Ir al contenido

Documat


Simultaneous edit-imputation for continuous microdata

  • Autores: Hang J Kim, Lawrence H. Cox, Alan F. Karr, Jerome P. Reiter, Quanli Wang
  • Localización: Journal of the American Statistical Association, ISSN 0162-1459, Vol. 110, Nº 511, 2015, págs. 987-999
  • Idioma: inglés
  • DOI: 10.1080/01621459.2015.1040881
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Many statistical organizations collect data that are expected to satisfy linear constraints; as examples, component variables should sum to total variables, and ratios of pairs of variables should be bounded by expert-specified constants. When reported data violate constraints, organizations identify and replace values potentially in error in a process known as edit-imputation. To date, most approaches separate the error localization and imputation steps, typically using optimization methods to identify the variables to change followed by hot deck imputation. We present an approach that fully integrates editing and imputation for continuous microdata under linear constraints. Our approach relies on a Bayesian hierarchical model that includes (i) a flexible joint probability model for the underlying true values of the data with support only on the set of values that satisfy all editing constraints, (ii) a model for latent indicators of the variables that are in error, and (iii) a model for the reported responses for variables in error. We illustrate the potential advantages of the Bayesian editing approach over existing approaches using simulation studies. We apply the model to edit faulty data from the 2007 U.S. Census of Manufactures. Supplementary materials for this article are available online


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno