GTTSE 2005

Using Java CSP Solvers in the Automated Analyses of
Feature Models*

David Benavides, Sergio Segura, Pablo Trinidad, and AotBuiiz-Corés

Dpto. de Lenguajes y Sistemas Infdatitos
University of Seville
Av. de la Reina Mercedes S/N, 41012 Seville, Spain
{benavi des, sergio, trinidad, aruiz}@dg.!|si.us.es

Abstract Feature Models are used in different stages of software development
and are recognized to be an important asset in model transformattorigees
and software product line development. The automated analysis ofdeatd-
els is being recognized as one of the key challenges for automated sttera
velopment in the context of Software Product Lines. In our previoagkwe
explained how a feature model can be transformed into a constrairfasttia
problem. However cardinalities were not considered. In this paperresept
how a cardinality-based feature model can be also translated into aanonstr
satisfaction problem. In that connection, it is possible to use off-thé-sinés to
automatically accomplish several tasks such as calculating the numtuesiie
feature configurations and detecting possible conflicts. In addition, esept a
performance test between two off-the-shelf Java constraint soll@the best of
our knowledge, this is the first time a performance test is presented saliregs
for feature modelling proposes

1 Introduction

Throughout the years, software reuse and quality have beeodnstants aims in soft-
ware development. Although significant progress has beeterimaprogramming lan-
guages, methodologies and so forth, the problem seems @irreBoftware Product
Line (SPL) development [8] is an approach to develop softvéystems in a system-
atic way that intends to solve these problems. Roughly spgakn SPL can be de-
fined as a set of software products that share a common sedtofdés. Therefore, an
SPL approach could be useful for organizations that areymtedriented rather than
project—oriented [7]. That is, organizations that openag particular market segment.

SPL engineering consists of two main activities: domainimegring (also called
core asset development) and application engineering ¢alked product development).
These two activities are complementary and provide feddbmeach other. Domain
engineering deals with core assets production, that ispibees of the products to
be shared by all SPL products. On the other hand, applicatigineering deals with
individual system production.

* This work was partially supported by the Spanish Science and EducatiostiiMEC)
under contracts TIC2003-02737-C02-01 (AgilWeb)

dbc
Text Box
GTTSE 2005

Feature Analysis [17] is an important task of domain engingeand is expected to
produce a Feature Model (FM) as its main output. A FM can benddfas a compact
representation of all possible products of an SPL. Furtbeemit is commonly accepted
that FMs can be used in different stages of an SPL effort inmaproduce other assets
such as requirements documents [15,16], portlets—bag@itatons [11,12] or even
pieces of code [3,9,20]. Hence, FM becomes an importansfottesearch in the field
of model transformation.

Automated analyses of FMs are an important challenge in $P211.[In a previous
work [4,5] we presented how to transform a FM (without coesilaly cardinalities)
into a Constraint Satisfaction Problem (CSP). In that wiig, possible to use off—-the—
shelf constraint satisfaction solvers to automaticallgoaaplish several tasks such as
calculating the number of possible configurations and dietgpossible conflicts. The
contribution of this paper is twofold) to explain how a FM with cardinalities can be
translated into a CSP arnid) to show the result of a performance test between two off
the shelf Java constraint solvers: JaCoP and Choco. To gie@beur knowledge, this
is the first test that measures the performance of constsaluérs in the context of
feature analyses.

The remainder of the paper is structured as follows: in 8aiwe introduce fea-
ture models. In Section 3 constraint programming is oudliaed details on how to
translate a FM into a CSP are presented. Section 4 focusémaadults of the exper-
iment. Finally we summarize our conclusions and descrilvsdidure work in Section
5.

2 Feature Models

A Feature Model (FM) is a compact representation of all gegiroducts of an SPL.
FMs are used to model a set of software systems in terms airé=atind relations
among them. Designing a software system in terms of featsirasre natural than do-
ing it in terms of objects or classes. Consequently, a soéwgstem will be composed
of a set of features.

Since FMs were first presented in 1990 [17] there have beey mabslications and
proposals to extend, improve and modify the original FM chag However, despite
years of research, there is no consensus on a FM notatidrough it would be desir-
able to have a common notation, it is out of the scope of thiep#o give yet another
FM notation. Therefore, we use the one proposed by Czarfisgjhat was formalized
as a context free grammar and integrates some previoussextsn

A FM is basically a tree structure with dependencies betiegtures. Figure 1 rep-
resents the general metamodel of a FM (this metamodel wasiuied in [6]). Likewise,
Figure 2 represents a FM of the James Project [13]. JameDitaharative web based
system that we modeled in terms of features and can be a olaarpée of an SPL.
Some products can be derived from the FM on Figure 2. Havinglaservice interface
(WSinterface) is optional while it is mandatory to have usanagement (UserMan-
agement), at least one module (Modules) and the core of gieray(Core).

1 0.
FeatureModel

/\

’Depends‘ ’Excludes‘

VAN VAN

Conay] [se | [sotay] [crowed]

LK) : 2

25| cardinality J

Figure 1. CFM meta model

A FM is composed of aoot (JAMES in Figure 2) and an optional set obn-
straints (they refer to global constraints: depends and exclu#8saand R10 in Figure
2).

A root is composed of an optional setrefations. Relations can be of two different
types:binary relations which include mandatory (e.g?1), optional (e.g.R2) and
cardinality—based relations (e.84) or setrelations (e.gR7).

A feature can be of two different types and is composed of zero or mdee re
tions. A binary relation is composed of one and only @oétary feature which is
the child feature since the parent feature is the one thathiagelation Core or
User Management are examples of solitary features); A set relation is coragas
at least twogrouped features Calendar,DB or PD A are examples of grouped fea-
tures). In addition, a solitary feature and set relatiomamase one or more cardinali-
ties. Note that in the graphical representation it is pdesibt to represent a cardinality
in set relations although in fact that means that the calithiria (1-1). Likewise, there
are graphical representations for commonly used cartiemlbf solitary features like
[1..1] and[0..1] (see Figure 2 notes).

3 Constraint Programming

Constraint programming is a well established field of rede@and has been success-
fully applied in many engineering areas such as electraricperational engineering.
In the words of Prof. FreuderConstraint programming represents one of the closest
approaches computer science has yet made to the Holy Graibgfamming: the user
states the problem, the computer solvéqit4].

Constraint Programming can be defined as the set of tectmameh as algorithms
or heuristics that deal with Constraint Satisfaction Peatd (CSP) to such an extent

— e Solitary Feature with
cardinality [1..1]
Solitary Feature with
cardinality [0..1]
[n.n1] Solitary Feature with
cardinality [n..n"]
Feature Group

an> With group
Cardinality <n-n">
(or <1-1> when

not cardinality)
— — — —» Requires

-«— — — - Excludes

Figure 2. James System

that to solve a given problem by means of constraint progrizngyfirst the problem
has to be formulated as a CSP.

A CSP consist of a set of variables, domains for those varsahhd a set of con-
straints restricting the values of the variables.

Definition 1 (CSP).A CSP is a three—tuple of the for(W, D, C') whereV # () is a
finite set of variablesD # () is a finite set of domains (one for each variable) ardb
a constraint defined ol

Once the problem is stated as a CSP, it is possible to uséneftkelf CSP solvers
that are able to provide the solutions to the problem. I@téyrihe solvers will be im-
plemented by using algorithms and heuristics that have Aedrare being investigated
during several decades.

3.1 Mapping a FM into a CSP

We presented in [4,5] how a FM with dependencies was tradslato a CSP. However
we did not provide a way to do the same with cardinality—baskts [10]. In this
Section we give details on how to transform a FM with cardiiea into a CSP which
is a novel contribution.

Rules for translating FMs to constraints are listed in FégBirFirst, there is a vari-
able for each feature in the CSP. The domain of each varigperdis on the cardinality
associated to each variable. By default the domaifDi4} and if a feature is part of
a cardinality relation, then the domain of the variable idexti(e.gCore € {0,4} in
Figure 2). Then, a constraint selecting the root featurelded because all products
have the root feature (e.g. root = 1). The final CSP for a FMéscibnjunction of the
constraints following the rules of Figure 3.

4 Experimental Results

Using CSP solvers, it is possible to automatically perfooms operations on a FM
such as calculating the number of possible combinationsaitifes, retrieving configu-
rations following a criteria, calculating the number oftig@s in a given configuration,

Relation Diagram notation Constraint
A

Mandatory B=A

Optional ifThen(A=0;B=0)
Cardinality (n..m] ifThenElse(A=0;B=0;B in {n,m})
B
Set ifThenElse(A>0;sum(B,C) in {n,m};B=0,C=0

Depends __, E ifThen(A>0,B>0)
Excludes _, ifThen(A>0,B=0)

Figure 3. Feature Models and Related Constraints

validating a given FM to detect possible inconsistencesljriinan optimum product
on the basis of a given criteria (the cheapest, the one withgefeatures and so forth)
or calculating the commonality factor for a given featurd #me variability factor of a

given FM.

The main ideas concerning the use of constraint programanirigM analyses were
stated in [4,5] but some experimental results were left forfature work. In this Sec-
tion we present an experimental comparison of two Java CBrsdhat were used to
automatically analyse FMs.

4.1 The JaCoP and Choco Solvers

There are several commercial tools to work with CSPs. Onaefriajor commercial
vendors is ILOG that has two versions of CSP Solvers in C++Javéh. Because it
is a commercial solution, we declined to use ILOG solvergtises in our empirical
comparison.

To the best of our knowledge there is only one reliable andles@pen source Java
CSP Solver : Choco Constraint System [19]. We selected th®isbecause it seems
to be one of the most popular within the research communitijtetause it is the only

one we know of that is available for free directly from theaimtet. We selected JaCoP
solver [18] because it offers a free license for academipgaes. Both solvers have
similar characteristic in terms of the variables and caists allowed, therefore the
implementation of our mapping was done in a straightforwaedhner. For JaCoP we
used FDV variables (FDV stands for Finite Domain Variabtesepresent the features
while IntVar variables were used in the Choco implementatio

4.2 The Experiments

With the following experiments we intend to demonstrate clihéolver provides the
best performance in the automated analyses of FMs. In additie studied the robust-
ness and the areas of vulnerability of each solver. In omlexvaluate both solvers we
used five FMs. Three of them represent small and medium sazeystems, meanwhile
the larger two were generated randomly for this experimffiter formulating each one
as a CSP in both platforms, we proceeded with the executadrieTL summarizes the
characteristics of the experiments. Experiment 1 is the R was presented in [4].
It is a simple FM representing a Home Integration System eirpent 2 is the FM of
Figure 2 which represents a collaborative web based sy&eperiment 3 is a medium
size FM of a flight booking system based on the work done bylpAl1Finally, we gen-
erated two larger FMs randomly (Experiments 4 and 5) withubtaim: representing
more complex systems with a greater number of features goehdencies, and eval-
uating the solvers’ performance in limit situations. We sidered it was necessary to
compare the performance with small, medium and large FMsdardo evaluate solver
performance results in different situations.

Table 1. Experiments

Experiment|N. of FeaturegN. of Dep
1 15 0
2 14 2
3 26 0
4 40 14
5 52 28

The process to generate a FM randomly is based on a recursi@dthat has five
input parameters: height levels, maximum number of childedations for a node, max-
imum cardinality number, maximum number of elements in aelation and number
of dependencies. Firstly, features and their relationganerated using random values.
Secondly, the dependencies are created by taking pairatirés randomly and estab-
lishing a random dependency (includes or excludes) betimen. We took care not to
generate misconceptions (e.g. a child depends on a parent).

As exposed in [5], there are some operations that can berpertb For our experi-
ments we performed two operatiori$finding one configuration that would satisfy all
the constraints, that is, a product amgfinding the total number of configurations of a

given FM. The first is the simplest operation while the secsritie most difficult one
in terms of performance because it is necessary to retriepessible combinations.

The comparison focused on the data obtained from severautegas in order to
avoid as much exogenous interferences as possible. Thetmtder of executions to
calculate the average time was ten. The data extracted fretests was:

— Number of features in the first solution obtained by solver.

— Average execution time to obtain one solution (measuredililsatonds).

— Total number of solutions, that is, the potential numberrafpcts represented in
the FM.

— Average execution time to obtain the number of solutionsa@need in millisec-
onds).

In order to evaluate the implementation, we measured ifopeance and effec-
tiveness. We implemented the solution using Java 108.0Ne ran our tests on a WIN-
DOWS XP PROFESSIONAL machine equipped with a 3.2Ghz IntetiBenlV mi-
croprocessor and 1024 MB of DDR 166Mhz RAM memory.

4.3 The Results

The experimental comparison revealed some interestindgfs€see Figures 4, 5 and 6).
The first evidence we should mention is that JaCoP is on agéi4p faster than Choco
in finding a solution. It is important to observe that our aygmh is feasible because the
necessary time to obtain a response is really low (35 miltisds in the worst case).

However, while JaCoP is much faster than Choco in finding ¢t humber of
solutions in small CSPs, JaCoP seems to be noticeably sttwarrChoco in the big
ones (see Figure 6). This curious result probably depent®wreach solver is used to
obtain the number of solutions. Choco has a simple methoddw khe number of so-
lutions of a concrete problem (Solver.getNbSolutions})ile JaCoP implementation
needs to find all the solutions first and count them afterwdrdis simple variation im-
plies a very important difference in performance. For insta in test 5 JaCoP needs to
create 61440 ArrayLists and fill all of them with all the saduis which produces a great
time loss. On the other hand, Choco does not have this weslasdss method to find
the number of solutions only returns five solutions to avoihmry deficit problems.
If the user wants to obtain the other solutions he only hasakeara simple iteration
and take them one by one. In the three smaller experimer@sRle faster than Choco
so we presume that this trend would continue if JaCoP opéidhihis aspect. In test 5,
we performed an experiment to find and return all the solstiarboth solvers, that is,
not only to find the number of solutions but the solutions teelves. The result was
decisive: Choco required over a minute to perform this tpshying to be slower than
JaCoP in this situation.

Although memory usage was not a relevant data in our expatswee noticed that
in general Choco uses more memory than JaCoP; however thed a remarkable
difference between both solvers.

Finally, we identified some interesting characteristic athbsolvers. Firstly, Ja-
CoP allows the user to obtain easily from executions moerésting information than

JACOP / CHOCO

Experiment | Features in Time one Sol. N° Solutions Time all Sol.
Sol.
JACOP CHOCO JACOP CHOCO
1 7 9,9 18,8 32 37,5 45,5
2 8 9,4 22,7 68 64,4 81,3
3 13 12 24 512 225,6 265,3
4 19 20,2 34,9 34560 5619 2203,3
5 19 24,4 35,8 61440 15390,8 4817,6
Figure 4. Experimental Results of JaCoP and Choco Solvers
Time to get one solution
40
35 1
30 -
v 25
£ —] @ Choco
o 20]
E 15| | Jacop
|_
10 -
5] I
0
1 2 3 4 5
Test

Figure 5. Comparing JaCoP and Choco getting one solution

Time to get the number of solutions

18

16

14)
- 12
jo’ 10 —e— Choco
E 8 —=— JaCoP
ol 6

4 _—*

2 /

0 . ‘ 4-/

1 2 3 4 5
Test

Figure 6. Comparing JaCoP and Choco getting the number of solutions

Choco such as the number of backtracks of a search or the mwhdecisions taken
to find a solution. In second place, we found a worrying bugmwverking with big
problems in Choco. In most cases, executions of CSPs repieg®ig FMs generated
an exception (choco.bool.BinConjunction) which imposesraportant limitation to
Choco.

5 Conclusion and Future Work

In this paper we presented how to translate a cardinalisgtbdeature model into a
constraint satisfaction problem. We performed a compaz &tist between two off—-the—
shelf CSP Java solvers and offered some interesting pesftgenconclusions. The test
showed that JaCoP is faster than Choco except in finding tideuof solutions. JaCoP
gives more details about executions than Choco such as thiearwof backtracks or the

number of decisions. Choco has an important bug when workittybig FMs while

it is a good open source alternative especially for small medium size problems.

Both solvers have a similar memory usage. Neverthelesh, JastoP and Choco are
useful for the experiments presented in the paper as eresutimes are really low

(milliseconds).

Several challenges remain for our future work. We plan temaitthe experiments
in order to scale our proposal and compare the results. Bggeeriments with more
features and more dependencies are needed and we plandop#rbse experiments
in the future. Furthermore, we think that we should compaepooposal with others
using different representations like SAT or BDDs to com@eairour results.

References

=

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

D. Batory. Feature models, grammars, and propositional formuasSoftware Product
Lines Conference, LNCS 37Jgages 7-20, 2005.

. D. Batory. A tutorial on feature oriented programming and the aheddtite. InSummer

school on Generative and Transformation Techniques in Software Ergige2005.

. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wisenedint. IEEE Trans.

Software Eng.30(6):355-371, 2004.

. D. Benavides, A. Ruiz-Cas, and P. Trinidad. Automated reasoning on feature models.

LNCS, Advanced Information Systems Engineering: 17th Internatiomade@znce, CAISE
2005 3520:491-503, 2005.

. D. Benavides, A. Ruiz-Cdss, and P. Trinidad. Using constraint programming to reason on

feature models. IThe Seventeenth International Conference on Software Engineering and
Knowledge Engineering (SEKE’QS)uly 2005.

. D. Benavides, S. Trujillo, and P. Trinidad. On the modularization dfffeamodels. IrFirst

European Workshop on Model Transformati@eptember 2005.

. J. BoschDesign and Use of Software Architecturégidison-Wesley, # edition, 2000.
. P. Clements and L. Northrofoftware Product Lines: Practices and Patter&&El Series in

Software Engineering. Addison—Wesley, August 2001.

. K. Czarnecki and U.W. EiseneckeGenerative Programming: Methods, Techniques, and

Applications Addison—Wesley, may 2000. ISBN 0—-201-30977-7.

K. Czarnecki, S. Helsen, and U.W. Eisenecker. Formalizingreaity-based feature models
and their specializatiorSoftware Process: Improvement and Practit@(1):7—29, 2005.

0. Oaz, S. Trujillo, and F.I. Anfurrutia. Supporting production strategiesefisements of
the production process. to be published at Sofware Product Line Conference (SPLC 2005)
2005.

0. Daz, S. Trujillo, and I. Azpeitia. User-Facing Web Service DevelopmerZa&e for a
Product-Line Approach. In Boualem Benatallah and Ming-Chien Shditgrs, Technolo-
gies for E-Services, 4th VLDB International Workshop (VLDB-TESR@®lume 2819 of
LNCS pages 66—77. Springer-Verlag, 2003.

P. Fernandez and M. Resinas. James project. Available at
http://jamesproject.sourceforge.ne2002-2005.

E. C. Freuder. In pursuit of the holy graonstraints 2(1):57-61, April 1997.

G. Halmans and K. Pohl. Communicating the variability of a softwacemt family to
customersJournal on Software and Systems Modelia¢):15-36, 2003.

S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling ¥agguoirements in domain
modeling. The Journal of Systems and Softwé8(3):171-182, 2003.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Ee<iented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Safiter Engineering
Institute, Carnegie Mellon University, November 1990.

K. Kuchcinski. Constraints-driven scheduling and resourdgrasent. ACM Transactions
on Design Automation of Electronic Systems (TODAB®&):355-383, July 2003.

F. Laburthe and N. Jussien. Choco constraint programmingnsystévailable at
http://choco.sourceforge.neZ003-2005.

C. Prehofer. Feature-oriented programming: A new way of bbf@aposition Concurrency
and Computation: Practice and Experiends(6):465-501, 2001.

	GTTSE 2005:

