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Abstract

Generalized linear mixed models are flexible tools for modeling non-normal data and are use-

ful for accommodating overdispersion in Poisson regression models with random effects. Their

main difficulty resides in the parameter estimation because there is no analytic solution for the

maximization of the marginal likelihood. Many methods have been proposed for this purpose and

many of them are implemented in software packages. The purpose of this study is to compare

the performance of three different statistical principles – marginal likelihood, extended likelihood,

Bayesian analysis – via simulation studies. Real data on contact wrestling are used for illustration.
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1. Introduction

One of the methodologies used to study disease incidence in medicine or injuries in sport

research is the generalized linear model (GLM). This methodology is able to model

counts and proportions besides normally distributed variables (McCullagh and Nelder,

1989). Furthermore, GLMs assume that the observations conditioned on the predictors
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are independent and identically distributed. However, these assumptions may be violated

in some situations, such as longitudinal studies, where there are repeated measures and,

hence, correlated data. Ignoring correlation of data when fitting the model may lead to

biased estimates and misinterpretation of results (Bolker et al., 2009).

Generalized linear mixed models (GLMMs) are an extension of GLMs adding ran-

dom effects in the linear predictor term in a regression setting (Breslow and Clayton,

1993). The GLMM is a more flexible analysis approach for analyzing non-normal data

and it is known to be useful for accommodating the overdispersion in Binomial or Pois-

son regression models, and modelling the dependence structure among outcome vari-

ables for longitudinal or repeated measures data (Williams, 1982; Breslow, 1984).

The main difficulty of these models is the estimation of their parameters, as it is often

not viable to obtain an analytic solution that allows maximizing the marginal likelihood

of the data. Due to this fact, different estimation methods based on approximation or

simulation have been developed in recent years. One approximation using numerical in-

tegration is the Gauss-Hermite quadrature (GHQ) (McCulloch and Searle, 2001). How-

ever, there are alternatives to the marginal likelihood principle including Bayesian statis-

tics and the extended likelihood principle. For example, the Integrated Nested Laplace

Approximation (INLA) (Rue et al., 2009) is a Bayesian implementation and the hierar-

chical (h-)likelihood is an implementation of the extended likelihood principle (Lee and

Nelder, 1996, 2001). It is worth mentioning that the comparison between Bayesian and

non-Bayesian methods is difficult to perform given that they are different principles.

Nowadays, GLMMs are implemented in most statistical software packages and sev-

eral researchers have published and updated different guides and reviews of different

software packages for fitting a GLMM. West et al. (2014) introduce the fitting and inter-

pretation of several types of linear mixed models using the statistical software packages

SAS, SPSS, Stata, R, and HLM. Dean and Nielsen (2007) review the theoretical back-

ground of generalized linear mixed models and the inferential techniques that have been

developed for SAS, S-Plus, and contributed R packages. Bolker et al. (2009) describe the

use of generalized linear mixed models for ecology and evolution and give information

on available functions and packages in SAS or R. For further comparisons of statistical

software for GLMMs for binary responses and frailty models, see, for instance, Zhang

et al. (2011); Li et al. (2011); Hirsch and Wienke (2012); Kim et al. (2013); or Grilli

et al. (2014).

The aim of this work is to compare three different statistical principles – marginal

likelihood, extended likelihood, and Bayesian analysis; see, Table 1 – to estimate the

parameters of a Poisson Mixed Model in R using both real and simulated data. It is struc-

tured as follows: in Section 2, we briefly review the definition of the GLMM and high-

light the problem of deriving and maximizing the likelihood. In Sections 3 and 4, we give

a theoretical description according to the statistical principle used. Several contributed

R packages for the fit of GLMMs are presented in Section 5 and three of them are used

in Section 6 for the analysis of the motivating real data set on Leonese Wrestling. These

data are then used to define the settings of the simulation study presented in Section 7.
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In Sections 8 and 9, the results of the simulation are presented and discussed, and rec-

ommendations are given on which statistical principle is, preferably, to be used in each

of the settings under study.

2. Generalized linear mixed models

The GLMM extends the GLM by adding normally distributed random effects to the

linear predictor. As Bolker et al. (2009) point out, GLMMs combine the properties of

linear mixed models (LMMs) and GLMs by using link functions and exponential family

distributions such as Binomial or Poisson distributions.

Let Yi = (Yi1, . . . ,Yim)
′ be a vector of m observations of the response variable of

interest corresponding to subject i, i = 1, . . . ,n and ui, i = 1, . . . ,n, be the random effects

vector of the same subject. Conditional on ui, the distribution of Yi is assumed to be from

the exponential family type with density function f (Yi|ui; ·) and with conditional mean

µµµi = E(Yi|ui) and conditional variance Var(Yi|ui) = ΦV (µµµi), where Φ is the dispersion

parameter and V (µµµi) is the variance function of the GLMM.

The definition of the GLMM is completed by introducing a monotone and differ-

entiable function g(·) known as the link function (McCullagh and Nelder, 1989) and a

linear predictor ηηη as follows:

ηηηi = g(µµµi) = Xiβββ+Ziui, i = 1, . . . ,n

where Xi (of dimension m× k) and Zi (m× l) are subject i’s design matrices associated

with fixed and random effects, respectively. Vector βββ (k× 1) is the fixed effects vector

and u (l × 1) is the random effects vector assumed to follow a multivariate Gaussian

distribution with mean vector 0 and unknown positive definite covariance matrix Σ. Its

density function is denoted by f (u;Σ).

Estimation in the GLMM and theoretical description of the likelihood

principle

By the local independence assumption, the conditional density of Y given u has the form

f (Y|u;βββ) =
n

∏
i=1

f (Yi|ui;βββ)

and the multivariate density function of u is given by

f (u;Σ) =
n

∏
i=1

f (ui;Σ).
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The likelihood principle involves two kinds of objects: observed random variables

(the data) and (unknown) fixed parameters. In the case of models with random effects,

the estimation is based on the marginal likelihood where the random effects are inte-

grated out (Birnbaum, 1962; Pawitan, 2001). Hence, the following likelihood function

needs to be maximized in order to obtain the maximum likelihood (ML) estimates for βββ

and the variance components in Σ:

l(βββ,Σ|Y) = f (Y;βββ) =

∫

f (Y|u;βββ) f (u;Σ)du. (1)

The classical method that uses ML estimation and in which u is integrated out does

not present problems with linear mixed models. The problem exists with GLMMs be-

cause of the more complicated integral (McCulloch and Searle, 2001). For this reason,

one of the main interests of the research on the GLMM is to develop more efficient

estimation methods for the fixed effects vector and the variance components.

Several ways to solve the integration in (1) and to obtain the marginal likelihood

to estimate the parameters of a GLMM have been proposed. The Laplace method for

integral approximation is considered to be a possible solution, which can be used to

estimate the parameters of interests (Breslow and Clayton, 1993). Alternatives are the

GHQ method or pseudo and penalized quasilikelihood methods (Aitkin, 1996). The

GHQ method presents better estimation properties than the other methods because the

GHQ estimates are maximum likelihood estimates. However, it is not feasible for analy-

ses with more than two or three random effects because the speed of the GHQ decreases

rapidly when increasing the number of random effects (Bolker et al., 2009).

3. Theoretical description of the extended likelihood principle

Lee and Nelder (1996, 2001) extended generalized linear models to include random ef-

fects by using their hierarchical (h-)likelihood method. This method is based on the ex-

tended likelihood principle (Bjørnstad, 1996) and is an implementation of the extended

likelihood restricted by a weak canonical link for the random effects (Lee et al., 2006).

The h-likelihood is given by the log joint likelihood, that is, the extended likelihood

LE :

h = log
(

LE(y;β,v)
)

= log
(

f (y;β|v)
)

+ log
(

f (v)
)

where log( f (y;β|v) denotes the log of the density function with β as parameter and con-

ditional on v = v(u), where u is a vector of random effects and ν(·) is an appropriate

link function defining the h-likelihood. Unlike the GLMMs, the random effect is not res-

tricted to be normal and can follow other distributions (e.g., gamma, beta, or inverse gamma).
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A fundamental difference compared to classical marginal likelihood theory is that

estimation and inference based on the h-likelihood includes random effects, whereas in

classical likelihood theory the random effects are integrated out and a marginal likeli-

hood is used. Hence, the use of the h-likelihood avoids the integration required for a

classical marginal likelihood.

To estimate parameters (β,ν), the fixed and random effects are estimated from the

score functions of the h-likelihood:

∂h

∂β
= 0,

∂h

∂ν
= 0.

The variance components are estimated by maximizing the adjusted profile h-likelihood

defined as

pβ,u =
(

h+
1

2
log(2πH−1)

)
∣

∣

β=β̂,u=û
,

where H is a Hessian matrix of the h-likelihood.

The estimates can be obtained by using iterative weighted least squares (IRWLS) as

implemented in the hglm package (Rönnegård et al., 2010). The variance components

are then estimated iteratively by applying a gamma GLM to the estimated deviances

and with an intercept term included in the linear predictor and appropriate weights (Lee

et al., 2006).

4. Theoretical description of the Bayesian principle

The Bayesian methods differ from the likelihood and extended likelihood principles in

their philosophy as well as in the specific procedures used.

In order to implement a Bayesian principle, prior distributions are required for all

parameters in the model, since under the Bayesian paradigm, all parameters are treated

as random variables rather than fixed unknowns.

The Bayesian principle is based on assigning prior distributions to the parameters of

the model. Thus, following the model defined in Section 2, the following prior distribu-

tions must be specified: f (βββ|·), f (u|·), and f (Σ|·). These prior distributions express the

beliefs on the parameters and these beliefs are modified by the data to obtain the poste-

rior distribution of the parameters, f (βββ,u,Σ|Y), which is defined as to be proportional

to the product of the prior distributions and the likelihood of the data. The posterior

distribution is therefore used for inference purposes.

Here, a non-informative normal distribution is assumed as prior distribution for βββ,

that is, a normal distribution with a huge variance. Let γγγ = (u,βββ)T denote the G× 1

vector of Gaussian parameters. Concerning the random effects, we assume u to follow

a multivariate normal distribution, u|Γ ∼ N (0,Γ−1), where the precision matrix Γ =
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Γ(φφφ) depends on parameters φφφ. Let φφφ also be the vector of the variance components for

which the prior Π(φφφ) is assigned. However, often it is not possible to obtain an explicit

expression of the posterior distribution and algorithms such as Markov chain Monte

Carlo (MCMC) methods are used to generate the posterior distribution by simulation.

The Bayesian principle is attractive because it offers several advantages over the like-

lihood principle (e.g., it can increase the stability in small samples or in clustered binary

data), but it has the difficulty of specifying prior distributions with variance components

(Fong et al., 2010).

The use of MCMC methods for GLMMs is the most popular approach, but has prob-

lems in terms of convergence and computational time. These problems with Bayesian

estimation have been greatly improved by Integrated Nested Laplace Approximations

(Rue et al., 2009).

Integrated Nested Laplace Approximation (INLA)

INLA is a new tool for Bayesian inference based on latent Gaussian models introduced

by Rue et al. (2009). The method combines Laplace approximations and numerical in-

tegration in a very efficient manner. For the GLMM described in Section 2 and using γγγ

and φφφ as defined in the previous paragraphs, the posterior density is given by

π(γγγ,φφφ|Y) ∝ π(γγγ|φφφ)π(φφφ)
m

∏
i=1

p(Yi|γγγ,φφφ).

It is computed via numerical integration as

π(γγγ|Y) =
∫

π(γγγ|φφφ,Y)π(φφφ|Y)dφφφ,

where Laplace approximation is applied to carry out the integrations required for the

evaluation of π(γγγ|φφφ,Y). For more details we refer the readers to Rue et al. (2009).

5. Contributed R packages for GLMMs

For the likelihood principle, there exist different packages in R such as glmmML (Broström

and Holmberg, 2013), lme4 (Bates et al., 2015), or the function glmmPQL in the MASS

package (Venables and Ripley, 2002). One of the most popular and stable functions for

fitting GLMMs is called glmer and is found within the package lme4. This package

implements the GHQ to approximate the log-likelihood using numerical integration. By

default, it uses the Laplace approximation with one quadrature point.
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For the extended likelihood principle, two packages are available for fitting Hierar-

chical Generalized Linear Models with random effects: hglm (Rönnegård et al., 2010)

and HGLMMM (Molas and Lesaffre, 2011).

Concerning packages for performing Bayesian inference on GLMM, general pack-

ages such as glmmBUGS (Brown and Zhou, 2010) and R2WinBugs (Sturtz et al., 2005), and

specialized packages such as glmmAK (Komárek and Lesaffre, 2008), MCMCglmm (Had-

field, 2010), and INLA (Lindgren and Rue, 2015) exist. INLA substitutes MCMC simu-

lations with accuracy and the quality of such approximations is extremely high.

For both the analysis of the wrestling data (Section 6) and the simulation (Section 7),

the R packages lme4, hglm, and INLA were used. Note that the lme4 package does not

report standard errors for variance components. The reason is provided by the developer

of the package in his book (Bates, 2010) stating that the sampling distribution of the

variance is highly skewed, which makes the standard error nonsensical (Li et al., 2011).

Regarding the GHQ method, we used 5 quadrature points since it was indicated that this

method can give a poor approximation to the integrated likelihood when the number

of quadrature points is low (Lesaffre and Spiessens, 2001). This method can be made

arbitrarily accurate by increasing the number of quadrature points. We adopted a strategy

of increasing the number of quadrature points until there was a negligible difference in

the values of the estimators (Ormerod and Wand, 2012).

Recent changes of the packages used

The three packages studied in this paper have implemented some new features in their

latest versions.

Regarding the lme4 package, the authors of the package have been discussing new

features and new versions of the package through the forum “R-sig-mixed models”

(https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models) since its version

0.99 (better known and used as lme4.0). Currently, the present version is 1.1-7, which

offers some advantages with respect to the version 0.99, especially in terms of con-

vergence and optimization. These developments can be found at the following link:

https://github.com/lme4/lme4.

Concerning the hglm package, since version 2.0 it is possible to fit several random

effects from different distributions (e.g., gamma or Gaussian), to fit a linear predic-

tor for the dispersion of the random effects, to fit spatial conditional autoregressive

(CAR) and spatial autoregressive (SAR) models for the random effects, and to per-

form a likelihood-ratio test for the dispersion parameter of the random effects (Alam

et al., 2014). The method options have also been extended to include the EQL1 method

which is a “HL(1,1) correction” (Lee and Lee, 2012; Noh and Lee, 2007) applied

on the default EQL method. These developments can be found at the following link:

http://cran.r-project.org/web/packages/hglm/vignettes/hglm.pdf.
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Regarding the INLA package, this analytical framework includes normally distribut-

ed latent variables and thus allows for hierarchical data structure, but it is targeted to-

wards complex applications involving temporal and spatial smoothing where MCMC

estimation may be too difficult to apply (requiring specialized MCMC samplers) or pro-

hibitively slow. On the one hand, now there is an increase of articles using this package

in several application fields such as fishering (Cosandey-Godin et al., 2014) or ecology

(Quiroz et al., 2014). Few applications of the INLA methodology in injury epidemiology

or sport science have been published (Cervone et al., 2014), and it would be of interest

to study in more detail the medical impact in terms of understanding sport injuries with

this methodology. On the other hand, one of the most recent papers of Martins et al.

(2014) shows a new perspective on the selection of default priors.

6. Real data example: folk wrestling data

Leonese Wrestling (LW) or Aluche is a traditional and popular sport of the province

of León, in Northwestern Spain. It is registered with and recognized by three interna-

tional associations: Fédération Internationale des Luttes Associées (FILA), Asociacion

Española de luchas tradicionales (AELT), and International Belt Wrestling Associa-

tion (IBWA), respectively. Like with all styles of wrestling, the risk of injury is always

present.

The main variable of interest in epidemiological investigation of sports injuries is the

incidence of injury, which is generally expressed as the proportion of injuries per fight

(Ayán et al., 2010; Hägglund et al., 2010). There are few studies in the international

scientific literature about the incidence of injury in combat sports and its associated

factors (Klügl et al., 2010; Hewett et al., 2005). Nonetheless, in published papers, it

has been found that the incidence of injury in these sports is higher than in other sports

activities (Hägglund et al., 2005; Junge et al., 2009).

Concerning factors associated with the incidence of injury, it is known that this in-

cidence is higher during wrestling matches than in training. However, there is not much

information on the frequency of injuries, their incidence, and their causes to carry out

prevention and control programs in this sport. This lack of knowledge has motivated this

analysis of the impact and risk factors of injuries.

Data on matches and injuries of the LW summer seasons were available for 213

wrestlers during the summer seasons from 2005 through 2010. The response variable

of interest was the frequency of injuries which was assumed to follow a Poisson distri-

bution. The study design was unbalanced with different numbers of repeated measures

given that not all wrestlers participated in official competitions in each of the six years

from 2005 to 2010. The possible risk factors for injuries considered were: i) Winner:

This variable is defined as a function of the falls during a match. It is set to ‘Yes’ if the

wrestler had more falls in his favor than against him; otherwise, the value of Winner is

set to ‘No’; and ii) Weight category: a categorical variable with levels Light, Medium
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(chosen as reference), Semi-heavy, and Heavy. It has been taken into account that these

variables could change from one season to another.

6.1. The model under study

Let Yi, i = 1, . . . ,n, be the vector of the number of injuries per season of wrestler i.

The length of Yi depends on the number of seasons the wrestler took part in official

competitions. It is assumed that the distribution of Yi follows a Poisson distribution:

Yi ∼ Po(µµµi). Usually, the counts are considered in relation to some differential or offset

(λ) in order to obtain rates. Here, the offset is the number of the wrestler’s matches

per season. The Poisson generalized linear mixed model used to analyze the data links

the mean of Yi with both covariates Xi of interest —Winner and Weight category— by

means of the following equation

log(µµµi) = log(λλλi)+Xiβββ+ui, i = 1, . . . ,n, (2)

where the vector βββ contains the fixed effects parameters and ui stands for the random

effect intercept for wrestler i. Random effects are assumed to be independent and nor-

mally distributed with mean 0 and variance σ2. Random effects for the slope parameters

were not considered in order to keep the model simpler. In addition, posterior model

fits including such random effects did not improve the model fit significantly at a 0.05

significance level.

The model’s marginal variance (over subjects) can be expressed as

Var(Yi) = Φ ·µµµi, i = 1, . . . ,n,

where Φ is the dispersion parameter. The Poisson distribution assumes Φ = 1 and if

Φ> 1, overdispersion is present. In that case, the data have larger variance than expected

under the assumption of a Poisson distribution.

The dispersion parameter can be estimated based on the χ2 approximation of the

residual deviance or Pearson residuals. The dispersion parameter is estimated by divid-

ing the χ2 statistic by the residual degrees of freedom, n− r:

Φ̂ =
1

n− r

n

∑
i=1

(Yi − µ̂µµi)
2

µ̂µµi

. (3)

If there is high overdispersion, the negative binomial distribution is an alternative

to the Poisson distribution for count data because the negative binomial distribution

allows for a variance greater than mean. Apparent overdispersion is normally due to

missing covariates or interactions, outliers in the response variable, non-linear effects of

covariates entered as linear terms in the systematic part of the model, or the choice of
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a wrong link function. These are mainly model misspecifications. Real overdispersion

exists when none of the previous causes can be identified. The reason for this might

be that the variation in the data is, actually, larger than the mean. Or, there may be

many zero observations, clustering of observations, or correlation between observations

(Hardin and Hilbe, 2007; Zuur et al., 2009).

6.2. Results

We fitted Model (2) with packages lme4, hglm, and INLA, and for the sake of compari-

son, we also analysed the data as if they were not correlated. That is, we fitted a GLM

using function glm of the R package stats. All analyses were carried out with R, ver-

sion 3.1.1, and the estimates obtained, together with the 95% confidence and (in the case

of the INLA package) credible intervals, are presented in Table 2. The confidence inter-

vals of the lme4 package were calculated using the function confint.merMod, which

computes a likelihood profile and finds the appropriate cutoffs based on the likelihood

ratio test (by choosing method = "profile").

We calculated the dispersion term based on the Pearson residuals using Equation (3)

for function glm and packages lme4 and hglm. In addition, we checked the possible

overdispersion using an individual-level random variable (translating to a lognormal-

Poisson model, which is qualitatively similar to a negative binomial (Elston et al.,

2001)).

According to the results obtained, the estimates of the coefficients of the linear pre-

dictor are quite similar with only slight differences in the second decimal digit. The same

is true for the confidence and credible intervals obtained with packages lme4, hglm, and

INLA, whereas function glm provides smaller confidence intervals because it treats the

data as if they were independent observations. Moreover, it can be seen that the estimate

of the random effect variance and the dispersion term differ a little from each other.

Concerning both variables of interest, the positive signs of the parameter estimates

corresponding to the weight category indicate a higher risk for injuries among all three

weight categories as compared with the medium weight category. Nonetheless, all 95%

confidence and credible intervals include 0, that is, the differences are not statistically

significant at a 0.05 significance level. In the case of variable Winner, the model indi-

cates a lower injury risk – β̂ < 0 and the 95% confidence and credible intervals do not

include 0 – among wrestlers with more falls in their favor.

7. Simulation study

In this section, we present the simulation study designed to assess the performance of

the three statistical principles using different scenarios based on the wrestling data. The

aim is to compare the three methods in different settings defined by overdispersion or

sample size with respect to measures of model accuracy, precision, empirical bias, and
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empirical coverage of the estimators as well as computation time and possible prob-

lems of convergence. A total of 40 different simulation settings were used that can be

classified into two main simulation scenarios.

7.1. Simulation scenario 1

For the first simulation scenario, we used the structure of the real data set introduced in

Section 6. The values of the response variable – number of injuries – were generated as a

function of the observed values of the independent variables and the number of matches

of each wrestler in each of the years under study following the model expression in (2).

The aim of this scenario was to closely represent the structure of this real data set.

We simulated the number of injuries using the parameter values given in Table 2

obtained with the lme4 package (β1 = 0.24,β2 = 0.1,β3 = 0.4,β4 =−0.46). Concern-

ing the model intercept (β0) and the variance of the random effects (σ2
u), we used

combinations of both parameters that lead to three different values of overdispersion

(Φ ∈ {1.5,3,10}) that we identify as low, moderate, and high overdispersion settings;

see McCulloch and Searle (2001) for technical details. Furthermore, we added the value

of Φ= 1, i.e., no overdispersion, to also assess how the GLMM behaves in this situation.

In addition, the values of β0 were chosen such that two different marginal means of the

injury numbers were obtained (µ = 1 and µ= 10). As can be seen in the R code of the

first simulation study in the Supplemental Material, the values of β0 ranged from −4.8

to −1.7, those of σ2
u from 0 to 2.12 = 4.41.

In total, with four different values of dispersion and two of the marginal mean, the

number of simulation settings for the Simulation scenario 1 was 4 ·2 = 8.

7.2. Simulation scenario 2

The second simulation scenario was motivated by the goal to study the effect of dif-

ferent sample sizes on the parameter estimation. For this purpose, we considered two

different sample sizes of n = 30 and n = 100 wrestlers and for each wrestler, a random

number of seasons was generated using a discrete uniform distribution ranging from 1

through 6. In the sequel, the match numbers for each wrestler and season were generated

using a Poisson distribution with parameters 60 and 100, respectively. These were the

offset terms λλλi in Model (2). The remaining parameters were chosen similar to the first

simulation scenario resulting in four dispersion parameters (Φ ∈ {1,1.5,3,10}) and two

marginal means for the number of injuries (µ = 1 and µ = 10) so that the number of

simulation settings was 2 ·2 ·4 ·2 = 32 for Simulation scenario 2.

The values of both independent variables – weight category and winner – were gen-

erated using equal probabilities for all categories and, as in Simulation scenario 1, the

injury numbers were generated using the expression of the model in (2).
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7.3. Evaluation criteria

For each of the 8+32= 40 simulation settings, we simulated 1000 data sets of the model

under study and used the three methods to estimate the model parameters (Marginal

Likelihood, Extended Likelihood, and Bayesian Analysis). In addition, we used R func-

tion glm treating the data as if we dealt with a GLM. Measures for the comparison of

the different estimation methods were the empirical mean squared error (MSE) as a

measure of model accuracy, the ratio of precision, the empirical bias, and the empirical

coverage of the confidence and credible intervals, respectively. Moreover, we recorded

the computation times and studied possible problems of convergence.

For each simulation setting and estimation method, the empirical bias was calculated

as the mean bias over the 1000 data sets and its squared value was used together with the

empirical variance to compute the empirical MSE. The rate of precision was computed

as the ratio between the estimator’s empirical variance and the mean of the squared

standard errors. In order to calculate and compare the empirical bias and the empirical

MSE in the case of the INLA package, the distribution of the parameters provided by

INLA were reduced to only one value (the posterior mean).

For the likelihood and the extended likelihood principles, we used the 95% con-

fidence interval and for the Bayesian principle, we used the 95% credible interval of

parameter given by the 0.025 and 0.975 sample quantiles of the posterior parameter

distributions. In the case of the lme4 package, we used 5 quadrature points for the

GHQ method and non-informative priors were assumed for the Bayesian analysis. More-

over, the random intercepts were assumed to have a normal distribution. Regarding the

prior distribution for the precision, a half-normal distribution with mean 0 and precision

0.0001 was assigned to the standard deviations (Gelman et al., 2006).

The comparison was done for the two main parameters of interest: the parameter β4,

which corresponds to the variable Winner, and the variance of the random effects (σ2
u).

The former was chosen, since the analysis of the wrestling data showed a statistically

significant association between the number of injuries and this variable. Whereas the

value of σ2
u varied across the simulation settings, the value of β4 was kept constant in all

settings.

8. Results of the simulation study

For the simulation scenarios, results are presented only for the intercept (β0), the slope

(parameter β4, corresponding to the covariate Winner), and variance of the random effect

(σ2
u). The performance of the estimation methods in terms of empirical bias, empirical

MSE, precision ratio, and empirical coverage of β̂4 and σ̂2
u is summarized in Figures 1a,

1b, 2a, and 2b. The corresponding figures for β̂0 are provided in the Supplemental Ma-

terial.

In order not to mix up statistical principles, methods, and algorithms as presented

in Table 1, following, we only refer to these by the names of the R packages used.
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Note that the results are yielded by package INLA with the prior distribution selected, a

half-normal distribution with mean 0 and precision 0.0001.

Concerning the percentage of convergence of the estimation methods, a model was

considered as “not convergent” if either the estimation process did not converge or if

the estimate or its standard error was not provided. For example, in some cases the pa-

rameter can be estimated but the estimation process may be unable to provide a positive

definite variance-covariance matrix of the parameters (for problems with the Hessian

matrix), mainly due to the instability of the model. Convergence was checked and ob-

tained using the criteria offered in each software package. In the case of the first simu-

lation scenario, the convergence percentages were always equal to 100% with only one

exception: package hglm achieved convergence in 99.2% of all data sets in the case of

µ= 1 and Φ = 10. The results for Simulation scenario 2 are shown in Table 3. The rate

of convergence of all estimation methods was close to 100% for most of the settings.

However, in the case of packages hglm and lme4, the percentage of convergence slightly

decreased in some settings with µ= 1 and n = 30 as overdispersion increased.

Regarding the empirical bias of the slope, all packages provided mostly unbiased

and similar estimates. In terms of accuracy, the highest empirical MSE for the slope for

all GLMM packages is given when Φ = 10, µ= 1, and n = 30. In this case, function glm

is the one that presents highest values. The empirical MSE value obtained with INLA is

higher than with hglm and lme4, which are both similar; see Figure 1a.

In terms of precision (upper panel of Figure 1b), we calculated the ratio of the es-

timator’s empirical variance and the mean of the squared standard errors as a precision

measure. In general, we found that almost all estimation methods presented an under-

estimation in the case of Φ = 1 and Φ = 1.5 together with µ = 10. More differences

between the packages were observed with sample size equal to 30. In the case of the

lme4 package, the ratio was slightly larger than 1 (equivalent to 100%) especially with

moderate and high overdispersion. By contrast, the values of the hglm and INLA pack-

ages were close to 100% for that sample size independently of the offset, the marginal

mean, and the dispersion term. The function glm, in general, showed values far larger

than 100% (and, hence, out of the range of the corresponding plots) from Φ = 1.5.

The empirical coverage of the confidence intervals for the GLMM packages were

close to 95% in all settings; see the lower panel of Figure 1b. The GLM appeared to

have bad coverage, only acceptable for those combinations with low overdispersion.

It suffered from substantial undercoverage (down to 75%) when Φ = 3 and Φ = 10.

This result may be expected for the GLM since it does not include random effects and

therefore can not assume any overdispersion. As overdispersion increased, the empirical

coverage behavior became worse.

Regarding the empirical bias of the variance component (upper panel of Figure 2a),

the three packages performed similarly for Φ = 1 and Φ = 1.5. For Φ = 3, the INLA

package showed the largest empirical bias with n = 30, whereas with n = 100, the dif-

ferences among the packages were small for Φ = 3. For Φ = 10 and n = 30, package

lme4 had the smallest empirical bias in terms of the absolute value, INLA the largest
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Figure 1a: Empirical bias (upper panel) and empirical MSE of the slope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size.
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Figure 1b: Precision (upper panel) and empirical coverage of the slope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size. Precision is measured as the ratio of the estimator’s

empirical variance divided by the average of the squared standard errors.ope estimate (β̂4) as a function of

overdispersion, marginal mean, offset, and sample size.
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Figure 2a: Empirical bias (upper panel) and empirical MSE of the variance component estimate (σ̂2
u) as

a function of overdispersion, marginal mean, offset, and sample size.
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Figure 2b: Precision of the variance component estimate ((σ̂2
u)) as a function of overdispersion, marginal

mean, offset, and sample size. Precision is measured as the ratio of the estimator’s empirical variance

divided by the average of the squared standard errors.

(with values out of the range of the plot). By contrast, for Φ = 10 and n = 100 the

absolute values of the empirical bias of lme4 and INLA were roughly the same. It was

largest for hglm in that setting. Values for function glm do not appear in that figure since

a GLM does not consider any random effects.

In terms of the accuracy of the variance component (lower panel of Figure 2a), the

empirical MSEs were very similar except when Φ > 1.5 and µ = 1. The INLA package

had the largest empirical MSE when Φ = 3, µ= 1, and n = 30. By contrast, in this same

setting, the lme4 and hglm packages had very similar values. None of the packages

showed a satisfactory behavior when Φ = 10, µ= 1, and n = 30: all empirical MSEs are

excessively high and, hence, out of the range of the corresponding plot. With n = 100,

the empirical MSE of package hglm was still out of the plot’s range, whereas that of

lme4 and INLA were close to 1.

Concerning the precision of the estimation of the variance component (Figure 2b),

the ratio obtained with hglm and INLA was close to zero when Φ 6= 10 and µ= 10. For

n = 30, in INLA, the values were close to 150 when µ = 10, and they were close to

100 when Φ > 1.5 and µ = 1. For hglm and when Φ > 1 and µ = 1, the values were

excessively high in most of the simulation settings. It could not be computed with lme4

since this package does not provide the standard error of the estimation of the random

effect’s variance.
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Contrary to overdispersion, sample size, and marginal mean, the choice of the offset

did not seem to have any effect on the estimators’ performance.

Finally, we also compared the computational times measured with R function

system.time. Among the three packages that consider random effects, the average com-

puting times of packages lme4 and hglm were very similar in each setting. On average,

they were four times faster than package INLA.

In summary, the approaches involving a random effect (lme4, INLA, and hglm) showed

good performance on estimating the model parameters except for the estimation of the

random effect’s variance in the case of combinations of huge overdispersion, a small

marginal mean, and a small sample size. Given that the empirical MSE and the empir-

ical bias of the lme4 package are close to zero for most of the simulation settings, it

seems that this package, generally, outperforms the other packages, even though often

only slightly.

9. Discussion

An overview of statistical principles for GLMMs is presented in this paper. The prob-

lem of selecting the best approach for estimation and inference within Poisson Mixed

Models is very complex and too difficult to solve analytically. For this reason, we have

carried out a simulation study that has evaluated the impact of overdispersion, marginal

mean, offset, and sample size assuming Poisson Mixed Models using different statistical

principles.

The fact that the bias and mean square error improve with larger sample size can

be interpreted as that the estimators are consistent when overdispersion is taken into

account in the model by means of random effects. By contrast, the empirical bias and

MSE were larger with the GLM since this type of model does not include random effects

and, hence, ignores overdispersion (Bolker et al., 2009; Milanzi et al., 2012). The results

for INLA, in general, did hardly differ with the values obtained with both lme4 and hglm;

at least not with the prior distribution used.

We have found that for small sample sizes, the random effects variances are difficult

to estimate, which has also been described in other studies (Li et al., 2011). In addition,

the results are worse in the case of a moderate dispersion term (Φ = 3) and especially

with high overdispersion (Φ = 10), in which none of the methods provide satisfactory

results. As Zuur et al. (2009) explain, with a dispersion term up to 1.5 there are no im-

portant overdispersion problems. To solve overdispersion problems, other methods and

distributions may be used, for instance, the Poisson-lognormal distribution, GEE mod-

els, or quasi-Poisson distributions (Booth et al., 2003; Bolker et al., 2009). In the case

of high overdispersion with real data, it would be more reasonable to change the Pois-

son distribution for another distribution that does not have the restriction of the variance

equalling the mean, for instance, the Negative Binomial distribution (Czado et al., 2007).

Recently, Aregay et al. (2013) suggested a Hierarchical Poisson-Normal overdispersed
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model (HPNOD) as an alternative using the Bayesian principle. The HPNOD performs

better than a Hierarchical Poisson-Normal model for data with low, moderate, and high

overdispersion.

In the simulation study, for most combinations, we observed similar performance in

terms of the empirical bias and the empirical MSE whatever was the package applied.

On the other hand, differences arise with respect to the precision of estimates. This fact

may indicate a problem of underestimation because the methods do not capture well

all the variability present in data. A bootstrap approach may be a solution to solve the

standard error problem.

Regarding computational time and convergence, the glm function requires less time

because it does not capture the presence of the random effect. The hglm and lme4 pack-

ages need similar computational times, whereas the INLA package takes more time.

Nonetheless, at least for the simulation settings under study, computation time was not

excessive and results were obtained in less than 5 seconds in most of the cases. In some

combinations of the simulation with small sample size (n = 30), huge overdispersion

(Φ = 10), and small marginal mean (µ = 1), we found problems of convergence in the

hglm package. To solve a convergence problem we recommend specifying other starting

values.

Several studies carried out until now have compared estimation methods only for

the Bayesian principle, the marginal likelihood principle or both in the GLMMs (Zhang

et al., 2011; Ormerod and Wand, 2012; Li et al., 2011; Kim et al., 2013). For example, Li

et al. (2011) recommend the use of the lme4 package. The authors highlight that in case

a Bayesian package is chosen, the parameter estimates might be influenced by the priors

for the variances of the random effects. They also mention that when the data set is small,

the random effects’ variances are difficult to estimate with both frequentist and Bayesian

methods. Kim et al. (2013) recommend the use of the GHQ method given that it per-

forms well in terms of accuracy, precision, convergence rates, and computing speed.

According to the authors, this is also valid with small sample sizes and for longitudinal

studies with a few time points. On the other hand, there are some studies that com-

pare the extended likelihood approach with the Bayesian principle (Pan and Thompson,

2007; Collins, 2008). However, they do not take into account the INLA method, which

is a recently proposed approximate Bayesian approach for latent Gaussian models. Ac-

cording to Collins (2008), in some case studies both Bayesian and extended likelihood

approach estimators of the variance component were positively biased, whereas GHQ

method based estimators were not.

Our work is different from these previous studies given that we have focused our

work on different estimation methods, principles, and more commonly used free soft-

ware packages. Regarding the real data example, most GLMMs are used in applications

of ecology, epidemiology, genetics, clinical medicine, and other applications but these

models are now gaining attention in sports sciences, too (Avalos et al., 2003; Bullock

and Hopkins, 2009; Sampaio et al., 2010; Casals and Martı́nez, 2013; Casals et al.,

2014). However, there are only a few studies in epidemiology of sports injuries.
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Concerning the Bayesian principle, when the sample size is small, the posterior dis-

tribution may be more influenced by the choice of prior distributions than when the

sample size is moderate or large. Note that the posterior means depend on the choice

of the non-informative prior of the variance component (Li et al., 2011). Bayesian al-

gorithms such as MCMC offer different advantages over frequentist algorithms but they

have problems in terms of convergence and computational time. These aspects have

improved with INLA. However, for some combinations, the default initial value is not

adequate for the data because of the use of very weak priors. For example, it is known

that the inverse Gamma(0.001, 0.001) prior is not always a good choice (Fong et al.,

2010). Frühwirth-Schnatter and Wagner (2010b) and Frühwirth-Schnatter and Wagner

(2010a) demonstrate overfitting due to Gamma-priors and suggest using a (half) Gaus-

sian prior for the standard deviation to overcome this problem, as suggested by Gelman

et al. (2006). Another interesting possibility that could be considered in the future is the

use of Penalized Complexity (PC) priors that have heavier tails than the half Gaussian,

but lighter tails than the half-Cauchy (Martins et al., 2014). According to the devel-

opers of the INLA package, the use of PC priors works pretty much identically to the

half-Cauchy in practice.

There are some limitations of the present work. First, in this study we have worked

with a Poisson mixed model with a random intercept, but we have not considered models

with random slopes. The reasons for this decision were twofold: On one hand, the inclu-

sion of random slopes in the real data example did not significantly improve the model

fit at a 0.05 significance level. On the other hand, to study the impact of overdispersion,

marginal mean, sample size, and offset, we preferred to analyze a Poisson mixed model

with a random intercept due to its frequency in sports medicine research. Given the

importance of more complex mixed models, future research should investigate the per-

formances of these principles in mixed Poisson models including random slopes, cross-

classified random effects and multiple membership structures that may be analyzed in

future simulation studies. Second, we only examined three packages corresponding to

the three estimation methods and principles. There are other R packages such as glmmML

and MCMCglmm as well as the function glmmPQL of the MASS package that could be in-

cluded in further simulation studies. In addition, such simulation studies could include

other software packages such as SAS, STATA, or SPSS, which were not considered for

the present work. We decided to focus our work on R because of its great popularity

among statisticians (Muenchen, 2015) and the constant development of new packages

and functions to deal with GLMMs.

In addition to the two limitations mentioned, the simulation study could have also

studied other parameters of interest such as the cluster size, which, in the real data ex-

ample in Section 6, is equivalent to the number of seasons of a wrestler. Indeed, several

simulation studies point out that for binary responses, the performance of the estimators

is influenced by the cluster size, e.g., that clusters of size two usually entail problems

(Breslow and Clayton, 1993; Diaz, 2007; Kim et al., 2013; Grilli et al., 2014). Following

the suggestion of one of the reviewers, we decided to assess the role of the cluster size
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on empirical bias and MSE with a small additional simulation study with eight different

settings defined by two values of cluster size (m ∈ {2, 5}), two values of overdispersion

(Φ ∈ {1.5, 10}), and two different marginal means (µ ∈ {1, 10}). The offset (λ = 60),

the sample size (n = 100), and the slope parameter (β4 = −0.46) were kept constant.

Regarding the results of the empirical bias and the MSE, which are shown in Tables 4

and 5 in the Supplemental Material, there were hardly any differences between cluster

sizes two and five. However, the estimates obtained by the three packages had larger em-

pirical bias and MSE when Φ= 10 and µ= 1. Under this scenario, the values of package

hglm were larger than those of the lme4 and INLA packages. Moreover, with respect to

computing time under the settings of this additional simulation study, the hglm package

was somewhat faster than lme4. The computing times of the INLA package were, again,

much larger. Problems of convergence were not detected.

It is important to highlight that the concepts of estimation and standard error are

different in the three statistical principles used. In the case of the marginal likelihood,

estimation is the value that maximizes the likelihood and the standard error reflects

the sample variation of the estimator. In Bayesian analysis, estimation is a summary of

the posterior distribution and the standard error is a measure of the variability of this

distribution. As for the classical likelihood, the extended likelihood advocates the use of

standard errors computed from the Fisher information matrix of the marginal likelihood.

In practice, the standard errors are computed from the matrix of second derivatives for

the adjusted profile h-likelihood, which is an approximation of the marginal likelihood

(Lee et al., 2006).

Parameter estimation of GLMM is nowadays possible using different statistical prin-

ciples, though estimation methods as well as statistical packages are still under devel-

opment (Bolker et al., 2009). The problem of selecting the most adequate approach for

the estimation and inference within GLMM is very complex. In addition, the software

implementations can differ considerably in flexibility, computation time and usability

(Austin, 2010; Li et al., 2011). A strategy could be to carry out a simulation study that

emulated the data design and to apply the different estimation methods. Although one

may think that this strategy is not very practical, it would be indeed worse to use an

estimation method that could provide biased and inefficient estimates.

We have shown through simulations that ignoring overdispersion in Poisson Mixed

Models can have serious consequences on the parameter estimates. Available R pack-

ages can handle this problem very satisfactorily; however, care must be taken in situ-

ations with small sample size, large overdispersion, and small marginal mean. In such

situations, the lme4 package seems to have a slightly better performance than packages

hglm and the INLA, which also depends on the choice of the prior (Grilli et al., 2014),

especially concerning the estimation of the random effect’s variance (Figure 2a). This

observation coincides with the recommendation of Kim et al. (2013) to use the GHQ

method under such settings and the active discussions of the package’s authors (Douglas

Bates, Martin Maechler, and Ben Bolker) and members of the R sig-mixed-models mail-

ing list (https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models).All pack-
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ages under study have recently been improved in terms of convergence and optimization.

Appendix

Table 1: Overview of statistical principles.

Principle Method Algorithms

Marginal Likelihood Maximum likelihood

Newton-Raphson (N-R), Fisher scoring,

Penalized iteratively reweighted

least squares (PIRLS)

Adaptative Gauss Hermite Quadrature (GHQ)

Extended likelihood h-likelihood N-R, Iterative weighted least squares (IRWLS)

Bayesian Posterior mean

MCMC,

Integrated Nested Laplace

Approximations (INLA)

Table 2: Results from the Poisson mixed model applied to the folk wrestling data. CI stands for confidence

interval and credible interval (in the case of INLA), respectively.

Function glm Package lme4 Package hglm Package INLA

β̂ 95% CI β̂ 95% CI β̂ 95% CI β̂ 95% CI

Intercept −4.34 [−4.73,−4.0] −4.37 [−4.82,−3.99] −4.37 [−4.79,−3.95] −4.41 [−4.85,−4.01]

Weight category1

Light −0.25 [−0.2, 0.71] −0.24 [−0.26, 0.76] −0.25 [−0.28, 0.78] −0.25 [−0.26, 0.76]

Semiheavy −0.10 [−0.36, 0.57] −0.10 [−0.41, 0.63] −0.11 [−0.43, 0.65] −0.12 [−0.4, 0.64]

Heavy −0.39 [−0.1, 0.87] −0.40 [−0.14, 0.96] −0.40 [−0.16, 0.97] −0.41 [−0.14, 0.97]

Winner −0.48 [−0.82,−0.15] −0.46 [−0.82,−0.07] −0.46 [−0.85,−0.07] −0.44 [−0.82,−0.06]

σ2
u – −0.08 [0.0, 0.39] −0.08 [0.0, 0.22] −0.12 [0.01, 0.31]

Dispersion (Φ)2 1.45 1.29 1.35 –

1 The reference category is Medium

2 Obtained by means of equation (3)
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Table 3: Percentages of convergence in Simulation scenario 2 as a function of the marginal mean (µ), the

average match number per season (Offset), overdispersion (OD), and the sample size.

glm lme4 hglm INLA

Offset OD n = 30 n = 100 n = 30 n = 100 n = 30 n = 100 n = 30 n = 100

µ= 1 060 Φ = 1 100 100 99.7 100 99.7 100 100 100

Φ = 1.5 100 100 99.4 100 99.7 100 100 100

Φ = 3 100 100 99.4 100 99.6 100 100 100

Φ = 10 100 100 98.1 99.9 98 99.8 100 100

100 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 99.8 99.9 99.9 100 100 100

Φ = 3 100 100 99.4 100 99.7 100 100 100

Φ = 10 100 100 97.2 100 97.9 99.9 100 100

µ= 10 060 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 100 100 100 100 100 100

Φ = 3 100 100 100 100 100 100 100 100

Φ = 10 100 100 100 100 100 100 100 100

100 Φ = 1 100 100 100 100 100 100 100 100

Φ = 1.5 100 100 100 100 100 100 100 100

Φ = 3 100 100 100 100 100 100 100 100

Φ = 10 100 100 100 100 100 100 100 100
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Rönnegård, L., X. Shen, and M. Alam (2010). hglm: A package for fitting hierarchical generalized linear

models. The R Journal, 2, 20–28.

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian models

by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series

B (Methodological), 71, 319–392.

Sampaio, J., E. J. Drinkwater, and N. M. Leite (2010). Effects of season period, team quality, and playing

time on basketball players’ game-related statistics. European Journal of Sport Science, 10, 141–149.

Sturtz, S., U. Ligges, and A. Gelman (2005). R2winbugs: A package for running WinBUGS from R. Journal

of Statistical Software, 12, 1–16.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (Fourth ed.). New York: Springer.

ISBN 0-387-95457-0.



Martı́ Casals, Klaus Langohr, Josep Lluı́s Carrasco and Lars Rönnegård 307
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