
2
n
4
n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
v
1

S
3
ι 5
n
3
n
4
n
6

S
2
ι 6
n
3
n
5

6
S
6
a
b
2
b
4
ι 1
m

2
m

4
n
2

n
4
w

2
w

4

S
4
ι 2
m

1
m

3
m

4
n
1
n
3
n
4

u
1

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
3
ι 6
n
3
n
5

7
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
4
c
1
ι 2
m

1
m

3
m

4
n
1
n
3

n
4
tu

1

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

8
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
5
ι 2
m

3
m

4
n
3
n
4
p
1
t
u
1
S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6
v
2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
v
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

9
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
6
b
3
b
4
ι 2
m

3
m

4
n
3
n
4

p
1
tu

1
w

3
w

4

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6
u
2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

1
0

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
4
c
2
ι 3
m

2
m

4
m

5
m

6
n
2

n
4
n
5
n
6
tu

2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

1
1

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
5
ι 3
m

4
m

5
m

6
n
4
n
5
n
6

p
2
tu

2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
v
3

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

v
3

S
4
ι 6
m

3
m

5
n
3
n
5
v
3

1
2

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
6
b
4
b
5
b
6
ι 3
m

4
m

5
m

6

n
4
n
5
n
6
p
2
tu

2
w

4
w

5
w

6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

u
3

S
4
ι 6
m

3
m

5
n
3
n
5
u
3

1
3

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3

S
4
c
3
ι 5
m

3
m

4
m

6
n
3
n
4

n
6
tu

3

S
4
ι 6
m

3
m

5
n
3
n
5
u
3

1
4

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
v
5

S
5
ι 5
m

4
m

6
n
4
n
6
p
3
t
u
3
S
4
ι 6
m

3
m

5
n
3
n
5
u
3
v
5

1
5

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
6
b
4
b
6
ι 5
m

4
m

6
n
4
n
6

p
3
tu

3
w

4
w

6

S
4
ι 6
m

3
m

5
n
3
n
5
u
3
u
5



T
a
b
le

1
6
.

A
w

er
b
u
ch

D
F

S
a
lg

o
ri

th
m

tr
a
ce

s
(s

te
p
s

1
6
,

..
.,

2
7
)

o
f

F
ig

u
re

3
in

sy
n
ch

ro
n
o
u
s

m
o
d
e,

w
h
er

e
σ
1

is
th

e
so

u
rc

e
ce

ll
.

S
te
p
σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

1
6

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
4
c
5
ι 6
m

3
m

5
n
3
n
5
t

u
3
u
5

1
7

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5
v
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
5
ι 6
m

3
n
3
p
5
tu

3
u
5

1
8

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5
u
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
6
b
3
ι 6
m

3
n
3
p
5
tu

3

u
5
w

3

1
9

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
tu

3

u
6
x
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
0

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6

S
4
c
5
ι 4
m

1
m

2
m

3
m

5
n
1

n
2
n
3
n
5
tu

1
u
2
u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
1

S
7
a
ι 1
m

4
n
2
n
4
u
2
v
4

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3
v
4
S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6
v
4

S
5
ι 4
m

1
m

2
m

3
n
1
n
2
n
3

p
5
tu

1
u
2
u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
2

S
7
a
ι 1
m

4
n
2
n
4
u
2
u
4

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3
u
4
S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
4
u
5
u
6

S
6
b
1
b
2
b
3
ι 4
m

1
m

2
m

3

n
1
n
2
n
3
p
5
tu

1
u
2
u
3

u
5
w

1
w

2
w

3

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
3

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
tu

3
u
4
u
6
x
4
S
7
ι 6
n
3
p
5
u
3
u
5

2
4

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
tu

2

u
4
u
5
u
6
x
5

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
5

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
tu

1
u
3
u
4
x
3
S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
6

S
7
a
ι 1
n
2
n
4
tu

2
u
4
x
2

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
7

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5


