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Abstract

Likelihood estimates of the Dirichlet distribution parameters can be obtained only through numer-

ical algorithms. Such algorithms can provide estimates outside the correct range for the parame-

ters and/or can require a large amount of iterations to reach convergence. These problems can be

aggravated if good starting values are not provided. In this paper we discuss several approaches

that can partially avoid these problems providing a good trade off between efficiency and stability.

The performances of these approaches are compared on high-dimensional real and simulated

data.
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1. Introduction

The Dirichlet distribution has multiple applications. It is well known for being the con-

jugate prior of the multinomial distribution and can be therefore used to get Bayesian

estimates of the multinomial parameters. It is the basis for complicated models such

as Dirichlet Processes and mixture distributions based on the Dirichlet distribution. In

addition, it is interesting in its own right. It can be used to analyse positive continuous

data that sum up to one, i.e. compositional data. Such kinds of data can arise in many

situations. For example, when the data in each unit are represented by an intensity signal

it can be of interest to normalize them through the total intensity of that unit. In this way
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the data from different units are comparable and the final data can be analysed using

the Dirichlet distribution. Another possible application is in the analysis of taxonomic

assignements. For each unit the percentages of the microbial composition of the unit

are assigned to the specific taxonomies. These data can be easily produced with Next

Generation Sequencing (NGS) technologies. Many other examples of the use of the

Dirichlet distribution are provided in the paper of Wicker et al. (2008).

The use of the Dirichlet distribution has been criticized due to the strong indepen-

dence properties associated to this distribution (Aitchison, 1986). In the literature some

generalizations have been proposed to overcome these limits, see for example Con-

nor and Mosiman (1969) and Rayens and Srinivasan (1994). In this paper we only

marginally discuss this point giving a case where the application of the Dirichlet distri-

bution to high-dimensional compositional data leads to reliable conclusions. The focus

of paper is related to the comparison of the computational performances of different

methods to get maximum likelihood estimates of the Dirichlet distribution. There is no

closed form solution of the maximum likelihood equations, therefore numerical methods

must be employed. At the moment, commonly adopted methods are rather unstable. Fi-

nal estimates can be outside the correct range for the parameters and the algorithms can

fail to reach convergence in a reasonable amount of time. Wicker et al. (2008) reported

many convergence failures in their simulation studies. Strategies to improve stability

have been studied by many authors. Many proposals are focused on the choice of good

starting values for the optimization algorithms. Useful references for these problems

and the study of Dirichlet maximum likelihood estimation are the papers of Dishon and

Weiss (1980), Ronning (1989), Narayanan (1991a), and Narayanan (1991b).

In this work we compare eight different algorithms and four different initialisation

methods on real and simulated data. As an application, we consider the analysis

of metabolomics data. We consider the Newton-Raphson algorithm as the reference

algorithm. A fixed-point algorithm, shown in literature to have very good performance,

is taken into account as well. Moreover, a novel and more stable algorithm based on

Levenberg-Marquardt ideas (Levenberg, 1944; Marquardt, 1963) will be employed to

get the final maximum likelihood estimates. In the appendix we give a proof of the

convergence to the optimum for this algorithm. Finally, to avoid the problem of estimates

outside the admissible parameter space, a simple re-parametrization of the Dirichlet

parameters and an algorithm with box constraints are considered. The re-parametrization

will be used together with the Newton-Raphson algorithm and the Levenberg-Marquardt

algorithm, but not with the FPI algorithm because this does not suffer from the problem

of a constrained parameter space (see Huang, 2005). The re-parametrization and the

algorithm with box-constraints are straightforward but have not been considered in the

literature before.
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2. Dirichlet likelihood

In this section we introduce notation and we summarize useful results from literature

(see Minka, 2000). If y = (y1, . . . ,yK)
T is Dirichlet distributed with vector parameter

α= (α1, . . . ,αK)
T then its density is

Γ(∑kαk)

ΠkΓ(αk)
Πky

αk−1

k

where αk > 0, yk > 0, k = 1, . . . ,K and ∑k yk = 1.

The log-likelihood for N independent observations can be written as

f (α) = N lnΓ

(

∑
k

αk

)

−N ∑
k

lnΓ(αk)+N ∑
k

(αk −1)
1

N
∑

i

lnyik. (1)

The gradient of the log-likelihood with respect to one αk is:

[∇ f (α)]k = N

(

Ψ(∑
k

αk)−Ψ(αk)+
1

N
∑

i

lnyik

)

(2)

where Ψ denotes the digamma function. In what follows the arguments of a function

(e.g. the parameters α for the function f (·) in equation (2)) can be suppressed in the

notation when this does not generate confusion. The Hessian can be written in matrix

form as

H = Q+11Tz (3)

q jk =−NΨ′(αk)δ( j− k) (4)

z = NΨ′(∑
k

αk) (5)

where Ψ′ denotes the trigamma function and δ is the Dirac function (zero on the real

line, except at the origin where it is one). Let us note that the diagonal form of Q assures

the existence of its inverse when the diagonal elements are different from zero. This

is exactly the present case because the trigamma function is positive for positive real

arguments.

2.1. Some preliminary considerations

The number of available algorithms to maximize a function is huge and its impossible

to summarize all of them in a meaningful way. In this work we have focused our
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attention on algorithms suggested by the literature about the Dirichlet distribution and on

a modification of the Levenberg-Marquardt algorithm for which we are able to provide

a theoretical result related to the properties of the Dirichlet distribution.

In the literature the algorithms studied and suggested are mainly two: the Newton-

Raphson algorithm and the Fixed Point Iteration algorithm (see Minka, 2000; Huang,

2005). We include them in our comparison and we describe them briefly in the following

sections. Other algorithms, like BFGS (Ronning, 1989) or Gradient Ascent (Huang,

2005), had a poor performance in the literature and are therefore disregarded here.

The Levenberg-Marquardt algorithm is an algorithm to find least-squares estimates.

In the appendix we give a theoretical result of convergence for a modification of the

Levenberg-Marquardt algorithm with a fixed damping parameter when we apply its

adaptation to find maximum likelihood estimates. We study its performance in the paper

through simulations and real data. Finally, to avoid the problem of estimates outside

the allowed space, we consider a re-parametrization of the Dirichlet distribution and an

implementation of the BFGS algorithm with bounding box constraints, L-BFGS-B (see

Byrd et al., 1995).

In this work the efficiency of the algorithms will be compared essentially by the

number of iterations required to reach convergence. This number does not depend on

the implementation of the code and in this sense it is objective. We will see that the

Levenberg-Marquardt approach can be thought as a penalized version of the Newton-

Raphson algorithm and therefore it is expected to be slightly slower. However in general

the iteration time for different algorithms can vary substantially and the algorithm with

fewest iterations for convergence can require the largest amount of time. This can be the

case when we want to compare Levenberg-Marquard, FPI and L-BFGS-B, therefore for

these algorithms we provide also a comparison on time.

2.2. Newton-Raphson algorithm

The Newton-Raphson (NR) algorithm is used to solve the maximum likelihood equa-

tions [∇ f (α)] = 0. It can be summarized by the following equations:

αnew = αold −H−1∇ f (αold) (6)

H−1 = Q−1 −
Q−111TQ−1

1
z
+1TQ−11

(7)

[

H−1∇ f (α)
]

k
=

[∇ f (α)]k −b

qkk

(8)

b =
1TQ−1∇ f (α)

1
z
+1TQ−11

=
∑ j [∇ f (α)] j /q j j

1/z+∑ j 1/q j j

. (9)
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When Q is invertible the inversion of the matrix H is always guaranteed by the use of

the Sherman-Morrison formula. However the equations (8) and (9) highlight that the

algorithm does not require the storage and the computation of the inverse of H. This is

a great advantage, especially when the number of variables is high.

The Newton-Raphson algorithm is expected to converge to the global optimum

because the Dirichlet distribution belongs to the exponential family and is therefore

concave. However, the convergence can be very slow and the final estimates can be

outside the admissible range for the parameters. Good starting values for the algorithm

can partially avoid these problems.

Finally let us note that using the relationship (7) is easy to build marginal confidence

intervals based on the observed Fisher information at the maximum-likelihood estimate.

2.3. Fixed Point Iteration algorithm

A fixed point iteration (FPI) scheme was considered initially by Minka (2000) and later

by Huang (2005) to get the maximum likelihood estimates of the Dirichlet distribution.

It is based upon minorize maximize (MM) algorithms (see Lange, 2010) and in our

case the minorizing function of the log-likelihood employs an inequality of the gamma

function. Specifically the log-likelihood can be bounded as follows

1

N
f

(

α)≥ (∑
k

αk

)

Ψ

(

∑
k

αold
k

)

−∑
k

lnΓ(αk)+∑
k

(αk −1)
1

N
∑

i

lnyik +C

where C is a constant. This leads to the following equation that must be solved:

Ψ(αnew
k ) = Ψ(∑

k

αold
k )+

1

N
∑

i

lnyik. (10)

To get αnew
k we need to invert the digamma function and this is done using another

iterative algorithm; therefore the whole procedure can be slow.

2.4. Starting values

The Newton-Raphson method is based upon a Taylor approximation and therefore

good convergence properties are guaranteed only if the initial starting value is in a

neighbourhood of the true parameter. In the literature there are many suggestions to find

good starting values. We review four of them that will be used throughout the paper.

We use the following notation: ȳk =
1
N ∑N

i=1 yik, ȳ
(2)
k = 1

N ∑N
i=1 y2

ik and s2
k = ȳ2

k − (ȳk)
2. The

four initialisations will be indicated as:
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moments. Matching the first two moments of the Dirichlet with the empirical

moments provides the useful initialisation:

[αstart]k = ȳk

ȳk − ȳ
(2)
k

s2
k

. (11)

Such initialisation employs only the marginal distributions and therefore its use of

the information can be inefficient.

Ronning. Ronning (1989) proposed an initialisation to guarantee parameters in

the correct range after the first iteration of the Newton-Raphson algorithm. There

is however no warranty that the final estimates are in the correct range. Such

initialisation gives the same value to all the parameters and unlike the moments

method uses all the available data for initialising each parameter:

[αstart]k = min
i∈1,...,N, k∈1,...,K

yik. (12)

Dishon. Following a suggestion of Dishon and Weiss (1980), Ronning (1989)

proposed a modification to the method of moments using information from all

the marginals. Each parameter is estimated through:

[αstart]k = α̂0ȳk (13)

α̂0 =

{

ΠK−1
k=1 (

ȳk(1− ȳk)

s2
k

−1)

}1/(K−1)

. (14)

This initialisation can give parameters outside the admissible region.

Wicker. Recently Wicker et al. (2008) proposed an initialisation based on an

asymptotic approximation of the likelihood. This approximation uses the limiting

behaviour of the digamma function when its real argument goes to zero or infinity.

Such situations are met when the number of parameters goes to infinity, i.e. for

high-dimensional data. However in their simulation study Wicker et al. (2008)

considered only a five-dimensional setting. Their initialisation is given by

[αstart]k = α̂0ȳk (15)

α̂0 =
N(K −1)Ψ(1)

N ∑K
k=1 ȳk ln ȳk −∑K

k=1 ȳk ∑N
i=1 lnyik

. (16)
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3. A re-parametrization

An algorithm producing estimates outside the correct range is useless. In the case of the

Dirichlet distribution this problem can be avoided using a simple re-parametrization.

The idea is to see the parameters α as functions of other parameters free to vary on

the real line: in the log-likelihood we replace αk with exp(βk). In what follows we will

indicate with expNR the use of the NR algorithm applied to this re-parametrization.

This way, the range of βk is the real line and exp(βk) is in the correct range for

αk. With these replacements the log-likelihood f (β) is f (α) with α = exp(β) =

(exp(β1), . . . ,exp(βK))
T. The gradient can now be expressed as:

[∇ f (β)]k = [∇ f (α)]k

∣

∣

∣

∣

exp(β)

exp(βk).

The Hessian has a form similar to the original one:

H = Q+ exp(β)exp(β)Tz (17)

q jk = ([∇ f (β)]k − exp(βk +β j)Ψ
′(exp(βk)))δ( j− k)N (18)

z = NΨ′

(

∑
k

exp(βk)

)

(19)

As before, the diagonal form of the square matrix Q and the Sherman-Morrison formula

are sufficient to guarantee that the inverse of H exists if the diagonal elements of Q are

non zero. However, after the re-parametrization the problem is not necessarily concave

in the new parameters. Therefore we cannot say that the inequalities of the previous

section hold true also now. For the re-parametrization the elements in the diagonal of

Q are strictly negative in a neighbourhood of the point of maximum. Indeed at the

maximum the gradient is zero and therefore qkk =−exp(2βk)Ψ
′(exp(βk))N < 0. Within

such neighbourhood we have:

H−1 = Q−1 −
Q−1 exp(β)exp(β)TQ−1

1
z
+ exp(β)TQ−1 exp(β)

(20)

[

H−1∇ f (β)
]

k
=

1

qkk

([∇ f (β)]k − exp(βk)b) (21)

b =
exp(β)TQ−1∇ f (β)

1
z
+ exp(β)TQ−1 exp(β)

(22)

=
∑ j exp(β j) [∇ f (β)] j /q j j

1/z+∑ j exp(2β j)/q j j

. (23)
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Equations (21), (22) and (23) assure an easy way to implement the Newton-Raphson

algorithm avoiding explicit matrix inversion. With these new quantities the Newton-

Raphson iteration is again:

βnew = βold −H
−1∇ f (βold).

As starting values for the algorithm we can consider the logarithms of the starting values

previously described.

4. A stable algorithm

The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) was origi-

nally proposed to solve non-linear least-squares minimization problems. The idea is to

use a function of H instead of H itself. With an appropriate choice the iterations of the

algorithm can take into account the curvature of the function being optimized. For the

optimization of the Dirichlet log-likelihood we propose an iteration algorithm similar to

the Levenberg-Marquardt one (LM):

αnew = αold −{H+γdiagH}−1 ∇ f (αold) (24)

where γ is a positive constant or a positive function not depending on the parameters.

The effect of the damping parameter γ is that of shortening the steps of NR algorithm,

providing in this way prudent steps in the iterations. The same algorithm can be applied

to the re-parametrization (expLM):

βnew = βold −{H+γdiagH}−1 ∇ f (βold). (25)

Let us note that a similar approach is backtracking. In backtracking the matrix approxi-

mating the Hessian is multiplied by a damping parameter that is eventually shrunken to

assure an ascent step. The damping parameter influences the step length. The rational

of this approach is related to the Taylor expansion of the gradient calculated at the new

parameter. We prefer instead the Levenberg-Marquardt approach because the damping

parameter can influence both the direction and the size of the step (Madsen et al., 2004).

Let us denote with x the parameters of interest (α or β in the previous cases); working

on the iteration map M(x) defined by

M(x) = x−{H(x)+γdiagH(x)}−1 ∇ f (x) (26)

we show in the appendix that both algorithms (24) and (25) converge to the maximum.
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Similarly to what we have seen in the previous sections for the Newton-Raphson

algorithm, we show how to rearrange the quantities involved in this version of the

Levenberg-Marquardt algorithm using expressions without an explicit use of inverse

matrices. Equations (24) and (25) can be rewritten with the following quantities

{H(x)+γdiagH(x)}−1 = D−L (27)

D = {Q(x)+γdiagH(x)}−1
(28)

where for the original parametrization

L =
D11TD

1
z
+1TD1

(29)

[(D−L)∇ f (α)]k =
[∇ f (α)]k −b

qkk(1+γ)+γz
(30)

b =
1TD∇ f (α)

1
z
+1TD1

(31)

=
∑k [∇ f (α)]k /(qkk(1+γ)+γz)

1/z+∑k 1/(qkk(1+γ)+γz)
(32)

while for the re-parametrization

L =
Dexp(β)exp(β)TD

1
z
+ exp(β)TDexp(β)

(33)

[(D−L)∇ f (β)]k =
[∇ f (β)]k − exp(βk)b

qkk(1+γ)+γzexp(2βk)
(34)

b =
exp(β)TD∇ f (β)

1
z
+ exp(β)TDexp(β)

(35)

=
∑k

exp(βk)[∇ f (β)]k
(qkk(1+γ)+γzexp(2βk))

1
z
+∑k

exp(2βk)
(qkk(1+γ)+γzexp(2βk))

. (36)

All the equalities are valid when we can apply the Sherman-Morrison formula, see

Sections 2 and 3. In such cases, as for the described Newton-Raphson algorithms, there

is no need to store and invert the Hessian matrix.
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4.1. Damping parameter and stopping criteria

The damping parameter γ influences the step size in the LM iterations. A very small

value of γ leads to an algorithm that is very close to the NR algorithm. This behaviour is

good when we are close to the maximum because we are close to quadratic convergence.

However, larger values of γ can be good if the actual value is far from the optimum. In

this case, a larger γ produces shorter steps in the iterations. Nielsen (1998) proposed

to use values very close to zero or related to the diagonal element of the matrix,

approximating the Hessian in the Levenberg-Marquardt original algorithm. Similarly,

we propose to use 1/K as a value close to zero, or 1 which is the diagonal element of

the Hessian when rescaled by its diagonal elements, [diag(D)]−1D (this form is similar

to that of the Levenberg-Marquardt algorithm). Contrary to the Levenberg-Marquardt

algorithm our damping parameter is not adaptive. However, we prove in the appendix a

convergence property of our algorithm and we show its performance in simulations and

on real data.

We stop the algorithm as soon as one of these three criteria is satisfied: if the norm of

the gradient is very close to zero: ‖ ∇ f ‖< ε1; if the relative changes of the parameters

are very small: ‖ xnew −x ‖< ε2(‖ x ‖+ε2); if the number of iterations is greater than a

pre-established threshold.

5. Simulated data

To compare the different proposals in an high-dimensional setting we have implemented

a simulation with 1000 variables and 20 units. With a huge number of parameters there

is an high chance that an element of a simulated unity is so close to zero to be considered

zero due to machine precision. This problem almost disappears when all the parameters

have values far from zero. To investigate the consequences of such choices we consider

a range of values for the sum of the parameters ∑αk from 10000 to 50000 with step

size of 2000. Each parameter is drawn from a uniform distribution between ∑αk/K −2

and ∑αk/K + 2 where K = 1000. Let us remark that the final sum of the simulated

parameters is not necessarily equal to the pre-established values in the sequence.

We consider that a method has reached convergence when it is stopped before the

number of iterations reaches 1000 and the estimated vector is in the correct range. The

tolerance parameters ε1 and ε2 are both set to 10−8 and for the damping parameter γ we

use the values considered in the previous section. The number of simulations is 2000.

The results are reported in Figure 1. In the upper panel we report the convergence rate

for each combination of starting values/methods. In the lower panel the mean number

of iterations required for convergence is shown. FPI and LM methods with γ = 1 have

a similar performance, reaching convergence very often and for every starting value. L-

BFGS-B shows a good range of convergence when coupled with Wicker or the method

of moments but not with the other two initialisation methods. The starting values of
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Figure 1: Results from the simulation study. In the upper panel we show how many times we reached

convergence for each combination of starting value and algorithm. Below we show instead the number of

iterations used to reach convergence in the upper panel. ∑K
k=1αk indicates approximatively the sum of the

parameters to be estimated.
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Figure 2: Time comparison of the algorithms LM, FPI and L-BFGS-B over 100 simulations. Time is

expressed in seconds.

Wicker et al. (2008) are the only ones able to guarantee convergence for all the methods.

The algorithms using the re-parametrization show poor performance, probably due to

the possible lack of concavity and the fact that only the starting values of Wicker et al.

(2008) seem to be often in a neighbourhood of the maximum. However, the price to pay

for the highest stability is the high number of iterations required to reach convergence

for both FPI and LM with γ = 1. NR was instead the fastest method. As expected, see

Section 4.1, LM with γ= 1/K and expLM with with γ= 1/K have a performance close

to those of NR and expNR, respectively.

The efficiency of the algorithms LM, FPI and L-BFGS-B cannot be compared

only looking for differences in the number of iterations because their corresponding

iteration times can be totally different. For these algorithms we therefore implemented

also a comparison on the total time required to reach convergence. The settings for

this simulation were similar to the ones used above with a range for the sum of

the parameters going from 10000 to 30000 with step size of 2000 and a number of

simulations equal to 2000. The results are reported in Figure 2. On average LM requires

only half of the time employed by FPI. L-BFGS-B is clearly much slower than the other

two competitors.
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6. Apple data set

We have seen in the introduction that the Dirichlet distribution has strong independence

properties that are often unrealistic for real data. However, for high-dimensional data

once we focus on a single variable we expect that this is correlated only with a limited

number of the other variables and uncorrelated with the rest. In this case it can be

of interest to see the fit of a simple model as the Dirichlet distribution, that can be

thought of as a raw approximation of the reality. We are going to consider a spike-

in experiment that has been already investigated in the literature with the appropriate

statistical tools. If we make the corresponding data compositional and we investigate

them through the Dirichlet distribution we can judge if there is a discrepancy or an

agreement between what is already known and what we can learn with the Dirichlet

distribution. Since a spike-in experiment is a controlled experiment where we know

the thruth, this comparison can indirectly tell us if the Dirichlet distribution can be

used for high-dimensional data. This is not intended to be a proof to say that the

Dirichlet distribution can safely be used for high-dimensional compositional data. For

a stronger result, comparisons must be done with other distributions. Here we focus on

the computational performance of different algorithms to get the maximum likelihood

estimates and we offer a brief look at the possibilities of using the Dirichlet distribution

to analyse high-dimensional data.

Specifically we apply the previous algorithms to a data set from the field of meta-

bolomics, available in the R package BioMark (Wehrens and Franceschi, 2012). The

data set consists of mass spectrometric measurements on apples and is fully described

in Franceschi et al. (2012). We consider the positive ionization data for the 10 control

samples, and the first group of 10 spiked-in samples. There are 1632 variables in total.

We delete the variables with missing values and normalize the data to give 1 as the sum

of the elements of each unit. This corresponds to have a total intensity for each unit that

is redistributed through the variables. The final data set has 1602 variables. The results

are summarised in Table 1.

For these data, the initialisation of Wicker and co-workers is able to give convergence

in the correct range of the parameters for five methods. In two cases (LM with γ= 1/K,

NR) the result is outside the correct range. The other initialisations fail for expLM

(γ = 1), expLM (γ = 1/K) and expNR. The initialisation based on the method of

moments fails also for LM (γ = 1). L-BFGS-B is not able to reach convergence with

any initialisation method. The only method that is always able to reach convergence in

the correct range is FPI. LM (γ = 1) and LM (γ = 1/K) reach convergence in three

out of four cases, while NR converges in two out of four cases. Using the exponential

parametrization the other methods reach convergence only with the Wicker initialisation,

but in these cases very few iterations are needed.
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Table 1: Number of iterations required for convergence in the Apple data set. We report with a bar the

cases where convergence is not reached or the result is outside the correct range for the parameters.

NR FPI LM LM(γ= 1
K ) L-BFGS-B expNR expLM expLM(γ= 1

K )

moments — 543 — — — — — —

Ronning 30 495 543 32 — — — —

Dishon 21 494 529 23 — — — —

Wicker — 434 447 — — 7 411 8
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Figure 3: Each pair in the figure represents the confidence intervals for control and treatment respectively,

for 22 biomarkers.

While FPI is very stable, it also requires a large number of iterations to reach con-

vergence with each initialisation (mean for the four initialisations = 491.5). The same

is true for LM (γ = 1) where the mean for three initialisations that reach convergence

is 506.3 and for the initialisation with the method of moments we do not have conver-

gence because we reach the maximum number of iteration allowed (1000 in our setting).

However FPI can require a longer time than LM because FPI requires for each iteration a

second inner iterative algorithm. For example, comparing FPI and LM (γ= 1) using the

Wicker initialisation we have an elapsed time of 2.259 and 0.678 seconds respectively.

With Wicker initialisation expLM (γ = 1) requires 411 iterations to reach conver-

gence while expLM (γ = 1/K) requires only 8 steps; similarly expNR requires only
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7 steps. LM (γ = 1/K) and NR also required a low number of iterations when they

reached convergence.

Fitting different Dirichlet distributions to control and treatment data it is possible

to compare them. We report the confidence intervals for 22 biomarkers in Figure 3.

These biomarkers are known to correspond to spike-in compounds (see Franceschi et

al., 2012). Since these confidence intervals are not simultaneous we cannot use them for

identifying ’directly’ statistically significant biomarkers. We use them for ranking these

biomarkers, visualizing the order of magnitude of the differences between control and

treatment. There are several cases where the differences are clear. This is in agreement

with the previous findings in Franceschi et al. (2012).

7. Conclusions

In this paper we have compared the computational performance of eight different algo-

rithms and four different starting value strategies to estimate the Dirichlet distribution

through maximum likelihood. Such a comparison provides indications about the meth-

ods to use in order to analyse high-dimensional compositional data with the Dirichlet

distribution.

The Newton-Raphson algorithm is very fast, but can lead to estimated parameters

outside the allowed region. On the other hand, the FPI algorithm has a slow convergence

but is very stable. The other algorithms have a performance between these two extremes.

To have parameters always in the correct range we considered a re-parametrization

and a box-constraints algorithm, L-BFGS-B. The re-parametrization allows us to have

parameters always in the correct range but possibly loses the characteristic of being a

concave function. This means that good convergence is assured only in a neighbourhood

of the maximum and that convergence cannot be guaranteed. In practice from our study

we can see that the re-parametrization is useful only if coupled with the initialisation

method of Wicker et al. (2008). L-BFGS-B is more stable than the re-parametrization

but less than FPI and moreover its iteration time is huge.

The proposed modifications to the Levenberg-Marquardt algorithm consider a pru-

dent step compared to the Newton-Raphson algorithm and therefore can offer a good

trade-off between speed and stability. Newton-Raphson and the proposed algorithms

have local convergence characteristics and therefore the starting values are very impor-

tant even if the function to be optimized is concave. These features are particularly rel-

evant in a high-dimensional setting where the number of parameters largely exceed the

number of units. From the simulations and the real study only the Wicker et al. (2008)

approach seems able to provide convergence for high-dimensional data.

Considering both simulations and the real data example the combination of the

Levenberg-Marquardt methods or fixed point iteration method with the starting values of

Wicker appear to be the most promising. However, the Levenberg-Marquardt methods

leave room for improvements. In this paper we have been able to prove convergence
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properties for a fixed damping parameter γ. If this parameter can be made adaptive, as

in the original Levenberg-Marquardt algorithm, it is not unreasonable to expect a higher

stability and a lower mean number of iterations for convergence.

Appendix

In what follows the notation refers to the quantities previously introduced in the paper.

Lemma 1 At the point of maximum, x̂, the differential of the iteration map (26) is given

by

dM(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂).

