Ir al contenido

Documat


On the design of membranes with increasing fundamental frequency

  • González De Paz, Raúl B. [1]
    1. [1] Universidad del Valle de Guatemala

      Universidad del Valle de Guatemala

      Guatemala

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 21, Nº. 1, 2014, págs. 55-72
  • Idioma: inglés
  • DOI: 10.15517/rmta.v21i1.14138
  • Títulos paralelos:
    • Sobre el diseño de membranas con frecuencia fundamental creciente
  • Enlaces
  • Resumen
    • español

       Mediante un método de relajación, se estudia la forma de una inclusión rígida de área dada en una membrana de manera que se maximice su fre- cuencia fundamental. Analizado como un problema de control de valores propios, la frecuencia fundamental es una función cóncava del control, el cual no es descrito por la forma de la membrana, sino por un elemento de un espacio de funciones. Las condiciones de optimalidad de primer or- den permiten describir la forma óptima mediante un problema de frontera libre.   

    • English

        By means of a relaxation approach, we study the shape design of a stiff inclusion with given area in a membrane in order to maximize its fun- damental frequency. As an eigenvalue control problem, the fundamental frequency is a concave function of the control, which is not described by the membrane shape, but by an element in a function space. First order optimality conditions allow to describe the optimal shape by means of a free boundary value problem. 

  • Referencias bibliográficas
    • Bourbaki, N. (1973) Espaces Vectoriels Topologiques. Hermann, Paris.
    • Buttazzo, G.; Dal Maso, G. (1993) “An Existence Result for a Class of Shape Optimization Problems”, Arch. Rat. Mech. Anal. 122: 183–195.
    • Castaing, Ch.; Valadier, M. (1977) Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-New...
    • Céa, J.; Malanowski, K. (1970) “An example of a max-min problem in partial differential equations”, SIAM J. on Control and Optimization 8:...
    • Courant, R.; Hilbert, D. (1953) Methods of Mathematical Physics, vol I. Wiley-Interscience, New York,
    • Cox, S.; McLaughlin, J. (1990) “Extremal eigenvalue problems for composite membranes”, Appl. Math. and Optim. 22: 169–187.
    • Delfour, M. (1992) “Shape derivatives and differentiability of min-max”, in: M. Delfour & G. Sabidussi (Eds.) Proceedings NATO-Université...
    • Egnell, H. (1987) “Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems”, Annali Sc. Norm. Sup. di Pisa...
    • Eppler, K. (2011) “On the shape gradient computation for elliptic eigen-value problems”, Research Report (August 2011) DFG SPP1253-120, Universität...
    • Ekeland, I.; Temam, R. (1974) Analyse Convexe et Problemes Variationnelles. Dunod, Paris.
    • Gonzalez de Paz, R.B. (1982) “Sur un problème d’optimisation de domaine”, Numer. Funct. Anal. and Optimiz. 5: 173–197.
    • Gonzalez de Paz, R.B. (1994) “A relaxation approach applied to domain optimization”, SIAM J. on Control and Optimization 32: 154–169.
    • Gonzalez de Paz, R.B.; Tiihonen, T. (1994) “On a relaxation based numerical method por domain optimization”, in: M. Krizek, P. Neittaanmaki...
    • Harrel, E.M.; Kröger, P.; Kurata, K. 2001) “On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue”, SIAM...
    • Henrot, A. (2006) Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel-Boston-Berlin.
    • Jensen, R. (1980) “Boundary regularity for variational inequalities”, Indiana Univ. Math. Journal 29: 495–511.
    • Jouron, Cl. (1978) “Sur un problème d’optimisation ou la contrainte portée sur la fréquence fondamentale”, RAIR0-Analyse Numérique 12: 349–374.
    • Kawohl, B. (1986) “Geometrical properties of level sets of solutions to elliptic problems”, Proc. Symp. AMS in Pure Mathematics 45: 25–36.
    • Kinderlehrer, D.; Stampacchia, G. (1980) An Introduction to Variational Inequalities and their Applications. Academic Press, New York.
    • Miranda, C. (1970) Partial Differential Equations of Elliptic Type. Springer Verlag, Berlin-New York.
    • Necas, J. (1967) Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris.
    • Payne, L.; Weinberger, H. (1961) “Some isoperimetric inequalities for membrane frequencies and torsional rigidity”, J. on Math. Anal. and...
    • Rousselet, B. (1979) “Optimal design and eigenvalue problems”, Proc. 8th, IFIP Conference on Optimization Techniques, Lect. Notes in Control...
    • Simon, J. (1980) “Differentiation with respect to the domain in boundary value problems”, Numer. Funct. Anal. and Optimiz. 2: 649–687.
    • Sokolowski, J.; Zolesio, J.P. (1992) Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer Verlag, New York-Berlin.
    • Tahraoui, R. (1988) “Quelques remarques sur le contrôle des valeurs propres”, in: H. Brézis & J.L. Lions (Eds.) Nonlinear Partial Differential
    • Equations and Their Applications, Collège de France Seminar, vol. VIII, Longman, Essex: 176–213.
    • Valadier, M. (1970) Quelques Contributions à l’Analyse Convexe. Thèse Doctorale, Université de Paris.
    • Valadier, M. (1963) Extension d’un algoritnme de Frank et Wolfe, Rev. Franc. de Rech. Operationelle 36: 251–253.
    • Zolesio, J.P. (1981) “Domain variational formulation for free boundary problems”, in: J. Céa & E. Haug (Eds.) Optimization of Distributed...
    • Zolesio, J.P. (1981) “Semiderivatives of repeated eigenvalues”, in: J. Céa & E. Haug (Eds.) Optimization of Distributed Parameter Systems,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno