Ir al contenido

Documat


Simple-minded systems, configurations and mutations for representation-finite self-injective algebras

  • Aaron Chan [1] ; Steffen Koenig [2] ; Yuming Liu [3]
    1. [1] University of Aberdeen

      University of Aberdeen

      Reino Unido

    2. [2] University of Stuttgart

      University of Stuttgart

      Stadtkreis Stuttgart, Alemania

    3. [3] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 219, Nº 6 (June 2015), 2015, págs. 1940-1961
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2014.07.018
  • Enlaces
  • Resumen
    • Simple-minded systems of objects in a stable module category are defined by common properties with the set of simple modules, whose images under stable equivalences do form simple-minded systems. Over a representation-finite self-injective algebra, it is shown that all simple-minded systems are images of simple modules under stable equivalences of Morita type, and that all simple-minded systems can be lifted to Nakayama-stable simple-minded collections in the derived category. In particular, all simple-minded systems can be obtained algorithmically using mutations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno