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Some Theoretical Results Concerning Non
Newtonian Fluids of the Oldroyd Kind

ENRIQUE FERNÁNDEZ-CARA * , FRANCISCO GUILLÉN* ,
RUBENS R. ORTEGA**

1. - Introduction 

In this paper we consider incompressible visco-elastic fluids satisfying the
Oldroyd constitutive law ([1], [15], [20]):

Here cr is the tensor of tangential stresses, D (u) = is the deforma-

tion tensor, u is the velocity field, ~,1 1 and h2 are respectively the relaxation and
retardation times (0  h2 s and 17 is the fluid viscosity. In (1.1), Da / Dt
denotes the following "objective derivative" ([1], [16], [20]):

~’ is the time derivative,

with a E [-1, 1 ] and, finally, W(u) = is the vorticity tensor.
The case ~,1 = h2 = 0 (respectively &#x3E; 0, h2 = 0) corresponds to a

purely viscous or Newtonian (respectively a purely elastic) fluid. In this paper,
we will assume 0  h2  ~,1; for kl ¡ and h2 in these conditions, (1.1) can
be used to describe the behaviour of a large variety of polymers (for instance,
see [25]).
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** Partially supported by CAPES/Brazil grant 1797/91-6 (PhD fellowship at the University of
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The constitutive law ( 1.1 ) must accompany the motion and continuity equa-
tions for homogeneous incompressible fluids

where u’ is again a time or is the stress tensor (p is
the pressure), f is a given field of exterior forces and p is the fluid density (a
given constant). By putting cr = ’CN + T with

we see that ( 1.1 )-( 1.2) can also be written as follows:

Here, we have introduced the parameter a = (notice that 0  a  1).
The previous system can be adimensionalized in the usual way with characteristic
values U and L for the velocity and the length. For the dimensionless variables,
one finds:

where Re = pUL/q is the Reynolds number (the ratio between inertial and
viscous forces acting on the fluid) and We = is the Weissenberg number
(a measure of the elasticity of the fluid). We will assume that this system is
satisfied in Q x (0, T), with Q c R 3being a bounded connected open set whose
boundary aQ is smooth and (0, T) is a time interval. We will complete (1.5)-
(1.6) with the following boundary and initial conditions:

on

in

The unknowns are u, p and i; the data of the problem are the functions uo,
to and f and the constants Re, We, a and a.

The main goal of this paper is to deduce existence, uniqueness and stability
results for (1.5)-(1.8). Several results have already been established, up to now
all in a Hilbert framework. In [9], C. Guillop6 and J.-C. Saut proved that there
exists a unique strong local in time solution using the techniques in [23], [24]
(roughly speaking, rewriting (1.5)-(1.8) as a fixed point equation and applying
Schauder’s theorem). They also proved that the solution is globally defined
if the data are small. The existence and uniqueness of a global solution for
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large data have been demonstrated by the same authors in [10] in the particular
cases of two-dimensional Couette and Poiseuille flows. Unfortunately, there is
no general result concerning global in time existence for arbitrarily large data.

On the other hand, the main result for the stationary problem associated
to (1.5)-(1.7) is due to M. Renardy ([19]). It states that, when f’ is sufficiently
small and 0  .a  1, there exists exactly one small strong solution. Some nu-
merical questions for (1.5)-(1.8) and other related problems have been analyzed
in [2], [3] and [21].

This paper is organized as follows. In Section 2, we prove the existence
and uniqueness of a local LS - L’ solution to (1.5)-(1.8) (again global in time
if the data are small). We use the techniques in [23] together with some
recent results due to Y. Giga and H. Sohr [8] on the LS - L’ regularity of the
solutions of the Stokes problem. In Section 3, uniqueness and stability results
for (1.5)-(1.8) are given (the former can be viewed as an analog of the well
known uniqueness result for regular solutions of the Navier-Stokes equations).
Section 4 deals with the existence and uniqueness of a small L’ solution to the
stationary problem associated to (1.5)-(1.7). In Section 5, we deduce global in
time existence and uniqueness for Poiseuille flow in cylindrical domains (the
flow of a fluid between two concentrical cylinders). Section 6 deals with some
final remarks. Some of these results have already been announced in [5].

2. - The evolution problem (I): existence and uniqueness of a strong solution

In the sequel, one will have r, s E (1, oo) . Unless it is explicitly specified,
Q c is a bounded connected open set such that 8Q is Lipschitz-continuous.
We will use the following notation (see [8]):

a) L r = etc ... E 

0 on 9~}. Here, n = n (x ) is a unitary vector, normal to a S2 at x and oriented
towards the exterior of Q; Hr endowed with the norm of Lr (SZ)3 is a reflexive
Banach space. When r = 2, we will put H instead of H2. The norm and the
scalar product in L 2 will be denoted by ~ ~ ~ I and (., .), respectively.

b) V = H n HJ(Q)3, a Hilbert space for the usual norm in HJ(Q)3. V’
is its dual space ((., .) is the corresponding duality pairing). The norm in Ho
will be denoted by I - 

c) Pr : Lr (Q)3 --* Hr is the Helmholtz projector in Lr. It is a bounded
linear operator characterized by the equality Pr v = vo, where vo is given by
the so called Helmholtz decomposition

with and

is the Stokes operator in Hr. Here,
is a Banach space for the norm
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We will frequently use functions with values in ]i3 or in the space 
of real 3 x 3 matrices. In all cases, the notation will be abreged. For instance,
u E or simply u E H 0 I means that each component of u belongs to

Ho (S2). Whenever X (Q) is a Banach space formed by functions defined in Q,
LP(X) stands for T ; X(Q)) and C(X) for C([0, T]; X(Q)).

THEOREM 2.1. Assume and

then there exist T* E (0, T] and a unique strong solution lu, p, -11 to (1.5)-(1.8) in
[0, T*], with

THEOREM 2.2. Assume a SZ E &#x3E; 0), 1  s  Then, for each
T &#x3E; 0, there exists ao (T ) E (0, 1) such that, when 0  a  ao(T) and the data

have sufficiently small norms in their respective spaces, problem (1.5)-(1.8) pos-
sesses exactly one strong solution lu, p, t } in [0, T], with

Theorem 2.1 slightly improves Theorem 1 in [5]. When Q C R N, results
similar to Theorems 2.1 and 2.2 hold again for all finite r &#x3E; N.

Theorems 2.1 and 2.2 can be compared with the results in [9]. In [9]
(Theorems 2.4 and 3.3), C. Guillop6 and J.-C. Saut impose stronger regularity
hypotheses on the data (in particular, f E L2(Hl) and in The-
orem 2.4 and f E and f’ E in Theorem 3.3). They also
show that if the data are small enough there exists a strong solution in [0, oo);
contrarily, in Theorem 2.2, T is arbitrarily large but finite (and ao(T) --* 0 as
T -~ +o).

For the proofs of Theorem 2.1 and 2.2, we need the following three lemmas:

LEMMA A. Assume and T &#x3E; 0. If

then there exists a unique function u such that
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and

Furthermore,

where C1 = C1(r, s, Re, Q) does not depend on F, uo and T.

The fact that C1 1 is independent from T is very important and will be
used below.

LEMMA B. Assume and . If

then there exists a unique function T such that

and

Furthermore, one has the following estimates, where

LEMMA C. The solution to (A.1 ) furnished by Lemma A satisfies:

Furthermore, one has:

and

where and ~
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For the Proof of Lemma A, see [8]. Lemmas B and C are demonstrated
in the Appendix.

PROOF oF THEOREM 2.1. We are going to rewrite ( 1.5)-( 1.8) as a fixed

point equation. Then, Lemmas A and B will be applied. This, together with
Lemma C, will serve to check that all hypotheses of Schauder’s theorem are
satisfied.

For arbitrary T &#x3E; 0, R 1 &#x3E; 0, R2 &#x3E; 0 and R3 &#x3E; 0, let us introduce the set

Let us see that, if R 1 and R2 are sufficiently large, then Y(T) # 0 for all
T &#x3E; 0 (and for all R3 &#x3E; 0). Indeed, let u* be the unique solution to the Stokes
problem

For Lemma A, we know there exists, C1 1 &#x3E; 0 such that

(Cl does not depend on T). If one chooses

then (u*, to) belongs to Y(T) for all T &#x3E; 0 (and also for all R3 &#x3E; 0).
In the sequel, R1 and R2 will be assumed to satisfy (2.3). Let us introduce

the Banach space XT = Ls(WJ,r) x C(Lr) and the mapping (D: Y(T) - XT,
given by 4$(E , t) = (u, t), where u is the unique solution to (A.1) with

and r is the solution to (B .1 ). Obviously, a fixed point of 4$ solves (1.5)-(1.8).
Let us see that, for some T* E (0, T], one C Y (T* ) . Indeed, if

(u, f) E Y(T) then
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We deduce that

Now, using (C.2), (C.1 ), the definition of Y(T) and the inequality

one obtains:

where . From (A.2), we see that

On the other hand, from (B.2) and (B.3), one has:

Consequently, if T*, R 1, R2 and R3 are chosen in such a way that the right
sides of the three last inequalities (with T replaced by T* ) are bounded by R 1,
R2 and R3 respectively, will be a subset of Y (T* ) . For example,
it suffices to take

and
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Thus, we have found three constants R2 and R3 (depending on the
data) and a time T* E (0, T] (depending on R2 and the data) such that
4S(Y(T*)) c Y(T*). Since Y(T*) is a convex compact subset of XT* and 4$ is

continuous, Schauder’s theorem can be applied. This proves the existence of a
strong solution to (1.5)-(1.8) in Q x (0, T* ) . That this solution is unique stems
on Theorem 3.1 (see Section 3). D

PROOF OF THEOREM 2.2. Let us consider again the set Y(T), given by (2.1).
Notice that once a, R1 and R2 are fixed, if uo and ro satisfy (2.3), then the
couple (u*, to) E Y(T); here, u* is the solution to (2.2). Hence, Y (T) =1= 0
(and this true for all R3 &#x3E; 0).

As in the proof of Theorem 2.1, we introduce the space XT and the

mapping (D. Let us see that there exists ao(T) E (0, 1) such C

Y(T) for a E (0, ao(T)]. If (u, f) E Y(T) and we set F = P,(-Re(u- - V)M +
V . f + f ), then

Using the fact that

one finds

where C7 = s, Re, S2 , T). Using the definition of Y (T ), one also has

and this, together with (A.2), gives the following inequality:

On the other hand, from (B.2) and (B.3), one deduces:
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Consequently, if a, R1, R2, R3, and the norms of uo, to and f are such that
the right sides of these three inequalities are bounded by R2 + 4a and

, 
C2We

R3 respectively, c Y(T). First, we choose a 1, R 1 and R2 such
that 

-

Then, we choose ao E (0, ] such that

Finally, R3 is fixed, such that

When 0  a  ao - ao(T) and the norms of uo, io and f are sufficiently
small, one has:

As in the proof of Theorem 2.1, we can now deduce that 4) possesses a fixed
point in Y(T) and also that this is the unique solution to (1.5)-(1.8). D

3. - The evolution problem (II): uniqueness and stability

THEOREM 3.1. tf and (1.5)-(1.8) possesses two
weak solutions fu’, pi , (i = l, 2) in [0, T] (in the usual sense), with

then they coincide ( p 1 and p2 coincide up to a function only depending on t).
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PROOF. Let us introduce and Then

a.e. in [0, T], 
’

a.e. in Q x (0, T) and

The regularity properties of u and r lead to the conclusion that u’ E L2 ( V’) +
and n L 1 (L 2 ) . Here, u’ and -c’ must be understood as the

usual time derivatives in D’(0, T ; V’) and D’(0, T ; respectively. We can
compute the duality product ((3.1), u) (since u E L2(V) n L°°(H)) and also the
L 2 scalar product ((3.2), 1-r). They give together:

Hence

with C being a constant. Now, from Gronwall’s lemma and (3.3), one easily
deduces that u and r vanish. D

Theorem 3.1 slightly improves Theorem 3 in [5]. When Q C (N &#x3E; 4),
one can deduce, in a similar way, uniqueness in the class

On the other hand, if Q c R, one obtains uniqueness in the class

Notice that Theorem 3.1 plays the role, of Theorem 6.9 in [14] (p. 84), which
provides uniqueness for the strong solution to the usual Navier-Stokes problem.
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THEOREM 3.2. Assume Also, assume
0 and

Let {u, p, -c I be the strong solution to (1.5)-(1.8) corresponding to these data. Then
for each 3 &#x3E; 0, one has:

(a) There exists T E (0, T] only depending on uo, To, f and 8, such that if the
data uo, --ro and f satisfy

then the corresponding system (1.5)-(1.8) possesses exactly one strong solution,
defined in the whole interval [0, T]. 

-

(b) There exists C = C(uo, to, f,8) &#x3E; 0 such that, if (uo, to, f), (vo, g) E
and {u, p, i } and {v, q- 9 a- I are the strong solutions corresponding to these data,

one has:

PROOF. Arguing as in the proof of Theorem 2.1, we see that if (uo, To, f)
is given and R1 and R2 satisfy

and

then there exists a unique strong solution to ( 1.5)-( 1.8), defined at least in

[0, T* ], where

Let 6 &#x3E; 0 and (uo, To, f ) E Bg be fixed. Let us denote by R1, R2 and T*
the corresponding values of R 1, R2 and T*. Then
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and, consequently,

Hence, part a) of this theorem holds with this T.
Now, assume (uo, to, f), (vo, 0-ro, g) E B30 and let us denote by {u, p, t)

and {v, q, cr_{ the corresponding strong solutions to (1.5)-(1.8) (both defined at
least in [0, T]). Arguing as in the proof of Theorem 3.1, one finds:

Here,
and one

has:

Integrating (3.6) with respect to time in [0, T] and using Gronwall’s lemma,
one easily obtains (3.5). This ends the proof. D

The previous is a stability (or continuous dependence) result for the strong
solutions to (1.5)-(1.8) furnished by Theorem 2.1. With some obvious changes,
one can also demonstrate similar stability results for global solutions corre-

sponding to small data.

4. - The stationary problem

In this section, Q C JRN (N = 2 or N = 3) is a bounded connected open set
and E C2. We consider the stationary problem corresponding to (1.5)-(1.7),
that is

in

in

on

THEOREM 4.1. (a) If f E Lr (N  r  +(0) has a sufficiently small Lr norm,
then (4.1 )-(4.3) possesses exactly one small strong solution lu, p, t } ( p is unique
up to a constant), with 

1 --
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(b) There exists a constant C = C (a, r, a, Re, We, S2) &#x3E; 0 such that, if I u, p, -r I
and f v, q, are the small strong solutions corresponding to the data f and g, both
with sufficiently small Lr norms, then:

For the proof of Theorem 4.1, we need the following two lemmas:

LEMMA D. If F E Lr (I  r  -~oo), then there exists exactly one {u, q I (q is
unique up to a constant), such that

in

Furthermore, for some C’ = C1 (r, Q), one has:

LEMMA E. Assume N  r  00 and u E D(Ar). One has the following:
(a) If G E Lr, there exists exactly one T E Lr such that

a. e. in

Moreover,

(b) There exists C~ = S2) such that, if G E w1,r and

then T E w1,r and

Lemma D is proved in [11] (Theorem 2, p. 67); on the other hand, Lemma E
is demonstrated in [17].

PROOF OF THEOREM 4.1. We will only present the proof of part (a). The

proof of part (b) can be achieved with arguments like those used for uniqueness
in part (a).

1. Existence - For each U E D(Ar), let us introduce the bounded linear

operators R (u ) and ~C(M). First, we put
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with w being the unique solution to

From Lemma E, one has

Furthermore, if is small, maps into itself continuously.
Secondly, we set

It is easy to check that

(recall that a E (0, 1)). The operator has an inverse

with

(see [17]). At present, we are going to use formal calculus. This will lead
to a reformulation of (4.1)-(4.3) as a fixed point equation. By computing the
divergence of both sides of (4.2), we obtain:

Here, a u : 8r is the vector whose j-th component is equal to

Hence,

From (4.7) and (4.1 ), we see that

This leads to the identities
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and

with Here, we have used the fact that

(see [17]).
We will introduce a Banach space X, a convex compact set yes) and

a continuous mapping 4$ : Y(s) ~ Yes) in such a way that (4.1)-(4.3) is

equivalent to a fixed point equation for 4$ in Y (s ). More precisely, let us set

and

for each E &#x3E; 0. Obviously, 0; now, let (D : yes) --* X be given as
follows: t) = (u, q, T), with lu, q I being the solution to (D.1) with

and with t being the solution to (E.1 ) with

If (u, q, -r) is a fixed point for 1&#x3E;, then lu, p, -il solves (4.1)-(4.3) with p =
£(u)q. Let us see that if E &#x3E; 0 and are small enough C

Y (s). First, if (u, q, f) E Y (s), then for some constants Q) and

C~ = C4 (a, r, Q), one has:

and
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Using (D.2), (E.2) and the definition of Y(~), we obtain:

Hence, one will c provided E &#x3E; 0 and are such that
the right sides in the previous inequalities are bounded respectively by

and

It is not difficult to find s &#x3E; 0 and f satisfying these conditions. The conclusion
is similar to the one in the proof of Theorem 2.1, since 4$ is continuous

(see [17]).

2. Uniqueness - Proceeding as in the proof of Theorem 3.1, one obtains:

Thus,

where Hence,

where K is a new constant. By assumption,

Thus, from the above estimates, we deduce that u - 0 and r = 0 whenever
3 &#x3E; 0 is sufficiently small. D

The use we have made of (4.8) in the right side of the Stokes problem (D.1 )
is suggested by the work of M. Renardy ([19]). If, for example, f E H 1, one
can use the contractive mapping principle as in [19], which leads to an iterative
algorithm for the computation of the solution. In [9] (Corollary 4.3), C. Guillop6
and J.-C. Saut present an existence, uniqueness and stability result for (4.1)-(4.3)
when 0  a  ao  1 and f E H 1 is sufficiently small.
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5. - Global existence for Poiseuille flows in cylindrical domains

In this section, we introduce cylindrical coordinates. We will consider the
region

and we will study Poiseuille flows for an Oldroyd-like fluid in x (0, T).
More precisely, with data of the form

1 - I - - -

we will search for a solution to ( 1.5 )-( 1.6) of the form

One must have:

and also the following constitutive equations:

Here, it stands for the time derivative of T’, etc. Assuming (as usual) that
the "pressure gradient" pz = po(t) is prescribed, we are led to the following
system (see [17] for the details):
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Here is given. Introducing the new variables

this can be written as follows:

The main task in this section is to solve (5.1)-(5.3) in (R 1, R2) x (0, T),
together with appropriate boundary and initial conditions. For simplicity, we
assume

for

in

THEOREM 5.1. Assume

(a) If

then (5 .1 ) - (5 .5) possesses exactly one "semi-strong " solution f v, in [0, T],
i. e. 

- -- --............ 1 . 
_ _ _ 1"B

the equation (5 .1 ) is satisfied in the following weak sense

a. e. in

and the equations (5.2)-(5.3) are satisfied a.e. in (R1, R2) x (0, T).

(b)

If

then (5 .1 ) -(5 .5) possesses exactly one strong solution { v, ~ 2 } in [0, T ], i. e.

and (5.1)-(5.3) are satisfied a.e. in (R 1, R2) x (0, T).
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THEOREM 5.2. Assume I and

Then, for each 8 &#x3E; 0, there exists C = 8) &#x3E; 0 such that, if
{v, cr l, ~2} and f w, T-1, r21 solve (5.1)-(5.5) with data (vo, &#x26;02, f ) and (wo, to ,
io , g) respectively and these belong to

one has:

Part (a) in Theorem 5.1 holds for two-dimensional Couette and Poiseuille
flows, which have been studied by C. Guillop6 and J.-C. Saut in [10]. On the
other hand, the argument we use for the proof of part (b) is similar to the
one in [10] (the main difference in the new term 1((1 - a)vr + Cr 2)). One canr

also deduce a stability result for the strong solutions furnished by Theorem 5.1,
part (b) (see [17]).

For simplicity, we will only present the part of the proof of Theorem 5.1
concerning existence. For the details and other proofs, see [17].

PROOF OF THEOREM 5.1 (EXISTENCE). Let us first prove part (b).
There exists T* E (0, T ] and a unique strong solution f v, cr  , in [0, T* ],

with

This can be deduced as in the proof of Theorem 2.1. Notice that, if T*  T,
it can be assumed that

where X is increasing in each argument; this will be an important fact in the
passage from a local to a global solution. Wp can find estimates for 
not depending on T*. It suffices to compute
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Indeed, we find

with

Hence,

and

On the other hand, multiplying (5.1 ) by v in R2), one also finds:

This, together with (5.7), leads to the following:

If we denote by (5.2),. (respectively (5.3)r) the r-derivative of (5.2) (respec-
tively (5.3)), by computing

we obtain:
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Using (5.7) and (5.8) to estimate the terms in the right side, one finds

where Let
us introduce

the unique solution to (5.1)-(5.5) is defined in

From the estimates (5.9), we see that

Now, (5.6), (5.10) and a standard argument show that the solution is defined in
the whole interval [0, T ] .

The proof of part (a) is divided in four steps.

FIRST STEP: THE EXISTENCE OF APPROXIMATE SOLUTIONS. Let us choose

sequences and such that
for all m,

in

weakly* in L°° and a.e.,

in

From part (b), which has already been demonstrated, we know that for each m
there exist

such that

a.e. in

a.e. in i

a.e. in i
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SECOND STEP: UNIFORM ESTIMATES FOR THE APPROXIMATE SOLUTIONS. By
computing

we easily obtain

where

Consequently,

and

Taking w = vm in (5.1)m, we see that

From this and (5.11), one finds:

Using (5.11) and (5.12), one also has:

Now, (5.11 )-(5.13) can be used to prove the existence of subsequences
(again indexed with m ) and functions v and cr i such that:

weakly in weakly* in

weakly in

weakly* in

weakly in
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From well known compactness results, one also has:

strongly in

This suffices to take limits in (5.1)m, which gives (5.1)’. However, these

convergence properties are not strong enough to pass to the limit in (5.2)m-
(5.3)m because of the terms orim . vm (recall that aim and vm only converge
weakly).

THIRD a 1m , A CAUCHY SEQUENCE. Notice that

for all

and

Setting in (5.14) and computing the scalar products in L2
of (5.15) and (5.16) respectively by and ( one finds:

The right side is bounded by
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It must be emphasized that, in the previous manipulation, those terms "difficult
to handle", i.e. the terms

in (5.15) and in (5.16),

have disappeared. We find at once:

where the constants CS and C6 only depend on a, a, Re, We, R1 and C1. From
Gronwall’s lemma, we obtain:

This tells to us that and (i = 1, 2) are Cauchy sequences in L’(L 2).
Coming back to (5.17), we also obtain that is a Cauchy sequence in L2(L2).

