Ir al contenido

Documat


Exponentially sparse representations of Fourier integral operators

  • Elena Cordero [1] ; Fabio Nicola [2] ; Luigi Rodino [1]
    1. [1] University of Turin

      University of Turin

      Torino, Italia

    2. [2] Polytechnic University of Turin

      Polytechnic University of Turin

      Torino, Italia

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 2, 2015, págs. 461-476
  • Idioma: inglés
  • DOI: 10.4171/RMI/841
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate the sparsity of the Gabor-matrix representation of Fourier integral operators with a phase having quadratic growth. It is known that such an infinite matrix is sparse and well organized, being in fact concentrated along the graph of the corresponding canonical transformation. Here we show that, if the phase and symbol have a regularity of Gevrey type of order s>1 or analytic (s=1), the above decay is in fact sub-exponential or exponential, respectively. We also show by a counterexample that ultra-analytic regularity (s<1) does not give super-exponential decay. This is in sharp contrast to the more favorable case of pseudodifferential operators, or even (generalized) metaplectic operators, which are treated as well.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno