
Using Java CSP Solvers in the Automated Analyses of
Feature Models⋆

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cort́es

Dpto. de Lenguajes y Sistemas Informáticos
University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain
{benavides, sergio, trinidad, aruiz}@tdg.lsi.us.es

Abstract Feature Models are used in different stages of software development
and are recognized to be an important asset in model transformation techniques
and software product line development. The automated analysis of feature mod-
els is being recognized as one of the key challenges for automated software de-
velopment in the context of Software Product Lines. In our previous work we
explained how a feature model can be transformed into a constraint satisfaction
problem. However cardinalities were not considered. In this paper we present
how a cardinality-based feature model can be also translated into a constraint
satisfaction problem. In that connection, it is possible to use off-the-shelf tools to
automatically accomplish several tasks such as calculating the number of possible
feature configurations and detecting possible conflicts. In addition, we present a
performance test between two off-the-shelf Java constraint solvers. To the best of
our knowledge, this is the first time a performance test is presented usingsolvers
for feature modelling proposes

1 Introduction

Throughout the years, software reuse and quality have been two constants aims in soft-
ware development. Although significant progress has been made in programming lan-
guages, methodologies and so forth, the problem seems to remain. Software Product
Line (SPL) development [8] is an approach to develop software systems in a system-
atic way that intends to solve these problems. Roughly speaking, an SPL can be de-
fined as a set of software products that share a common set of features. Therefore, an
SPL approach could be useful for organizations that are product–oriented rather than
project–oriented [7]. That is, organizations that operatein a particular market segment.

SPL engineering consists of two main activities: domain engineering (also called
core asset development) and application engineering (alsocalled product development).
These two activities are complementary and provide feedback to each other. Domain
engineering deals with core assets production, that is, thepieces of the products to
be shared by all SPL products. On the other hand, applicationengineering deals with
individual system production.

⋆ This work was partially supported by the Spanish Science and Education Ministry (MEC)
under contracts TIC2003-02737-C02-01 (AgilWeb)

dbc
Text Box
GTTSE 2005

Feature Analysis [17] is an important task of domain engineering and is expected to
produce a Feature Model (FM) as its main output. A FM can be defined as a compact
representation of all possible products of an SPL. Furthermore, it is commonly accepted
that FMs can be used in different stages of an SPL effort in order to produce other assets
such as requirements documents [15,16], portlets–based applications [11,12] or even
pieces of code [3,9,20]. Hence, FM becomes an important focus of research in the field
of model transformation.

Automated analyses of FMs are an important challenge in SPL [1,2]. In a previous
work [4,5] we presented how to transform a FM (without considering cardinalities)
into a Constraint Satisfaction Problem (CSP). In that way, it is possible to use off–the–
shelf constraint satisfaction solvers to automatically accomplish several tasks such as
calculating the number of possible configurations and detecting possible conflicts. The
contribution of this paper is twofold:i) to explain how a FM with cardinalities can be
translated into a CSP andii) to show the result of a performance test between two off
the shelf Java constraint solvers: JaCoP and Choco. To the best of our knowledge, this
is the first test that measures the performance of constraintsolvers in the context of
feature analyses.

The remainder of the paper is structured as follows: in Section 2 we introduce fea-
ture models. In Section 3 constraint programming is outlined and details on how to
translate a FM into a CSP are presented. Section 4 focuses on the results of the exper-
iment. Finally we summarize our conclusions and describe our future work in Section
5.

2 Feature Models

A Feature Model (FM) is a compact representation of all possible products of an SPL.
FMs are used to model a set of software systems in terms of features and relations
among them. Designing a software system in terms of featuresis more natural than do-
ing it in terms of objects or classes. Consequently, a software system will be composed
of a set of features.

Since FMs were first presented in 1990 [17] there have been many publications and
proposals to extend, improve and modify the original FM diagram. However, despite
years of research, there is no consensus on a FM notation. Although it would be desir-
able to have a common notation, it is out of the scope of this paper to give yet another
FM notation. Therefore, we use the one proposed by Czarnecki[10] that was formalized
as a context free grammar and integrates some previous extensions.

A FM is basically a tree structure with dependencies betweenfeatures. Figure 1 rep-
resents the general metamodel of a FM (this metamodel was presented in [6]). Likewise,
Figure 2 represents a FM of the James Project [13]. James is a collaborative web based
system that we modeled in terms of features and can be a clear example of an SPL.
Some products can be derived from the FM on Figure 2. Having a web service interface
(WSInterface) is optional while it is mandatory to have user management (UserMan-
agement), at least one module (Modules) and the core of the system (Core).

FeatureModel

GroupedSolitarySetBinary

Relations

Root
1

0.
.*

Feature0..*

1 2..*

Cardinality 1..*1..*

ExcludesDepends

Constraint
0..*

Figure 1. CFM meta model

A FM is composed of aroot (JAMES in Figure 2) and an optional set ofcon-
straints (they refer to global constraints: depends and excludes;R9 andR10 in Figure
2).

A root is composed of an optional set ofrelations. Relations can be of two different
types:binary relations which include mandatory (e.g.R1), optional (e.g.R2) and
cardinality–based relations (e.g.R4) or setrelations (e.g.R7).

A feature can be of two different types and is composed of zero or more rela-
tions. A binary relation is composed of one and only onesolitary feature which is
the child feature since the parent feature is the one that hasthis relation (Core or
UserManagement are examples of solitary features); A set relation is composed of
at least twogrouped features (Calendar,DB or PDA are examples of grouped fea-
tures). In addition, a solitary feature and set relations comprise one or more cardinali-
ties. Note that in the graphical representation it is possible not to represent a cardinality
in set relations although in fact that means that the cardinality is 〈1-1〉. Likewise, there
are graphical representations for commonly used cardinalities of solitary features like
[1..1] and[0..1] (see Figure 2 notes).

3 Constraint Programming

Constraint programming is a well established field of research and has been success-
fully applied in many engineering areas such as electronicsor operational engineering.
In the words of Prof. Freuder ”Constraint programming represents one of the closest
approaches computer science has yet made to the Holy Grail ofprogramming: the user
states the problem, the computer solves it.” [14].

Constraint Programming can be defined as the set of techniques such as algorithms
or heuristics that deal with Constraint Satisfaction Problems (CSP) to such an extent

JAMES

Core Modules
WSInterface

Calendar

Forum Congress
Management

Repository

GUI

PC PDA

UserManagement

DB LDAP

R1
R2 R3 R4

R5

R6 R7 R8

R9
R10

Solitary Feature with
cardinality [1..1]
Solitary Feature with
cardinality [0..1]

Feature Group
with group
Cardinality <n-n’>
(or <1-1> when
not cardinality)
Requires

Excludes

<1..2> <1..4>

Solitary Feature with
cardinality [n..n’]

[n..n’]

<n..n’>

[1..4]

Figure 2. James System

that to solve a given problem by means of constraint programming, first the problem
has to be formulated as a CSP.

A CSP consist of a set of variables, domains for those variables and a set of con-
straints restricting the values of the variables.

Definition 1 (CSP).A CSP is a three–tuple of the form(V,D,C) whereV 6= ∅ is a
finite set of variables,D 6= ∅ is a finite set of domains (one for each variable) andC is
a constraint defined onV .

Once the problem is stated as a CSP, it is possible to use off–the-shelf CSP solvers
that are able to provide the solutions to the problem. Internally the solvers will be im-
plemented by using algorithms and heuristics that have beenand are being investigated
during several decades.

3.1 Mapping a FM into a CSP

We presented in [4,5] how a FM with dependencies was translated into a CSP. However
we did not provide a way to do the same with cardinality–basedFMs [10]. In this
Section we give details on how to transform a FM with cardinalities into a CSP which
is a novel contribution.

Rules for translating FMs to constraints are listed in Figure 3. First, there is a vari-
able for each feature in the CSP. The domain of each variable depends on the cardinality
associated to each variable. By default the domain is{0,1} and if a feature is part of
a cardinality relation, then the domain of the variable is added (e.g.Core ∈ {0, 4} in
Figure 2). Then, a constraint selecting the root feature is added because all products
have the root feature (e.g. root = 1). The final CSP for a FM is the conjunction of the
constraints following the rules of Figure 3.

4 Experimental Results

Using CSP solvers, it is possible to automatically perform some operations on a FM
such as calculating the number of possible combinations of features, retrieving configu-
rations following a criteria, calculating the number of features in a given configuration,

Relation Diagram notation Constraint

Mandatory

A

B

B = A

Optional

A

B

ifThen(A=0;B=0)

Cardinality [n..m]

A

B

ifThenElse(A=0;B=0;B in {n,m})

Set

<n..m>

A

CB

ifThenElse(A>0;sum(B,C) in {n,m};B=0,C=0)

Depends

A B

ifThen(A>0,B>0)

Excludes

A B

ifThen(A>0,B=0)

Figure 3. Feature Models and Related Constraints

validating a given FM to detect possible inconsistences, finding an optimum product
on the basis of a given criteria (the cheapest, the one with fewest features and so forth)
or calculating the commonality factor for a given feature and the variability factor of a
given FM.

The main ideas concerning the use of constraint programmingon FM analyses were
stated in [4,5] but some experimental results were left for our future work. In this Sec-
tion we present an experimental comparison of two Java CSP solvers that were used to
automatically analyse FMs.

4.1 The JaCoP and Choco Solvers

There are several commercial tools to work with CSPs. One of the major commercial
vendors is ILOG that has two versions of CSP Solvers in C++ andJava. Because it
is a commercial solution, we declined to use ILOG solvers’ licenses in our empirical
comparison.

To the best of our knowledge there is only one reliable and stable open source Java
CSP Solver : Choco Constraint System [19]. We selected this solver because it seems
to be one of the most popular within the research community and because it is the only

one we know of that is available for free directly from the Internet. We selected JaCoP
solver [18] because it offers a free license for academic purposes. Both solvers have
similar characteristic in terms of the variables and constraints allowed, therefore the
implementation of our mapping was done in a straightforwardmanner. For JaCoP we
used FDV variables (FDV stands for Finite Domain Variables)to represent the features
while IntVar variables were used in the Choco implementation.

4.2 The Experiments

With the following experiments we intend to demonstrate which solver provides the
best performance in the automated analyses of FMs. In addition, we studied the robust-
ness and the areas of vulnerability of each solver. In order to evaluate both solvers we
used five FMs. Three of them represent small and medium size real systems, meanwhile
the larger two were generated randomly for this experiment.After formulating each one
as a CSP in both platforms, we proceeded with the execution. Table 1 summarizes the
characteristics of the experiments. Experiment 1 is the FM that was presented in [4].
It is a simple FM representing a Home Integration System. Experiment 2 is the FM of
Figure 2 which represents a collaborative web based system.Experiment 3 is a medium
size FM of a flight booking system based on the work done by [11,12]. Finally, we gen-
erated two larger FMs randomly (Experiments 4 and 5) with a double aim: representing
more complex systems with a greater number of features and dependencies, and eval-
uating the solvers’ performance in limit situations. We considered it was necessary to
compare the performance with small, medium and large FMs in order to evaluate solver
performance results in different situations.

Table 1.Experiments

Experiment N. of FeaturesN. of Dep
1 15 0
2 14 2
3 26 0
4 40 14
5 52 28

The process to generate a FM randomly is based on a recursive method that has five
input parameters: height levels, maximum number of children relations for a node, max-
imum cardinality number, maximum number of elements in a setrelation and number
of dependencies. Firstly, features and their relations aregenerated using random values.
Secondly, the dependencies are created by taking pairs of features randomly and estab-
lishing a random dependency (includes or excludes) betweenthem. We took care not to
generate misconceptions (e.g. a child depends on a parent).

As exposed in [5], there are some operations that can be performed. For our experi-
ments we performed two operations:i) finding one configuration that would satisfy all
the constraints, that is, a product andii) finding the total number of configurations of a

given FM. The first is the simplest operation while the secondis the most difficult one
in terms of performance because it is necessary to retrieve all possible combinations.

The comparison focused on the data obtained from several executions in order to
avoid as much exogenous interferences as possible. The total number of executions to
calculate the average time was ten. The data extracted from the tests was:

– Number of features in the first solution obtained by solver.
– Average execution time to obtain one solution (measured in milliseconds).
– Total number of solutions, that is, the potential number of products represented in

the FM.
– Average execution time to obtain the number of solutions (measured in millisec-

onds).

In order to evaluate the implementation, we measured its performance and effec-
tiveness. We implemented the solution using Java 1.5.004. We ran our tests on a WIN-
DOWS XP PROFESSIONAL machine equipped with a 3.2Ghz Intel Pentium IV mi-
croprocessor and 1024 MB of DDR 166Mhz RAM memory.

4.3 The Results

The experimental comparison revealed some interesting results (see Figures 4, 5 and 6).
The first evidence we should mention is that JaCoP is on average 54% faster than Choco
in finding a solution. It is important to observe that our approach is feasible because the
necessary time to obtain a response is really low (35 milliseconds in the worst case).

However, while JaCoP is much faster than Choco in finding the total number of
solutions in small CSPs, JaCoP seems to be noticeably slowerthan Choco in the big
ones (see Figure 6). This curious result probably depends onhow each solver is used to
obtain the number of solutions. Choco has a simple method to know the number of so-
lutions of a concrete problem (Solver.getNbSolutions()),while JaCoP implementation
needs to find all the solutions first and count them afterwards. This simple variation im-
plies a very important difference in performance. For instance, in test 5 JaCoP needs to
create 61440 ArrayLists and fill all of them with all the solutions which produces a great
time loss. On the other hand, Choco does not have this weakness as its method to find
the number of solutions only returns five solutions to avoid memory deficit problems.
If the user wants to obtain the other solutions he only has to make a simple iteration
and take them one by one. In the three smaller experiments, JaCoP is faster than Choco
so we presume that this trend would continue if JaCoP optimized this aspect. In test 5,
we performed an experiment to find and return all the solutions in both solvers, that is,
not only to find the number of solutions but the solutions themselves. The result was
decisive: Choco required over a minute to perform this task,proving to be slower than
JaCoP in this situation.

Although memory usage was not a relevant data in our experiments we noticed that
in general Choco uses more memory than JaCoP; however there is not a remarkable
difference between both solvers.

Finally, we identified some interesting characteristic in both solvers. Firstly, Ja-
CoP allows the user to obtain easily from executions more interesting information than

JACOP CHOCO JACOP CHOCO
1 7 9,9 18,8 32 37,5 45,5
2 8 9,4 22,7 68 64,4 81,3
3 13 12 24 512 225,6 265,3
4 19 20,2 34,9 34560 5619 2203,3
5 19 24,4 35,8 61440 15390,8 4817,6

JACOP / CHOCO
Time one Sol. Time all Sol.Experiment Features in

Sol.
Nº Solutions

Figure 4. Experimental Results of JaCoP and Choco Solvers

Time to get one solution

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Test

T
im

e
(m

s)

Choco

Jacop

Figure 5. Comparing JaCoP and Choco getting one solution

Time to get the number of solutions

0
2
4

6
8

10
12

14
16
18

1 2 3 4 5

Test

T
im

e
(s

)

Choco

JaCoP

Figure 6. Comparing JaCoP and Choco getting the number of solutions

Choco such as the number of backtracks of a search or the number of decisions taken
to find a solution. In second place, we found a worrying bug when working with big
problems in Choco. In most cases, executions of CSPs representing big FMs generated
an exception (choco.bool.BinConjunction) which imposes an important limitation to
Choco.

5 Conclusion and Future Work

In this paper we presented how to translate a cardinality-based feature model into a
constraint satisfaction problem. We performed a comparative test between two off–the–
shelf CSP Java solvers and offered some interesting performance conclusions. The test
showed that JaCoP is faster than Choco except in finding the number of solutions. JaCoP
gives more details about executions than Choco such as the number of backtracks or the
number of decisions. Choco has an important bug when workingwith big FMs while
it is a good open source alternative especially for small andmedium size problems.
Both solvers have a similar memory usage. Nevertheless, both JaCoP and Choco are
useful for the experiments presented in the paper as executions times are really low
(milliseconds).

Several challenges remain for our future work. We plan to extend the experiments
in order to scale our proposal and compare the results. Bigger experiments with more
features and more dependencies are needed and we plan to perform those experiments
in the future. Furthermore, we think that we should compare our proposal with others
using different representations like SAT or BDDs to complement our results.

References

1. D. Batory. Feature models, grammars, and propositional formulas. In Software Product
Lines Conference, LNCS 3714, pages 7–20, 2005.

2. D. Batory. A tutorial on feature oriented programming and the ahead tool suite. InSummer
school on Generative and Transformation Techniques in Software Engineering, 2005.

3. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE Trans.
Software Eng., 30(6):355–371, 2004.

4. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

5. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint programming to reason on
feature models. InThe Seventeenth International Conference on Software Engineering and
Knowledge Engineering (SEKE’05), July 2005.

6. D. Benavides, S. Trujillo, and P. Trinidad. On the modularization of feature models. InFirst
European Workshop on Model Transformation, September 2005.

7. J. Bosch.Design and Use of Software Architectures. Addison-Wesley, 1th edition, 2000.
8. P. Clements and L. Northrop.Software Product Lines: Practices and Patterns. SEI Series in

Software Engineering. Addison–Wesley, August 2001.
9. K. Czarnecki and U.W. Eisenecker.Generative Programming: Methods, Techniques, and

Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.
10. K. Czarnecki, S. Helsen, and U.W. Eisenecker. Formalizing cardinality-based feature models

and their specialization.Software Process: Improvement and Practice, 10(1):7–29, 2005.
11. O. D́ıaz, S. Trujillo, and F.I. Anfurrutia. Supporting production strategies asrefinements of

the production process. Into be published at Sofware Product Line Conference (SPLC 2005),
2005.

12. O. D́ıaz, S. Trujillo, and I. Azpeitia. User-Facing Web Service Development: ACase for a
Product-Line Approach. In Boualem Benatallah and Ming-Chien Shan, editors,Technolo-
gies for E-Services, 4th VLDB International Workshop (VLDB-TES 2003), volume 2819 of
LNCS, pages 66–77. Springer-Verlag, 2003.

13. P. Fernandez and M. Resinas. James project. Available at
http://jamesproject.sourceforge.net/, 2002-2005.

14. E. C. Freuder. In pursuit of the holy grail.Constraints, 2(1):57–61, April 1997.
15. G. Halmans and K. Pohl. Communicating the variability of a software–product family to

customers.Journal on Software and Systems Modeling, 2(1):15–36, 2003.
16. S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant requirements in domain

modeling.The Journal of Systems and Software, 68(3):171–182, 2003.
17. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

18. K. Kuchcinski. Constraints-driven scheduling and resource assignment.ACM Transactions
on Design Automation of Electronic Systems (TODAES), 8(3):355–383, July 2003.

19. F. Laburthe and N. Jussien. Choco constraint programming system. Available at
http://choco.sourceforge.net/, 2003-2005.

20. C. Prehofer. Feature-oriented programming: A new way of object composition.Concurrency
and Computation: Practice and Experience, 13(6):465–501, 2001.

	GTTSE 2005:

