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Abstract

We consider estimation techniques from dual frame surveys in the case of estimation of propor-

tions when the variable of interest has multinomial outcomes. We propose to describe the joint

distribution of the class indicators by a multinomial logistic model. Logistic generalized regression

estimators and model calibration estimators are introduced for class frequencies in a population.

Theoretical asymptotic properties of the proposed estimators are shown and discussed. Monte

Carlo experiments are also carried out to compare the efficiency of the proposed procedures

for finite size samples and in the presence of different sets of auxiliary variables. The simulation

studies indicate that the multinomial logistic formulation yields better results than the classical es-

timators that implicitly assume individual linear models for the variables. The proposed methods

are also applied in an attitude survey.

MSC: 62D05

Keywords: Finite population, survey sampling, auxiliary information, model assisted inference,

calibration.

1. Introduction

Sampling theory for finite populations usually assumes the existence of one sampling

frame containing all population units. Then, a probability sample is drawn according

to a sampling design and information collected is used for estimation and inference

purposes. To ensure quality of the results obtained, the sampling frame must contain

every single unit of population of interest (that is, it must be complete) and it must be

updated as well. Otherwise, estimates could be affected by a serious bias due to the non-

representativeness of the frame and, therefore, of the selected sample. Unfortunately,
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this is not an easy task: populations are constantly changing, with new units entering

and exiting the population frequently, so getting a good sampling frame can be difficult.

The dual frame approach tries to solve the aforementioned problems. This approach

assumes that two frames are available for sampling and that, overall, they cover the en-

tire target population. A sample is selected from each frame using a, possibly different,

sampling design. Much attention has been devoted to the introduction of different ways

of combining estimates coming from the different frames – see the seminal papers by

Hartley (1962), Fuller and Burmeister (1972), Bankier (1986) and Kalton and Ander-

son (1986). However, these techniques were originally proposed to estimate means and

totals of quantitative variables, and although their extension to the estimation of pro-

portions in multinomial response variables is possible, it requires further investigation.

Questionnaire items with multinomial outcomes are quite common in public opinion

research, marketing research, and official surveys: estimating the proportion of voters

in favour of each political party, based on a political opinion survey, is just one practi-

cal example of this procedure. Items where respondents must select one in a series of

options can be modeled by a multinomial distribution. Lehtonen and Veijanen (1998)

present estimators for a proportion which use logistic regression.

This paper focuses on the estimation of proportions for multinomial response vari-

ables when data come from two sampling frames. The proposed approach is motivated

by a study on immigration. After describing the survey of opinions and attitudes of the

Andalusian population regarding immigration, in Section 2, alternative estimators for

the proportions are proposed following different approaches and their main theoretical

properties are studied. A simulation study is also carried out to study their finite size

sample properties. The results from the application to this dual frame attitude survey are

then presented in Section 9.

2. Study background: the 2013 survey on opinions and attitudes of

the Andalusian population regarding immigration

The 2013 survey on opinions and attitudes of the Andalusian population regarding im-

migration (OPIA) is a population-based survey conducted by the Instituto de Estudios

Sociales Avanzados (IESA), a public scientific research institute for social sciences. The

aim of the survey is to reflect the opinion of the Andalusian population with regard to

various aspects of immigration and refugee policies in Spain and towards immigrants

as a group. This survey is based on telephone interviews on a sample of adults drawn

from both landline and mobile phone frames. Taking into account the time and budget

available, 2402 interviews were performed by professional interviewers. The number

of interviews to be conducted via landline and via mobile phone was determined by

calculating the optimal proportion (in the sense of minimum variance) for each frame,

taking into account costs and the percentage of possession of each type of device (fol-

lowing Hartley (1962)). As a result, final sample sizes were 1919 for landline and 483
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Table 1: Sample sizes for the OPIA survey. Landline and Mobile in the columns refer

to the frame the interview comes from, while in the rows, they refer to the domain

in which the units actually reside (type of user).

Landline Mobile

Domain Sample Sample Total

Both 1 727 237 1 964

Mobile 246 246

Landline 192 192

Total 1 919 483 2 402

for mobile. Interviews were carried out by the Statistics and Surveys sections of IESA

from April, 22 to May, 13, 2013, using Computer Assisted Telephone Interviewing

(CATI) data input techniques. Sample sizes are reported in Table 1. The landline sample

was also stratified by provinces in the region of Andalusia, as shown in Table 2. Cell-

phone interviews were carried out with no control over the distribution by provinces ow-

ing to the difficulty of determining the location of this type of telephone. Hence, more

interviews were performed in the most populated provinces than in the less populated

ones.

Table 2: Stratification in land-phone sample.

Province Almerı́a Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

Population(*) 353 787 767 370 508 258 558 087 308 941 423 548 872 011 1 190 918

Sample 262 210 252 256 275 263 207 194

(*) Those estimates can be found on the INE website: http://www.ine.es/

At the time of data collection, frame sizes of landline and mobile were 4 982 920 and

5 707 655, respectively, and the total population size was 6 350 916 (source ICT-H 2012,

Survey on the Equipment and Use of Information and Communication Technologies in

Households, INE, National Statistical Institute, Spain). Auxiliary information about the

user’s sex and age is also available from the ICT-H 2012 survey. The total number of

individuals in each domain (landline, mobile and both users) for every possible com-

bination of values of the auxiliary variables is therefore known. The information about

these auxiliary variables is displayed in Table 3.

One of the most important response variables in this study is related to the “attitude

towards immigration”. The variable is the answer to the following question: And in

relation to the number of immigrants currently living in Andalusia, do you think there

are ...?: Too many, A reasonable number, Too few, No reply. In the following sections

we review approaches available in the literature to address the issue of estimating the

distribution of a multiple choice type of variable in the population using a dual frame

survey. We then illustrate our proposal to fully account for the nature of the response

variable and the auxiliary information available.
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Table 3: Population data for variables sex and age.

Both Landline Mobile Total

Males

18 - 29 428 750 0 188 172 616 922

30 - 44 724 435 4 259 298 416 1027 110

45 - 59 603 338 59 385 135 981 798 704

≥ 60 396 626 206 410 94 729 697 765

Females

18 - 29 480 151 0 115 472 595 623

30 - 44 658 984 17 673 289 106 965 763

45 - 59 601 478 39 362 141 553 782 393

≥ 60 445 897 316 172 104 567 866 636

(*) Source: Survey of Information Technologies in Households (INE)

3. Existing approaches to estimation of class frequencies

in dual frame surveys

We employ the notation considered in Rao and Wu (2010). Let U denote a finite popu-

lation with N units, U = {1, . . . ,k, . . . ,N} and let A and B be two sampling-frames. Let

A be the set of population units in frame A and B the set of population units in frame

B. The population of interest, U , may be divided into three mutually exclusive domains,

a = A ∩Bc,b = A c ∩B and ab = A ∩B. Because the population units in the overlap

domain ab can be sampled in either survey or both surveys, it is convenient to create a

duplicate domain ba = B∩A , which is identical to ab = A ∩B, to denote the domain

in the overlapping area coming from frame B. Let N, NA, NB, Na, Nb, Nab, Nba be the

number of population units in U , A, B, a, b, ab, ba, respectively. We assume that NA,

NB and Nab are known, so the population size N = NA +NB −Nab is also known. This is

also the situation in our motivating dataset.

We consider the estimation of class frequencies of a discrete response variable. As-

sume that we collect data from respondents who provide a single choice from a list

of alternatives. We code these alternatives 1,2, . . . ,m. Therefore, consider a discrete m-

valued survey variable y. The objective is to estimate the frequency distribution of y in

the population U . To estimate this frequency distribution, we define a class of indicators

zi (i = 1, . . . ,m) such that, for each unit k ∈ U , zki = 1 if yk = i and zki = 0 otherwise.

Our problem thus, is to estimate the proportions Pi = N−1
∑

k∈U zki, for i = 1,2, . . . ,m.

These proportions are such that

Pi = N−1(Zai +ηZabi +(1−η)Zbai +Zbi), (1)

where 0≤ η≤ 1 and Zai =
∑

k∈a zki, Zabi =
∑

k∈ab zki, Zbai =
∑

k∈ba zki and Zbi =
∑

k∈b zki.

Two probability samples sA and sB are drawn independently from frame A and frame

B of sizes nA and nB, respectively. Each design induces first-order inclusion probabilities
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πAk and πBk, respectively, and sampling weights dAk = 1/πAk and dBk = 1/πBk. The

sample sA can be post-stratified as sA = sa ∪ sab, where sa = sA ∩a and sab = sA ∩ (ab).

Similarly, sB = sb ∪ sba, where sb = sB ∩b and sba = sB ∩ (ba). Note that sab and sba are

both from the same domain ab, but sab is part of the frame A sample and sba is part of the

frame B sample. Then, assuming that duplicated units (i.e. sA ∩ sB) cannot be identified

and that this event has a negligible chance to happen, we let s = sA ∪ sB. Note that this

is a reasonable assumption in the OPIA survey at hand.

The Hartley (1962) estimator of Pi, for i = 1,2, . . . ,m, is given by

P̂Hi(η) = N−1(Ẑai +ηẐabi +(1−η)Ẑbai + Ẑbi), (2)

where Ẑai =
∑

k∈sa
dAkzki is the expansion estimator for the population count of category

i in domain a and similarly for the other domains. If we let

d◦
k =





dAk if k ∈ sa

ηdAk if k ∈ sab

(1−η)dBk if k ∈ sba

dBk if k ∈ sb

, (3)

then P̂Hi(η) = N−1(
∑

k∈sA
d◦

k zki+
∑

k∈sB
d◦

k zki) = N−1(
∑

k∈s d◦
k zki). Since the population

count in each domain is estimated by its expansion estimator, P̂Hi(η) is an unbiased

estimator of Pi for a given η.

Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by incorpo-

rating additional information regarding estimation of the overlap domain. The resulting

estimator is:

P̂FBi(β1,β2) = N−1(Ẑai +β1Ẑabi +(1−β1)Ẑbai + Ẑbi +β2(N̂ab − N̂ba)) (4)

where N̂ab =
∑

k∈sab
dAk and N̂ba =

∑
k∈sba

dBk. Coefficients β1 and β2 are selected to

minimize V (P̂FBi(β1,β2)). In this case, and as with Hartley’s estimator, a new set of

weights must be calculated for each response variable. This leads to possible inconsis-

tencies among the estimated proportions, which is particularly relevant when dealing

with multinomial outcomes. In addition, optimal values depend on covariances among

Horvitz-Thompson estimators, which may be difficult to compute in practice and, fi-

nally, it is also possible to obtain values of β1 outside the range [0,1].

Skinner and Rao (1996) propose a modification of the estimator proposed by Fuller

and Burmeister (1972) for simple random sampling to handle complex designs. They in-

troduce a pseudo maximum likelihood (PML) estimator that does not achieve optimality

like the FB estimator, but it can be written as a linear combination of the observations

and the same set of weights can be used for all variables of interest:
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P̂PMLi(θ) = N−1

(
NA − N̂PML

ab (θ)

N̂a

Ẑai +
N̂PML

ab (θ)

N̂ab(θ)
Ẑabi(θ)+

NB − N̂PML
ab (θ)

N̂b

Ẑbi

)
(5)

where Ẑabi(θ) = θẐabi + (1 − θ)Ẑbai, N̂ab(θ) = θN̂ab + (1 − θ)N̂ba and N̂PML
ab (θ) is the

smallest root of the quadratic equation

[θ/NB +(1−θ)/NA]x
2 −
[
1+θN̂ab/NB +(1−θ)N̂ba/NA

]
x+ N̂ab = 0.

Recently, Rao and Wu (2010) extended the Pseudo-Empirical-Likelihood approach

(PEL) proposed by Wu and Rao (2006) from one-frame surveys to dual-frame surveys

following a stratification approach. In particular,

P̂PELi(θ) = (Na/N) ˆ̄Zaip +θ(Nab/N) ˆ̄Zabip +(1−θ)(Nba/N) ˆ̄Zbaip +(Nb/N) ˆ̄Zbip, (6)

where θ ∈ (0,1) is a fixed constant to be specified and ˆ̄Zaip =
∑

k∈sa
p̂akzki,

ˆ̄Zbip =
∑

k∈sb
p̂bkzki and ˆ̄Zabip =

∑
k∈sab

p̂abkzki =
ˆ̄Zbaip. The p-weights maximize the pseudo em-

pirical likelihood and verify
∑

k∈sa
p̂ak = 1,

∑
k∈sab

p̂abk = 1,
∑

k∈sba
p̂bak = 1,

∑
k∈sb

p̂bk =

1, and the additional constraint induced by the common domain mean ˆ̄Zabip =
ˆ̄Zbaip (see

Rao and Wu (2010) for more details). Note that (6) can be rewritten as:

P̂PELi = (Na/N) ˆ̄Zaip +(Nab/N) ˆ̄Zabip +(Nb/N) ˆ̄Zbip, (7)

so the estimator does not depend on explicitly on θ and its value only affects the estima-

tor ˆ̄Zabip for the population mean of the overlapping domain.

Ranalli et al. (2015) used calibration procedures for estimation from dual frame

sampling assuming that some kind of auxiliary information is available. For example,

assuming that there are p auxiliary variables, xk = (x1k, ...,xpk) is the value taken by

such auxiliary variables on unit k. It is assumed that the vector of population totals

of the auxiliary variables, tx =
∑

k∈U xk is also known. In this context, the dual frame

calibration estimator can be defined as follows,

P̂CalDFi = N−1(
∑

k∈s

dDF
k zki) (8)

where weights dDF
k are chosen to be as close as possible to basic design weights and,

at the same time, satisfy benchmark constraints on the auxiliary variables, i.e. they are

such that

min
dDF

k

∑

k∈s

G(dDF
k ,d◦

k ), subject to
∑

k∈s

dDF
k xk = tx,

with G(·, ·) a given distance measure.
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When inclusion probabilities in domain ab are known for both frames, and not just

for the frame from which the unit is selected, single-frame methods (Bankier (1986),

Kalton and Anderson (1986)), which combine the observations into a single dataset and

adjust the weights in the intersection domain for multiplicity, can also be used. To adjust

for multiplicity, the weights are defined as follows for all units in frame A and in frame

B,

d̃k =





dAk if k ∈ a

(1/dAk +1/dBk)
−1 if k ∈ ab

dBk if k ∈ b

.

In this context, BKA single frame estimator (Bankier (1986) and Kalton and Anderson

(1986)) is given by

P̂BKAi = N−1


∑

k∈sA

d̃kzki +
∑

k∈sB

d̃kzki


= N−1

(
∑

k∈s

d̃kzki

)
. (9)

Single frame weights are the same for all response variables, and so estimators are in-

ternally consistent.

A calibration estimator under the single-frame approach can be defined as follows:

P̂CalSFi = N−1

(
∑

k∈s

dSF
k zki

)
(10)

with weights dSF
k verifying that min

∑
k∈s G(dSF

k , d̃k) subject to
∑

k∈s dSF
k xk = tx.

The single-frame approach requires the knowledge of the design weight of a unit

for both frames, not just for the one in which the unit was selected. Given this infor-

mation, multiplicity can be adjusted for using sampling weights only. Therefore, unlike

the dual frame methods, they do not require calculation of η. Single-frame estimators

are usually more efficient than dual-frame estimators, and this can be explained by the

extra-information they incorporate in the estimation process. The estimators presented

in this Section can be computed using the R-package Frames2 (Arcos et al., 2015).

4. Estimation of class frequencies using multinomial

logistic regression

Auxiliary information is often available in survey sampling. This information, which

may come from past censuses or from other administrative sources, can be used to obtain

more accurate estimators. Then, other than the values of the variables of interest and of
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the auxiliary variables for k ∈ s, assume we also know the distribution or at least some

summary statistics of the auxiliary variables in the population. We consider that the

population under study y = (y1, ...,yN)
T is the determination of a set of super-population

random variables Y = (Y1, ...,YN)
T s.t.

µki = P(Yk = i|xk) = E(Zki|xk) =
exp(xT

kβββi)∑
r=1,...,m exp(xT

kβββr)
, i = 1, . . . ,m,

that is, we use the multinomial logistic model to relate y and x. Let βββ be the parameter

vector (βββ
T

1, . . . ,βββ
T

m)
T. In the following sections we introduce new estimators for the pop-

ulation proportions Pi. To this end, as a first step, we need to consider estimation of the

superpopulation parameter βββ using the sample s.

4.1. Case I: The same set of auxiliary variables is available
for all population units

Suppose that for each unit in the population we have information about one vector of

auxiliary variables x. In this case, for each unit k ∈ U we know the value of xk. In

addition, for each unit k ∈ s, we observe the value of the main variable yk and we denote

by (zk1,zk2, ...,zkm) the multinomial trial observed for this unit k.

We can estimate βββ by maximizing the π-weighted log-likelihood (Godambe and

Thompson (1986), Särndal et al. (1992)) given by

ℓd◦(βββ) =
∑

i=1,...,m


∑

k∈sA

d◦
k zki lnµki +

∑

k∈sB

d◦
k zki lnµki


 . (11)

This approach is usually motivated by first defining a census-level parameter βββU ,

obtained by maximizing the likelihood over all units in the population, i.e. ℓU(βββ) =∑
i=1,...,m

∑
k∈U zki lnµki. Then, β̂ββ◦

obtained using the the π-weighted likelihood (11) is

its design based estimate. Computing β̂ββ◦
usually requires numerical procedures, and

Fisher scoring or Newton-Raphson often work rather well. Most statistical packages

include a multinomial logit procedure that can handle weights.

Given the estimate β̂ββ◦
of βββ, we consider the following auxiliary variable

p◦ki = µ̂◦
ki =

exp(xT

kβ̂ββ
◦
i )∑

r=1,...,m exp(xT

kβ̂ββ
◦
r)
. (12)

Please note that these p values are different from those involved in the definition of

estimator (6). Since the vector xk is known for all units of the population U , the values
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p◦ki are available for all k ∈U and we propose to use such values to define a new estimator

for Pi,

P̂DW
MLi = N−1

(
∑

k∈U

p◦ki +
∑

k∈sA

d◦
k (zki − p◦ki)+

∑

k∈sB

d◦
k (zki − p◦ki)

)
(13)

= N−1

(
∑

k∈U

p◦ki +
∑

k∈s

d◦
k (zki − p◦ki)

)
.

We observe that this estimator takes the same model-assisted form as the MLGREG

estimator proposed in Lehtonen and Veijanen (1998), but here it is adjusted to account

for the dual frame sampling setting. The subscript ML stands for Multinomial-Logistic

and the superscript DW stands Dual frame setting and auxiliary information available

from the Whole population.

Note that we cannot compute
∑

k∈U p◦ki in (13) without knowing xk for each k ∈ U ,

i.e. we need the value of the auxiliary variables for each individual in the population.

This assumption can be quite restrictive; nonetheless, it can be relaxed. For example, if

we have two discrete or categorical variables, we only need the population counts in the

two-way contingency table. In human populations, sizes of certain demographic groups

are known and are used often as auxiliary information. This is also the case in the OPIA

survey and this information can be retrieved from the last column in Table 3.

An important way to incorporate available auxiliary information is given by calibra-

tion estimation (Deville and Särndal (1992)), that seeks for new weights that are close

(in some sense) to the basic design weights and that, at the same time, match benchmark

constraints on auxiliary information. We have reviewed in the previous section extension

of linear calibration to the dual frame setting. Here, using the idea of model calibra-

tion introduced by Wu and Sitter (2001a), we propose the following model calibration

estimator (the subscript MLC stands for Multinomial-Logistic and Calibration, and the

superscript DW stands Dual frame setting and auxiliary information available from the

Whole population), given by

P̂DW
MLCi = N−1(

∑

k∈sA

w◦
kzki +

∑

k∈sB

w◦
kzki) = N−1(

∑

k∈s

w◦
kzki),

where w◦
k minimizes

∑
k∈sA

G(w◦
k ,d

◦
k ) +

∑
k∈sB

G(w◦
k ,d

◦
k ) =

∑
k∈s G(w◦

k ,d
◦
k ) for a dis-

tance measure G(·, ·) as those considered in Deville and Särndal (1992), subject to:

∑

k∈s

w◦
k p◦ki =

∑

k∈U

p◦ki,
∑

k∈sa

w◦
k = Na,

∑

k∈sb

w◦
k = Nb,
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∑

k∈sab

w◦
k = ηNab and

∑

k∈sba

w◦
k = (1−η)Nab.

Suppose, now, that for each unit in the population inclusion probabilities in domain

ab are known for both frames, and not just for the frame from which the unit is selected.

In this situation, the single-frame approach can also be used to propose new multinomial

logistic estimators. First, we calculate β̃ββ by maximizing the π-weighted log-likelihood

given by

ℓd̃(βββ) =
∑

i=1,...,m

∑

k∈s

d̃kzki lnµki. (14)

We use the new auxiliary variable p̃ki = µ̃ki =
exp(xT

kβ̃ββi)∑
r=1,...,m exp(xT

kβ̃ββr)
to define a

new estimator (the subscript ML stands for Multinomial-Logistic and the superscript

SW stands Single frame setting and auxiliary information available from the Whole

population):

P̂SW
MLi = N−1

(
∑

k∈U

p̃ki +
∑

k∈sA

d̃k(zki − p̃ki)+
∑

k∈sB

d̃k(zki − p̃ki)

)
(15)

= N−1

(
∑

k∈U

p̃ki +
∑

k∈s

d̃k(zki − p̃ki)

)
.

Note that d̃k weights are used in the formulation of the estimator (15) and also in the

likelihood function (14).

Model calibration can be also used to define a single-frame estimator (the subscript

MLC stands for Multinomial-Logistic and Calibration, and the superscript SW stands

Single frame setting and auxiliary information available from the Whole population):

P̂SW
MLCi = N−1(

∑

k∈sA

w̃kzki +
∑

k∈sB

w̃kzki) = N−1(
∑

k∈s

w̃kzki),

where w̃k minimizes
∑

k∈sA
G(w̃k, d̃k)+

∑
k∈sB

G(w̃k, d̃k) =
∑

k∈s G(w̃k, d̃k) for a distance

measure G(·, ·) satisfying the usual conditions specified in the calibration paradigm

subject to:

∑

k∈s

w̃k p̃ki =
∑

k∈U

p̃ki,
∑

k∈sa

w̃k = Na,
∑

k∈sb

w̃k = Nb and
∑

k∈sab
⋃

sba

w̃k = Nab.
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Note that when inclusion probabilities are known for both frames, it is possible to cal-

culate single and dual frame type estimators.

4.2. Case II: Two different sets of auxiliary variables are available
according the frame considered

Now we consider a different situation: the auxiliary information is available separately

in each frame. In this case, for each unit k ∈ A we have an auxiliary vector xAk and

for each unit k ∈ B we have another auxiliary vector xBk where the components of xA

and xB can be different. Indeed in the OPIA survey the two sets of auxiliary variables

coincide. Nonetheless, we will leave the treatment general and provide two proposals

based on the dual frame approach to handle this situation as well.

In this case, we can use the available auxiliary information to fit a multinomial logis-

tic model separately in each frame. For each k ∈A , using data from sA we can compute

pA
ki =

exp(xT

Akβ̂ββ
A

i )
∑

r=1,...,m exp(xT

Akβ̂ββ
A

r )
(16)

where we estimate βββA by maximizing ℓdA
(βββA) =

∑
i=1,...,m

∑
k∈sA

dAkzki lnµki. Similarly

we obtain pB
ki for k ∈ B, and define for each i = 1, ...,m the following regression esti-

mator:

P̂DF
MLi = N−1

(
∑

a

pA
ki +η

∑

ab

pA
ki +(1−η)

∑

ba

pB
ki +

∑

b

pB
ki+

+
∑

sa

(zki − pA
ki)dAk +η

∑

sab

(zki − pA
ki)dAk+

+(1−η)
∑

sba

(zki − pB
ki)dBk +

∑

sb

(zki − pB
ki)dBk


 .

As in the previous section, the subscript ML stands for Multinomial-Logistic, while the

superscript DF stands now for Dual frame setting and auxiliary information available

from the Frames. To compute P̂DF
MLi we only need to know the total number of individuals

in each domain (a, b and ab) for every possible combination of values of the auxiliary

variables in the cases where discrete variables have been used as auxiliary information.

In the OPIA survey this information is obtained from Table 3.

A calibration estimator in this setting can be defined under the dual frame approach

as follows,

P̂DF
MLCi = N−1(

∑

k∈sA

w⋆
kzki +

∑

k∈sB

w⋆
kzki) = N−1(

∑

k∈s

w⋆
kzki), (17)
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where the subscript MLC stands for Multinomial-Logistic and Calibration, and the su-

perscript DF stands Dual frame setting and auxiliary information available from the

Frames. Weights w⋆
k are such that

min
∑

k∈sA

G(w⋆
k ,dAk)+

∑

k∈sB

G(w⋆
k ,dBk) s.t.

∑

k∈sA

w⋆
k pA

ki =
∑

k∈a

pA
ki +η

∑

k∈ab

pA
ki,

∑

k∈sB

w⋆
k pB

ki = (1−η)
∑

k∈ba

pB
ki +

∑

k∈b

pB
ki,

∑

k∈sa

w⋆
k = Na,

∑

k∈sb

w⋆
k = Nb,

∑

k∈sab

w⋆
k = ηNab and

∑

k∈sba

w⋆
k = (1−η)Nab,

where pA
ki are the estimated probabilities defined in (16) and pB

ki are their analogous in

frame B.

5. Properties of proposed estimators

To show the asymptotic properties of the proposed estimators P̂DW
ML , P̂DW

MLC, P̂SW
ML , P̂SW

MLC,

P̂DF
ML, P̂DF

MLC, we adapt and place ourselves in the asymptotic framework of Isaki and

Fuller (1982), in which the dual-frame finite population U and the sampling designs

pA(·) and pB(·) are embedded into a sequence of such populations and designs indexed

by N, {UN , pAN
(·), pBN

(·)}, with N → ∞. We will assume therefore, that NAN
and NBN

tend to infinity and that also nAN
and nBN

tend to infinity as N → ∞. We will further

assume that Na > 0 and Nb > 0. In addition nAN
/nN → c1 ∈ (0,1), where nN = nAN

+nBN
,

Na/NA → c2 ∈ (0,1), Nb/NB → c3 ∈ (0,1) as N → ∞. Subscript N may be dropped for

ease of notation, although all limiting processes are understood as N → ∞. Stochastic

orders Op(·) and op(·) are with respect to the aforementioned sequences of designs. The

constant η ∈ (0,1) is kept fixed over repeated sampling.

We first discuss the theoretical properties of P̂DW
MLC and then move to the other esti-

mators, because these can be dealt with using slight modifications of this more general

setting. Let µ(xk,θθθi) = exp(xT

kθθθi)/
∑

r=1,...,m exp(xT

kθθθr), for i= 1, . . . ,m. In order to prove

our results, we make the following technical assumptions.

A1 Let βββU be census level parameter estimate obtained by maximizing the likelihood

ℓU(βββ) =
∑

i=1,...,m

∑
k∈U zki lnµki. Assume that βββ = limN→∞βββU exists and that β̂ββ◦ =

βββU +Op(n
−1/2
N ).



David Molina, Maria del Mar Rueda, Antonio Arcos, Maria Giovanna Ranalli 321

A2 For each xk, |∂µ(xk,θθθi)/∂θθθi| ≤ f1(xk,βββi) for θθθi in a neighborhood of βββi and f1(xk,βββi)=

O(1), for i = 1, . . . ,m.

A3 For each xk, max j, j′ |∂ 2µ(xk,θθθi)/∂θ jθ j′ | ≤ f2(xk,βββi) for θθθi in a neighborhood of βββi

and f2(xk,βββi) = O(1), for i = 1, . . . ,m.

A4 The auxiliary variables x have bounded fourth moments.

A5 For any study variable ξ with bounded fourth moment, the sampling designs are such

that for the normalized Hartley estimators of ξ̄ = N−1
∑

k∈U ξk a central limit theorem

holds, i.e.

√
nN(

ˆ̄ξH − ξ̄)→L N(0,V ( ˆ̄ξH)),

where ˆ̄ξH = N−1
∑

k∈s d◦
k ξk and V ( ˆ̄ξH) = V ( ˆ̄ξa + η ˆ̄ξab)+V ((1− η) ˆ̄ξba +

ˆ̄ξb). The latter

can be consistently estimated by v( ˆ̄ξH) = v( ˆ̄ξa +η ˆ̄ξab)+ v((1−η) ˆ̄ξba +
ˆ̄ξb).

Assumption A1 requires consistency of parameter estimates defined by weighted es-

timating equations to their census level counterpart. See e.g. Binder (1983). We will first

state the properties of P̂DW
MLC for the Euclidean distance. In fact, in this case an analytic

solution to the constrained distance minimization problem exists and is given by

P̂GDW
MLCi = N−1

{
∑

k∈s

d◦
k zki +

(∑

k∈U

p̃◦ki −
∑

k∈s

d◦
k p̃◦ki

)T

α̂αα◦
i

}
,

where p̃◦ki = (δk(a),δk(ab),δk(ba),δk(b), p◦ki)
T is a vector that contains p◦ki defined in

(12) and a set of indicator variables – δk(a),δk(ab),δk(ba),δk(b) – implicitly used in the

benchmark constraints. In particular, δk(a) takes value 1 if unit k ∈U belongs to domain

a and 0 otherwise. Then
∑

k∈U δk(a) = Na. The other indicator variables are defined

similarly. In addition, α̂αα◦
i = (

∑
k∈s d◦

k p̃◦ki p̃
◦T
ki )

−1(
∑

k∈s d◦
k p̃◦kizki), i.e. it is the vector of co-

efficients of the generalized regression of zki on p̃◦ki similar to the case of classical model

calibration for one frame only (see Wu and Sitter (2001a)). Then from calibration theory

(see Deville and Särndal (1992)), it is well known that all other calibration estimators

that use different distance functions are equivalent to P̂GDW
MLCi , under additional regularity

conditions on the shape of the distance function itself.

Theorem 1 Under assumptions A1–A5, P̂GDW
MLCi is design

√
nN-consistent for Pi in the

sense that

P̂GDW
MLCi −Pi = Op(n

−1/2
N ),
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and has the following asymptotic distribution

P̂GDW
MLCi −Pi√
V∞(P̂

GDW
MLCi)

→L N(0,1)

where V∞(P̂
GDW
MLCi) = N−2V (t̂eiH) and t̂eiH =

∑
k∈s d◦

k eki is the Hartley estimator of the

population total of the census-level residuals eki = zki − µ̃µµ◦T
ki ααα

◦
i , and ααα◦

i =

= (
∑

k∈U µ̃µµ◦
kiµ̃µµ

◦T
ki )

−1(
∑

k∈U µ̃µµ◦
kizki), where µ̃µµ◦

ki is like p̃◦ki but with p◦ki replaced by its pop-

ulation counterpart

µ◦
ki =

exp(xT

kβββUi)∑
r=1,...,m exp(xT

kβββUr)
. (18)

In addition, let êki = zki − p̃◦T
ki α̂αα

◦
i . Then, V (t̂eiH) can be consistently estimated by

v(P̂GDW
MLCi) = N−2v(t̂êiH)

= N−2
{

v
(∑

k∈sa
dAkêki +η

∑
k∈sab

dAkêki

)
+

+ v
(
(1−η)

∑
k∈sba

dBkêki +
∑

k∈sb
dBkêki

)}
.

(19)

Proof. Using the same approach developed in Montanari and Ranalli (2005) and sim-

ilarly to Wu and Sitter (2001b), it is easy to show that by assumptions A1–A2 and

A4–A5,

N−1(
∑

k∈s

d◦
k p◦ki −

∑

k∈U

p◦ki) = Op(n
−1/2
N ),

using a first order Taylor expansion of µ(xk, β̂ββ
◦
i ) at β̂ββ◦

i = βββUi, and that α̂αα◦
i − ααα◦

i =

Op(n
−1/2
N ) because α̂αα◦

i is just a function of population means of variables with finite

fourth moments, that can be consistently estimated by their Hartley counterparts. Using

A1–A5 and a second order Taylor expansion of µ(xk, β̂ββ
◦
i ) at β̂ββ◦

i = βββUi,

N−1(
∑

k∈s

d◦
k p◦ki −

∑

k∈U

p◦ki) = N−1(
∑

k∈s

d◦
kµ

◦
ki −

∑

k∈U

µ◦
ki)+Op(n

−1
N ).

Then,

P̂GDW
MLCi = N−1

∑

k∈s

d◦
k zki +N−1

(∑

k∈U

µ̃µµ◦
ki −

∑

k∈s

d◦
k µ̃µµ

◦
ki

)T

ααα◦
i +Op(n

−1
N )

and the first part of the result is proven.
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Now, from assumption A5, v(t̂eiH) =V (t̂eiH)+op(n
−1
N ). Since p◦ki = µ◦

ki+Op(n
−1/2
N ),

êki = eki +Op(n
−1/2
N ) and v(t̂êiH) = v(t̂eiH)+op(n

−3/2
N ), then the argument follows.

Note that, given the asymptotic equivalence of calibration and generalized regression

estimation, analytic variance estimator in (19) can be used to estimate the variance of

P̂DW
MLC also when using different distance functions.

Now, P̂DW
ML can be seen as a particular case of P̂GDF

MLCi in which p̃◦ki includes only p◦ki,

and α̂αα◦
i is only a scalar and is set exactly equal to 1. Therefore, P̂DW

ML is consistent for

Pi and asymptotically normal with V∞(P̂
DW
ML ) = N−2V (t̂eiH), where census-level residuals

are given here by eki = zki−µ◦
ki. Variance estimation can again be conducted by plugging

sample level estimated residuals in (19) given in this case by êki = zki − p◦ki.

Estimator P̂DF
MLC is in all similar to P̂DW

MLC, the only difference is in the fact that coeffi-

cient estimates for the multinomial model are obtained separately from the two frames

and, therefore, we have two separate model calibration constraints. In this case the vec-

tor of auxiliary variables used in the calibration procedure can be written as p̃
A,B
ki and

contains pA
ki, pB

ki and the other indicator variables used in the benchmark constraints: for

example p̃
A,B
ki = (δk(a),δk(ab),δk(ba),δk(b), [δk(a)+ δk(ab)]pA

ki, [δk(b)+ δk(ba)]pB
ki)

T.

To encompass this situation, it is enough to change assumption A1 accordingly and

assume that the two sets of population parameters βββA and βββB are consistently estimated

by β̂ββ
A

and β̂ββ
B

and that these samples fits and the finite population fits share a common

finite limit. Then, it is easy to show that P̂DF
MLC is design consistent and the variance of its

asymptotic normal distribution can again be written in terms of the variance of the pop-

ulation total of residuals. In particular, V∞(P̂
GDF
MLCi) = N−2V (t̂eiH) and t̂eiH =

∑
k∈s d◦

k eki is

the Hartley estimator of the population total of the census-level residuals given here by

eki = zki−(µ̃µµA,B)T

kiαααi, where µ̃µµA,B
ki is like p̃

A,B
ki but with pA

ki and pB
ki replaced by their popu-

lation counterparts, similarly to (18). Analytic variance estimation can be conducted by

using sample level estimates of the residuals. In particular, by using êki = zki − (p̃
A,B
ki )Tα̂ααi

in formula (19).

Now, similarly as for P̂DW
ML and P̂DW

MLC, P̂DF
ML can be seen as a particular case of P̂GDF

MLCi in

which p̃◦ki includes only p
A,B
ki , with p

A,B
ki = pA

ki if k ∈ sA and p
A,B
ki = pB

ki if k ∈ sB, and α̂αα◦
i is

again a scalar here and its value is set exactly equal to 1. Therefore, it is consistent for

Pi and asymptotically normal with V∞(P̂
DF
ML) = N−2V (t̂eiH), where census-level residuals

are given here by eki = zki −µA,B
ki , and µA,B

ki is the census level fit corresponding to p
A,B
ki .

Variance estimation can again be conducted by using sample level estimated residuals

in equation (19) given by êki = zki − pA
ki if k ∈ sA and êki = zki − pB

ki if k ∈ sB.

The calibration estimator P̂SW
MLC is very similar to P̂DW

MLC, the only differences are (i)

in the set of basic design weights employed in the calibration procedure: for P̂SW
MLC we

use d̃k, and (ii) p◦ki is replaced by p̃ki in the definition of the vector p̃◦ki. Once these

changes are incorporated across assumption A1, and assumption A5 reflects the fact that

we are now dealing with Bankier-Kalton-Anderson type estimators, instead of Hartley

estimators, then all the results can be proven. The variance of the asymptotic distribution
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of P̂SW
MLC is given by V∞(P̂

GSW
MLCi) = N−2V (t̂ei) and t̂ei =

∑
k∈s d̃keki is the single-frame

estimator of the population total of the census-level residuals eki = zki− µ̃µµT

kiαααi, and where

µ̃µµki is like p̃ki but with pki replaced by its population counterpart

µki =
exp(xT

kβββUi)∑
r=1,...,m exp(xT

kβββUr)
.

In addition, let êki = zki − p̃T
kiα̂ααi. Then, V (t̂ei) can be consistently estimated so that

v(P̂GSW
MLCi) = N−2v(t̂êi).

6. Selection of the optimal weight

In the previous sections we have considered a fixed value 0 < η < 1. Selection of pa-

rameter η is an important issue in dual frame estimators, because the efficiency of the

estimator relies heavily on this value (see Lohr (2009) for a review). Hartley (1962) pro-

posed choosing η to minimize the variance of the estimator in (2). Using the same idea,

we can derive the optimal value of η for each proposed multinomial logistic estimator by

minimizing its asymptotic variance with respect to η. However, as the optimal value for

the Hartley estimator, such optimal values would depend on unknown population quan-

tities, such as variances and covariances that, when estimated from sample data, would

make the final estimator depend on the values of the variable of interest. This implies a

need to recompute an optimal η for each value i = 1, ...,m and for each variable of inter-

est y, which will be inconvenient in practice for statistical agencies conducting surveys

with several variables, other than introducing a lack in coherence among estimates that

is particularly relevant when dealing with multinomial outcomes (namely,
∑

i P̂i can be

6= 1).

Skinner and Rao (1996) suggested choosing

ηSR =
NaNBV (N̂ba)

NaNBV (N̂ba)+NbNAV (N̂ab)
,

or alternatively

ηSR2 =
V (N̂ba)

V (N̂ba)+V (N̂ab)
,

being V (N̂ab) and V (N̂ba) the variances of the estimated sizes of domain ab based on

samples sA and sB respectively. These two proposals provide a value for η that does not

depend on the sample values of y. In this way, resulting estimator uses the same η for

all variables of interest, even if variances V (N̂ab) and V (N̂ba) are unknown and must be

estimated from the data.
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Brick et al. (2006) propose using the simple value η = 1/2 in their dual-frame study

in which frame A was a landline telephone frame and frame B was a cell-phone frame.

For this purpose, the value of η = 1/2 is frequently recommended (see, for example,

Mecatti (2007)). Another simple choice for η is given by
NB/nB

NA/nA+NB/nB
(see Skinner and

Rao (1996) or Lohr and Rao (2000)).

7. Jackknife variance estimation

In this section we explore the possibility of using jackknife methods to estimate the

variance of the proposed estimators as an alternative to the analytic variance estimators

considered in Section 5. The jackknife approach is a common replication method for

variance estimation that can be used in complex surveys for different types of estimators

(see e.g. Wolter (2003) for an introduction to jackknife). For the sake of brevity, in this

section all estimators are denoted by P̂i, i = 1, · · · ,m.

If we consider a non clustered and non stratified design, the jackknife estimator for

the variance of P̂i may be given by

vJ(P̂i) =V A
J +V B

J =
nA −1

nA

∑

g∈sA

(P̂A
i (g)−P

A

i )
2 +

nB −1

nB

∑

j∈sB

(P̂B
i ( j)−P

B

i )
2 (20)

where P̂A
i (g) is the value taken by estimator P̂i after dropping unit g from sA and P

A

i is

the average of P̂A
i (g) values. Each value P̂A

i (g) is computed by fitting a new model that

does not consider the g− th sample unit. P̂B
i ( j) and P

B

i are defined similarly.

In the case of a stratified design in both frames, let frame A be divided into H strata

and let stratum h has NAh observation units of which nAh are sampled. Similarly, frame

B has L strata, stratum l has NBl observation units of which nBl are sampled. Then, a

jackknife variance estimator of P̂i is given by

vst
J (P̂i) =V stA

J +V stB
J =

=

H∑

h=1

nAh −1

nAh

∑

g∈sAh

(P̂A
i (hg)−P

Ah

i )2 +

L∑

l=1

nBl −1

nBl

∑

j∈sBl

(P̂B
i (l j)−P

Bl

i )2, (21)

where P̂A
i (hg) is the value taken by estimator P̂i after dropping unit g of stratum h from

sample sAh, P
Ah

i is the average of these nAh values; P̂B
i (l j) and P

Bl

i are defined similarly.

In case of a non stratified design in one frame and a stratified design in the other one,

previous methods can be combined to obtain the corresponding jackknife estimator of

the variance.

Alternatively, a finite-population correction can be considered, as described in Ranalli

et al. (2015), resulting in the following jackknife variance estimators:
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vJc(P̂i) =
nA −1

nA

(1−πA)
∑

g∈sA

(P̂A
i (g)−P

A

i )
2 +

nB −1

nB

(1−πB)
∑

j∈sB

(P̂B
i ( j)−P

B

i )
2 (22)

for non stratified designs in frames, where πA = 1
nA

∑
k∈sA

πAk and similarly for πB, and

vst
Jc(P̂i) =

H∑

h=1

nAh −1

nAh

(1−πAh)
∑

g∈sAh

(P̂A
i (hg)−P

Ah

i )2

+
L∑

l=1

nBl −1

nBl

(1−πBl)
∑

j∈sBl

(P̂B
i (l j)−P

Bl

i )2 (23)

for a stratified design in each frame, where πAh =
1

nAh

∑
k∈sAh

πAk and similarly for πBl .

A non clustered sampling design is assumed subsequently. No new principles are

involved in the application of jackknife methodology to clustered samples. We simply

work with the ultimate cluster rather than elementary units (see e.g. Wolter (2003)).

8. Monte Carlo simulation experiments

For our simulation study we use the hsbdemo data set (http://www.ats.ucla.edu/

stat/data/hsbdemo.dta). The data set contains variables on 200 students. The out-

come variable is prog, program type, a three-level categorical variable whose categories

are academic, general, vocation. The predictor variables are social economic status,

ses, a three-level categorical variable and a mathematical score, math, a continuous

variable. We estimate a multinomial logistic regression model. We create a new data set

with 50 copies of the predictor variables ses and math and with the predicted values for

the variable prog (the category with highest probability). The simulated populations,

namely POP1, have, therefore, dimension N = 10000.

Units are randomly assigned to the two frames, A and B, according to three different

scenarios depending on the overlap domain size Nab. We first generate N normal random

numbers, εk,k = 1, . . . ,N and data is sorted by such random numbers. Then, the first Na

records of the ordered dataset are considered as the values of the domain a, the Nb

subsequent records as the values belonging to domain b and the last Nab records as the

values of the domain ab. The first scenario has a small overlap domain size Nab=1 000

and the resulting sizes of the two frames are NA=6 000 and NB=5 000. The second and the

third scenario have respectively medium and large overlap domain size. The resulting

frame sizes in the second scenario are given by NA=6 000 and NB=7 000 and the overlap

domain size is Nab=3 000, while for the third scenario we have NA=8 000, NB=7 000 and

Nab=5 000. In POP1, we compute all estimators using as auxiliary information ses and

math.

On the other hand, POP2 is built first by assigning units to the frames and second by

fitting a multinomial logistic regression model separately in each frame. In frame A, ses
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and math have been considered as auxiliary variables and in frame B the auxiliary vari-

ables are ses and write (a score in writing). To be able to fit a separated model in each

frame we consider that the units composing the overlap domain can be equally divided

into two groups, each one coming from a frame. So half of the overlap domain units are

used to fit a multinomial logistic regression model in frame A and the remaining ones

are considered when fitting the multinomial logistic model in frame B. POP2 is built

with the predicted values from the two multinomial logistic model. In this population,

we compute P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC estimators using as x-variable ses (Case I), and

P̂DF
ML and P̂DF

MLC estimators using as xA-variables ses and math and as xB-variables ses

and write (Case II).

Samples of schools from frame A are selected by means of Midzuno sampling, with

inclusion probabilities proportional to the size of the school the student belongs to.

All students in the selected schools are included in the sample. The variable cid is an

indicator of school. Samples from frame B are selected by means of simple random

sampling. For each scenario, we draw a combination of sample sizes for frame A and

frame B, as follows: nA = 180 and nB = 232.

We have two populations, three sizes of the overlap domain and different sets of

auxiliary variables.

We compute the BKA estimator in (9), for the purpose of comparison. The Pseudo

Empirical Likelihood estimator (PEL) proposed in Rao and Wu (2010) and the dual

frame and the single frame calibration estimator (P̂CalDF and P̂CalSF) proposed in Ranalli

et al. (2015) are also computed using the auxiliary information as previously mentioned

(in POP1 ses and math for both estimators and in POP2 as xA-variable ses and math and

as xB-variable ses and write for P̂CalDF estimator and as x-variable ses for P̂CalSF esti-

mator). When needed (and for comparative purposes) the value of η has been estimated

using η = v(N̂ba)/(v(N̂ab)+ v(N̂ba)) (see for example Rao and Wu (2010)) for all com-

pared estimators, where v(N̂ab) is an estimate of the variance of the Horvitz-Thompson

estimator N̂ab for the size of overlap domain, and similarly for v(N̂ba).

For each estimator, we compute the percent relative bias RB% = 100 ∗ EMC(Ŷ −
Y )/Y , the percent relative mean squared error RMSE%= 100∗EMC[(Ŷ −Y )2]/Y 2, based

on 1000 simulation runs, for each category of the main variable prog.

The percent relative biases are negligible in all cases (the results on RB are not

included for brevity), so efficiency comparisons can be based on variances. Table 4

displays the relative efficiency of proposed estimators with respect to BKA estimator.

From this table we can see that, consistently with theoretical findings, the performance

in terms of efficiency of the estimators is essentially driven by the model employed.

When the auxiliary varibles are used in a calibration process using a linear model (P̂CalSF,

P̂CalDF) or through a pseudo-empirical likelihood method (PEL), the efficiency increases

with respect to the BKA estimator, which does not use auxiliary information or any

model. As expected, a most effective situation arises when the auxiliary variables are

also used through a multinomial model (P̂DW
ML , P̂DW

MLC, P̂SW
ML , P̂DW

MLC, P̂DF
ML and P̂DF

MLC).
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Table 4: Relative efficiency (respect to the BKA estimator)

of compared estimators. POP1 and POP2.

POP1 POP2

acad. gen. voc. acad. gen. voc.

Medium

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 149.94 142.21 132.30 152.77 145.10 129.26

P̂PEL 217.89 135.87 177.26 175.94 146.75 148.75

P̂CalDF 213.91 134.83 175.14 175.03 146.84 147.59

P̂DW
ML 347.02 181.43 252.42 204.46 194.97 148.32

P̂DW
MLC 356.87 181.05 258.60 209.29 192.64 153.29

P̂SW
ML 348.12 181.25 252.44 205.63 194.71 148.82

P̂SW
MLC 358.10 180.97 258.85 210.22 192.32 153.70

P̂DF
ML 350.18 187.65 257.22 207.83 251.93 147.44

P̂DF
MLC 358.93 186.31 263.52 214.76 250.13 153.44

Small

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 155.30 137.56 140.60 152.77 142.46 137.70

P̂PEL 232.55 147.36 198.25 179.24 149.26 158.30

P̂CalDF 210.50 134.54 179.08 182.73 150.09 160.65

P̂DW
ML 331.43 163.16 247.64 165.45 146.32 157.70

P̂DW
MLC 353.76 163.06 265.66 176.59 146.83 166.11

P̂SW
ML 331.75 163.33 248.08 166.09 146.83 157.60

P̂SW
MLC 353.77 163.17 265.85 176.78 146.99 165.93

P̂DF
ML 343.94 164.70 257.75 170.24 150.15 154.31

P̂DF
MLC 365.15 163.94 275.28 184.50 150.24 164.51

Large

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 147.60 130.53 138.13 152.25 121.61 125.29

P̂PEL 193.48 124.99 173.21 163.71 142.12 149.74

P̂CalDF 192.10 125.72 170.56 165.55 153.62 161.09

P̂DW
ML 354.00 161.79 256.45 303.59 118.57 269.38

P̂DW
MLC 371.74 161.23 266.64 307.98 123.76 282.16

P̂SW
ML 356.73 161.87 257.40 302.59 119.33 269.14

P̂SW
MLC 375.21 161.38 267.54 306.81 124.75 281.93

P̂DF
ML 362.07 168.39 265.88 344.86 130.46 370.90

P̂DF
MLC 376.11 167.22 274.78 348.03 137.80 379.38



David Molina, Maria del Mar Rueda, Antonio Arcos, Maria Giovanna Ranalli 329

Table 5: Length reduction (in percent, %) of proposed estimator with respect to

linear calibration estimators using the same amount of auxiliary information

(P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC have been compared with P̂CalSF and

P̂DF
ML and P̂DF

MLC have been compared with P̂CalDF).

Coverage (in percent, %) of jackknife confidence intervals. POP1.

Length reduction Cov

acad. gen. voc. acad. gen. voc.

Medium

P̂DW
ML 10.31 25.44 30.91 94.5 93.9 94.9

P̂DW
MLC 9.90 28.28 32.78 95.2 93.9 94.5

P̂SW
ML 10.59 25.73 31.18 94.8 94.1 95.0

P̂SW
MLC 9.95 28.34 32.82 95.0 93.8 94.5

P̂DF
ML 8.83 33.04 16.41 95.8 96.0 95.5

P̂DF
MLC 8.11 35.23 18.24 95.9 95.3 95.1

Small

P̂DW
ML 9.14 23.76 28.25 95.0 93.2 95.2

P̂DW
MLC 8.78 26.86 30.41 94.1 93.4 93.6

P̂SW
ML 9.43 24.04 28.52 94.5 93.5 94.0

P̂SW
MLC 8.81 26.89 30.43 94.8 92.5 94.2

P̂DF
ML 6.98 24.64 13.09 96.3 95.0 95.9

P̂DF
MLC 6.30 27.15 15.32 96.6 94.6 95.1

Large

P̂DW
ML 10.11 25.45 30.71 94.2 93.5 93.9

P̂DW
MLC 9.34 28.24 32.38 94.1 93.4 93.6

P̂SW
ML 10.64 25.94 31.14 94.5 93.5 94.0

P̂SW
MLC 9.71 28.51 32.62 94.8 92.5 94.2

P̂DF
ML 10.18 35.37 17.96 96.3 95.0 95.9

P̂DF
MLC 9.29 37.39 19.45 96.6 94.6 95.1

In general, the best results in efficiency are achieved by the P̂DF
MLC estimator and the

efficiency increases as the size of the overlap domain increases, particularly for POP2.

As a consequence of the ignorability of the frames the units belong to when modelling

the relation between the response and the auxiliary variables, there is not a relevant

difference in efficiency between estimators using a multinomial model in the whole

population and estimators using a multinomial model in each frame.

We now turn to the evaluation of the precision of the proposed estimators by means

of confidence intervals. We obtain the 95% confidence intervals based on a normal distri-

bution and the jackknife variance estimator proposed in Section 7 with finite-population

correction. Table 5 shows the average length reduction of 95% confidence intervals and
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Table 6: Relative efficiency (respect to the BKA estimator) of compared estimator

for η̂SR2 = v(N̂ba)/(v(N̂ab)+ v(N̂ba)), η̂SR = NaNBv(N̂ba)/(NbNAv(N̂ab)+NaNBv(N̂ba))

and η1/2 =
1
2 . Overlap domain size Medium.

POP1 POP2

acad. gen. voc. acad. gen. voc.

P̂DW
ML η̂SR2 347.02 181.43 252.42 204.46 194.97 148.32

η̂SR 348.45 181.32 252.88 205.14 194.69 148.71

η1/2 347.27 181.30 252.57 204.69 194.91 148.32

P̂DW
MLC η̂SR2 356.87 181.05 258.60 209.29 192.64 153.29

η̂SR 358.65 181.01 259.21 209.78 192.36 153.62

η1/2 357.11 180.91 258.76 209.48 192.54 153.26

P̂DF
ML η̂SR2 350.18 187.65 257.22 207.83 251.93 147.44

η̂SR 351.57 187.70 257.90 207.85 249.31 147.45

η1/2 350.34 187.45 257.33 208.03 251.91 147.50

P̂DF
MLC η̂SR2 358.93 186.31 263.52 214.76 250.13 153.44

η̂SR 360.76 186.46 264.35 214.57 247.50 153.26

η1/2 215.02 250.07 153.52 182.44 148.19 163.36

the empirical coverage probability over 1000 simulation runs in each category of the

main variable. The confidence interval lengths of proposed estimators have been com-

pared with the confidence interval lengths of their linear calibration counterparts using

the same amount of auxiliary information. That is, P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC have been

compared with P̂CalSF and P̂DF
ML and P̂DF

MLC have been compared with P̂CalDF.

From Table 5 we conclude that all the proposed estimators considerably reduce the

length of the confidence intervals obtained, with respect to the linear calibration estima-

tors. The empirical coverage is very close to the nominal level. It is observed that the

estimates based on the joint estimation of the parameter βββ (P̂DW
ML , P̂DW

MLC, P̂SW
ML and P̂SW

MLC)

have a somewhat lower coverage than the others.

Looking at the effect of the choice of η (in relative bias and relative mean squared

error), we have repeated the simulation study (for all populations and scenarios) using

alternative values for η. In particular, other than that used previously, i.e.

ηSR2 =
v(N̂ba)

v(N̂ba)+ v(N̂ab)
,

we have considered a fixed value η = 1
2

and one estimated following Skinner and Rao

(1996)

ηSR =
NaNBv(N̂ba)

NaNBv(N̂ba)+NbNAv(N̂ab)
.



David Molina, Maria del Mar Rueda, Antonio Arcos, Maria Giovanna Ranalli 331

See Section 6. for details and guidelines on choosing a value for η. Table 6 shows (only

when the overlap domain size is Medium, for space reason) that there is a little effect of

these three different estimates for η on the behaviour of the considered estimators. We

can conclude that the available auxiliary information and the way in which it is included

in the estimation procedure play a much more relevant role than the choice of a value

for η.

9. Application to the survey on opinions and attitudes of the

Andalusian population regarding immigration (OPIA) 2013

To examine the performance of the proposed estimation methods in practice, we have

applied them to the dataset from the OPIA survey. The main variable in this study is

related to the “attitude towards immigration”. The variable is the answer to the following

question: And in relation to the number of immigrants currently living in Andalusia, do

you think there are ...?: Too many, A reasonable number, Too few, No reply.

We have considered the same set of auxiliary variables (sex and age) in the two

frames. To incorporate information about sex into estimation process two indicator vari-

ables (one for males and another one for females) were created. Similarly, four age

classes were established and each respondent was assigned to one of them. Correspond-

ing indicator variables were used, then, for the analysis. Necessary population informa-

tion about these variables for calculating proposed estimators is displayed in Table 3.

Note that both auxiliary variables sex and age are available from the two frames. In this

case, the population counts in the two-way contingence table are known in each domain.

Table 7 shows point and jackknife confidence estimation for proposed estimators.

Length reduction in jackknife confidence interval for each estimator regarding same

interval for BKA estimator is also displayed. In keeping with results obtained from

simulation experiments, reduction is quite significative for all estimators whatever the

category of the main variable. The calibration approach achieves most important reduc-

tions in length, with single frame calibration presenting the best results. On the other

hand, using P̂DW
ML , P̂SW

ML and P̂DF
ML estimators the length reduction is less noticeable.

Table 8 shows point estimation for proposed estimators by sex and age. Analyzing

results by gender, it is noticeable that there are more males than females thinking that

there are too many immigrants in Andalusia and that females are more reticent to answer

the question than males.

On the other hand, it is worth noting that perception that there are too many im-

migrants in Andalusia increases together with age. So, while most of the people in the

18-29 age group think that the number of immigrants in Andalusia is reasonable, most

part of people aged 45 years or over think that there are too many. The age group where

the non-response is higher is the one including people aged 60 years or over.
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Table 7: Point and 95% confidence level estimation of proportions using several

methods for Jackknife variance estimation. Length reduction (in percent, %) respect to the

BKA estimator. Main variable: “Amount of immigration”.

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Length

Estimator PROP LB UB LEN reduction

Too many

P̂DW
ML 42.75 39.76 45.74 5.98 14.33

P̂DW
MLC 41.23 38.78 43.68 4.90 29.80

P̂SW
ML 42.89 39.94 45.84 5.90 15.47

P̂SW
MLC 41.41 39.03 43.79 4.76 31.81

P̂DF
ML 42.61 39.64 45.58 5.94 14.90

P̂DF
MLC 41.16 38.67 43.65 4.98 28.65

A reasonable number

P̂DW
ML 45.24 42.27 48.20 5.93 12.28

P̂DW
MLC 46.57 44.11 49.03 4.92 27.22

P̂SW
ML 45.09 42.17 48.01 5.84 13.61

P̂SW
MLC 46.40 44.02 48.78 4.76 29.59

P̂DF
ML 45.45 42.49 48.41 5.92 12.43

P̂DF
MLC 46.68 44.17 49.18 5.01 25.89

Too few

P̂DW
ML 6.06 4.55 7.58 3.03 15.36

P̂DW
MLC 5.77 4.58 6.97 2.39 33.24

P̂SW
ML 6.05 4.56 7.54 2.98 16.76

P̂SW
MLC 5.76 4.61 6.91 2.30 35.75

P̂DF
ML 6.13 4.62 7.64 3.02 15.64

P̂DF
MLC 5.63 4.46 6.80 2.34 34.64

No reply

P̂DW
ML 5.95 4.65 7.25 2.60 12.75

P̂DW
MLC 6.43 5.27 7.58 2.31 22.48

P̂SW
ML 5.96 4.67 7.25 2.58 13.42

P̂SW
MLC 6.43 5.30 7.56 2.26 24.16

P̂DF
ML 5.80 4.51 7.10 2.59 13.09

P̂DF
MLC 6.54 5.33 7.74 2.41 19.13



David Molina, Maria del Mar Rueda, Antonio Arcos, Maria Giovanna Ranalli 333

Table 8: Point estimation of proportions by sex and age. Main variable: “Amount of immigration”.

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Estimator ALL MALES FEMALES 18-29 30-44 45-59 ≥ 60

Too many

P̂DW
ML 42.75 46.46 39.15 32.46 44.29 46.03 45.14

P̂DW
MLC 41.23 43.64 38.97 30.97 42.07 43.31 46.58

P̂SW
ML 42.89 46.74 39.11 32.76 43.89 46.44 45.85

P̂SW
MLC 41.41 43.79 39.19 31.55 41.61 43.87 45.77

P̂DF
ML 42.61 44.45 39.16 31.99 41.69 43.56 48.13

P̂DF
MLC 41.16 43.55 38.96 30.01 42.14 43.28 48.56

A reasonable number

P̂DW
ML 45.24 42.31 48.10 59.82 40.71 40.72 44.47

P̂DW
MLC 46.57 44.39 48.74 61.97 44.44 42.72 43.25

P̂SW
ML 45.09 42.04 48.11 59.62 40.90 40.68 43.70

P̂SW
MLC 46.40 44.14 48.63 61.49 44.67 42.64 43.61

P̂DF
ML 45.45 44.02 48.35 60.42 43.98 42.81 42.11

P̂DF
MLC 46.68 44.59 48.78 63.21 44.46 42.56 41.65

Too few

P̂DW
ML 6.06 6.75 5.35 3.77 9.84 6.18 2.82

P̂DW
MLC 5.77 6.68 4.92 3.29 7.58 6.73 2.80

P̂SW
ML 6.05 6.64 5.47 3.79 9.89 6.12 2.83

P̂SW
MLC 5.76 6.67 4.92 3.39 7.62 6.66 2.95

P̂DF
ML 6.13 6.58 5.11 3.50 8.17 6.37 2.39

P̂DF
MLC 5.63 6.46 4.81 2.92 7.46 6.77 2.35

No reply

P̂DW
ML 5.95 4.47 7.39 3.95 5.16 7.06 7.56

P̂DW
MLC 6.43 5.28 7.37 3.76 5.91 7.24 7.37

P̂SW
ML 5.96 4.58 7.31 3.83 5.32 6.76 7.62

P̂SW
MLC 6.43 5.41 7.26 3.57 6.10 6.84 7.67

P̂DF
ML 5.80 4.95 7.38 4.09 6.15 7.25 7.36

P̂DF
MLC 6.54 5.39 7.45 3.86 5.93 7.39 7.44
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10. Conclusions

Data collected from surveys are often organized into discrete categories. Analyzing such

categorical data from a complex survey often requires specialized techniques. To im-

prove the accuracy of estimation procedures, a survey statistician often makes use of the

auxiliary data available from administrative registers and other sources.

Generalized regression is a popular design-based method used in the production of

descriptive statistics from survey data. Although the generalized regression estimator is

design-consistent regardless of the form of the assisting model, a linear model is not the

best choice for multinomial response variables. For such variables we introduce a class

of multinomial logistic generalized regression estimators when data are obtained from

samples from different frames.

We introduce a new approach to the model-assisted estimation of population class

of frequencies in dual frame surveys. We propose a class of logistic estimators based on

multinomial logistic models describing the joint distribution of the category indicators

in the total population or in each frame separately. We also consider different ways of

combining estimates coming from the two frames.

The type of sample design used in practice drives the user to choose between Dual-

Frame or Single-Frame approaches. The Single-Frame approach requires additional in-

formation in the overlapping domain that is not always easy to take in practical applica-

tions.

As for calibration, it seems clear that the better for efficiency is to incorporate it,

regardless of whether or not a logistics model is used. As for the model, apart from the

advantage provided by the fact that the estimates of proportions for each category add

to one, our simulation study suggests that it is preferable to use it. As for the type of

model, in most practical applications it will be almost entirely forced, depending on the

auxiliary information available and, more specifically, on the availability of auxiliary

variable totals for domains, for frames or for the entire population.

To compute the proposed estimators, we have assumed to know the values of aux-

iliary variables for each individual in the population, which can be quite a restrictive

assumption. Indeed, to compute the proposed estimators we need to know the count of

each value of the auxiliary variable vector in the population. This is a very frequent

situation that arises, for example, when categorical variables (as the gender or the pro-

fessional status of the individual) or quantitative categorized variables (as the age of

the individual, grouped in classes) are used as auxiliary information in a survey. In this

context, we do not have a complete list of individuals but still the proposed estimators

can be computed since the population information needed can be found in databases of

national statistical organisms. In fact, in this case, we only need to know the population

count in the multi-way contingency table. This is also the situation in the application to

data from the survey on opinions and attitudes of the Andalusian population regarding

immigration explored in Section 9.



David Molina, Maria del Mar Rueda, Antonio Arcos, Maria Giovanna Ranalli 335

Here we have considered two frames. The extension to more than two frames is under

study as well. One important issue when dealing with more than two frames is that of

using a proper notation (see Lohr and Rao (2006) and Singh and Mecatti (2011)). A

first simple way around is the one, also considered in Rao and Wu (2010), in which

weights from the multiplicity estimator of Mecatti (2007) are used as starting weights

and calibration is applied straightforwardly. More complicated is the issue of accounting

for different levels of frame information, although we believe that Singh and Mecatti

(2011) may provide a good starting point.
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