Proof. We treat γ as a positive constant, but the proof holds even if γ is a positive

function that does not depend on x.

Let us denote by G(x) the matrix {H(x)+γdiagH(x)}−1
. We know from Section

4 that G(x) is well defined for every x in the original parametrization and at least in a

neighbourhood of the maximum for the re-parametrization. For such cases the elements

of G(x)∇ f (x) can be written as ∑ j gi j(x)∇ f j(x). To prove the lemma we have to show

that the partial derivatives of this expression are well defined. Using the product rule it is

patent that the difficult part is to prove that the partial derivatives of the elements gi j(x)

are well defined. If we are able to prove that the li j and the elements of the diagonal

matrix D are derivable it follows that also the gi j are derivable and therefore the lemma

easily follows. Using standard rules for derivation we see that these terms are derivable

if the trigamma function is derivable. For positive reals the trigamma function can be

expressed as a positive series dominated by ∑n−2. Therefore by the Weierstrass M-test

there is uniform convergence and the trigamma function is derivable. Moreover, the

series form assures that the trigamma function is strictly decreasing for positive reals.

We can summarize the results in matrix form. At the point of maximum ∇ f (x̂) = 0

and therefore we get dM(x̂) = I−G(x̂)H(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂).

Theorem 1 The proposed Levenberg-Marquardt algorithms based upon equations (24)

and (25) are locally attracted to the maximum x̂ at a linear rate equal to the spectral

radius of

I−{H(x̂)+γdiagH(x̂)}−1
H(x̂)

or at a better rate.

Proof. The point of maximum for f (x) is a fixed point for M(x). According to Propo-

sition 15.3.1 in Lange (2010), it suffices to show that all eigenvalues of the differential
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dM(x̂) lie on the open interval (0,1). By Lemma 1 the following equalities hold:

dM(x̂) = I−{H(x̂)+γdiagH(x̂)}−1
H(x̂)

= {H(x̂)+γdiagH(x̂)}−1 {H(x̂)+γdiagH(x̂)−H(x̂)}

= {H(x̂)+γdiagH(x̂)}−1 {γdiagH(x̂)} .

The maximum and minimum eigenvalues of dM(x̂) are determined by the maximum

and minimum values of the Rayleigh quotient (v 6= 0):

R(v) =
vT [γdiagH(x̂)]v

vT [H(x̂)+γdiagH(x̂)]v

= 1−
vTH(x̂)v

vT [H(x̂)+γdiagH(x̂)]v
.

If the quantities H(x̂) and γdiagH(x̂) are definite negative then also H(x̂)+γdiagH(x̂)

is definite negative and it follows that 0 < R(v)< 1.

For the original parametrization we can show that γdiagH(x) is always definite

negative. We use the parametric form of H for the Dirichlet distribution. We have

vTγdiagH(x)v = γ∑v2
i hii where hii = N(Ψ′(∑α j)−Ψ′(αi)).We have seen that for pos-

itive reals the trigamma function is strictly decreasing and therefore hii < 0. Therefore

vTγdiagH(x)v < 0. Being f (·) concave H is semi-definite negative, but H is also invert-

ible and therefore is definite negative.

For the re-parametrization we cannot assure that the Hessian matrix is negative

definite for every x. However, to apply Proposition 15.3.1 in Lange (2010) we need

only to prove that this is true at x̂. For the diagonal matrix we observe that:

[λdiagH(x̂)]kk = λqkk +λexp(2βk)NΨ′

(

∑
k

exp(βk)

)

(37)

= λN [∇ f (β)]k (38)

+λexp(2βk)N

[

Ψ′(∑
k

exp(βk))−Ψ′(exp(βk))

]

. (39)

By the properties of the trigamma function Ψ′(∑k exp(βk))− Ψ′(exp(βk)) < 0 and

therefore at x̂ the matrix λdiagH is negative definite. Moreover at x̂ the Hessian of

the re-parametrization is semi-definite negative and invertible and therefore is definite

negative.
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