FOURTH STEP: PASSAGE TO THE LIMIT. The strong convergence properties
deduced from the previous step suffice to take limits in (5.2),, and (5.3),,. One
is led to (5.2)-(5.3). It is also easy to check that (5.5) is satisfied. 0

When a = + 1 or a = - 1, results like these can be proved more easily.
One can also prove results of this nature for cylinders moving with velocities

and K2(t). In this case, the boundary conditions are

6. - Some complementary questions

In order to describe the behaviour of visco-elastic fluids, several constitutive
laws have been extensively used. Many of them are of the differential kind and
have the form:
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where P is a (possibly nonlinear) function of cr and D(u) (here, the notation
is as in Section 1). Let us recall some "classical" modes for which the results
in Sections 2, 3 and 4 hold:

The Oldroyd’s 8-constant model. In this case,

where all pi are constants (see [16]). When /~ = 0 for all i, we find (1.1)
again.

The Larson model. This corresponds to a = 1 in (6.1 ) and

with y being a scalar function of Tr(a) (see [12]).

The Phan Thien and Tanner model. Now, we have again a = 1, but

where y is a constant ([18]).

The Giesekus model. As before, a = 1. In this model,

with y being a constant ([7]).
One can also consider models with several different relaxation times. For

instance, in the framework of Oldroyd models, one can introduce tl , ... rk as

follows:

with and

for

The analog to (1.3)-(1.4) is
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Once these equations are adimensionalized, we find:

where

Again, the results in Sections 2, 3, 4 and 5 hold for (6.4)-(6.5).
Contrarily to what happens in the case of a Newtonian fluid (see e.g. [13],

[14], [22]), the existence of a global weak solution to (1.5)-(1.8) for arbitrary
data in unknown. Some difficulties arise in order to obtain global estimates for
u and r. In the particular case a = 0, one finds uniform estimates for u in

and for t in L°° (L2). However, this is not enough to pass to
the limit in the term ga(-r, V u) (see [17] for more details).

Appendix: Proofs of Lemma B and Lemma C

PROOF OF LEMMA B. Let be a sequence in C1([0, T]; C3(Q)) such
that um E T ; D(Ar)) for all m, urn - u in T ; W2,,) . Also, let 
be a sequence in C2 (S2) such that to in W 1’r . For each m &#x3E; 1, there
exists a unique solution to

This can be easily seen introducing the characteristic curves associated to um .
In order to estimate tm and (Tm)’, we first compute the L2 scalar product
((B. 1)., 1 Tm I r-2 -c’). Then, we take gradients in and compute the
scalar product of both sides of the resulting equation with I V-r’ By
addition, one finds:
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and

Using the fact that r &#x3E; N, we see that

Here, Dividing by , one obtains

and, consequently,

On the other hand, from (B. 1),,,, the following is found:

(it can be assumed that C2 is the same constant),

Finally, using (B.2)m we see that

From (B.2)m and (B.3)m, it is clear that -r’ (respectively (im)’) remains uni-

formly bounded in L’(W’,’) (respectively L’(Lr)). Accordingly, it can be

assumed that a function t exists with

weakly* in and strongly in

weakly in
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This suffices to take limits in (B .1 ) m . Thus, (B .1 ) is obtained. Also, from (B .2)m
and (B.3)~, taking into account the lower semicontinuity of the norm with
respect to the weak and weak* convergence, one obtains (B.2) and (B.3). From
the results in [4] concerning the transport equation, it is not difficult to prove that
V T E C (L r). The uniqueness assertion stems from the fact that (B .1 ) is linear. D

PROOF OF LEMMA C. Since u E it is easy to obtain (C.l)
from the inequality

(here, K is a constant; see [6], p. 27). In order to demonstrate (C.2), we will
use the following result, which can also be found in [6]: If 1  q  p  +00
and r &#x3E; 3, then

where c

For q = r and p = one has:

with

hence,

and (C.2) holds.
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