
Automating the Procurement of Web Services?

Octavio Martín-Díaz, Antonio Ruiz-Cortés,
Amador Durán, David Benavides, Miguel Toro

Dpto. de Lenguajes y Sistemas Informáticos
E.T.S. de Ingeniería Informática, Universidad de Sevilla

41012 Sevilla, España - Spain
-

Phone: +34 95 455 3871 Fax: +34 95 455 7139
-

octavio@lsi.us.es, aruiz@lsi.us.es,
amador@lsi.us.es, benavides@us.es, mtoro@lsi.us.es

Abstract. As government agencies and business become more dependent on
web services, software solutions to automate their procurement gain importance.
Current approaches for automating the procurement of web services suffer from
an important drawback: neither uncertainty measures nor non-linear, and com-
plex relations among parameters can be used by providers to specify quality-of-
service in offers. In this paper, we look deeply into the roots of this drawback
and present a proposal which overcomes it. The key point to achieve this im-
provement has been using the constraint programming as a formal basis, since
it endows the model with a very powerful expressiveness. A XML-based imple-
mentation is presented along with some experimental results and comparisons
with other approaches.

Keywords software procurement, web services, quality-of-service, traders.

1 Introduction

As government agencies and business become more dependent on web services, soft-
ware solutions to automate their procurement gain importance. It is generally assumed
that decision criteria for choosing software packages stems from the user requirements
they should fulfill. There are different types of requirements such as managerial, po-
litical, and, of course, quality requirements. There are a number of approaches which
automate some activities of the procurement, most of them focus in quality require-
ments. However, these approaches suffer from several drawbacks that hamper their use
when requirements that providers guarantee include uncertainty measures, non-linear
and complex relations among parameters. In fact, if we want to achieve a competitive
technology based on web services, their quality-of-service is an important issue to be
taken into account, becoming one of challenges to be solved in the near future [31].

? Supported by the Spanish Interministerial Commission on Science and the Spanish Ministry of Science and Technology
under grants TIC2000-1106-C02-01, TIC2003-02737-C02-01 and FIT-150100-2001-78.

In this context, software procurement [4, 5] becomes web services procurement
(WSP), an activity focussed on the acquisition of web services required by a web-
service-based system, thus it is a critical activity for current web system developers.
Some typical tasks involved in WSP are:

– Specification of demands and offers, which should be checked for consistency in
order to verify they do not contain any inner contradiction.

– Search of offers, which should be checked for conformance in order to verify they
fulfill the demand, so that the selection is limited to such offers.

– Selection of the best choice according to the assessment criteria which is included
in the demand.

In this paper, we present a proposal to automate the procurement of web services.
Our proposal improves on others in that it supports a symmetric specification model.
Thus, providers can include in their offers requirements as complex as customers in-
clude in their demands. The key point to achieve this improvement has been using
the constraint programming as a formal basis, since it endows the model with a very
powerful expressiveness. A XML–based implementation is presented along with some
experimental results and comparisons with other approaches.

The rest of the paper is structured as follows. In Section 2, we introduce the no-
tions of asymmetric and symmetric specification models, as well as an overview of
related works. In Section 3, we propose the use of constraint programming as a means
of achieving a symmetric specification model. In Section 4, we present briefly the main
implementation aspects of our run-time framework, together with some experimental
results. Finally, in Section 5 we summarise the presented work and the immediate fu-
ture work.

2 Symmetric versus Asymmetric Models

2.1 Asymmetric models

LetS be a multidimensional space whose dimensions are given by domains of quality-
of-service parameters. Traditionally, a demand (�) has been viewed as a subspace in
S, whereas an offer (!) has been viewed as a point inS. Thus, checking the con-
formance amounts to checking whether the point (the offer) belongs to the subspace
(the demand) or not. See Figures 1.a and 1.b, respectively. This checking can be com-
puted easily by evaluating! in �. As an example, if a web service owns the offer
! = fMTTF = 120g, then it is conformant to the demand�1 = fMTTF � 100g be-
cause120 � 100, but not to the demand�2 = fMTTF > 120g because120 6> 100.

This interpretation of conformance results in a model which is asymmetric with
regard to the expressiveness of quality-of-service specifications. This semantics makes
very difficult to specify offers when it is needed something else than a point, as an
example to specify some uncertainty or a space. As most of programming languages are
able to check if a point is inside a space, whereas checking if a space includes another
space is a hard question, most of platforms have adopted an asymmetric specification
model. As well, these approaches with an asymmetric model usually own a limited
expressiveness because conditions are restricted to simple expressions involving single
parameters, so complex expressions are not allowed.

(a)

S S

(b)

Fig. 1. Conformance in asymmetric models.

2.2 Symmetric models

Alternatively, an offer can be also considered as a sub-space, just as demands, so that
it represents the ranges of quality-of-service values that the corresponding web service
guarantees to supply. In this way, an offer (!) is conformant to a demand (�) when-
ever the offer’s sub-space is inside the demand’s sub-space (see Figure 2.a), otherwise
the offer is not conformant (see Figure 2.b). As an example, if a web service owns
the offer ! = fMTTF >= 120g, then it is conformant to the following demand
�1 = fMTTF >= 100g, but not to the demand �2 = fMTTF > 120g because the
offer’s instance value {MTTF = 120} is out of the demand’s space.

This interpretation of conformance results in a symmetric model because quality-of-
service in demands and offers can be specified in the same way. This semantics makes
the offer guarantee the complete range, not only a concrete value, i.e., we can not make
any assumption on a concrete value, because it is equally possible any value in the sub-
space, and there is no control to get a concrete value. As well, symmetric approaches
usually achieve a greater deal of expressiveness to specify quality-of-service, since there
is usually no restriction on the number of involved parameters or type of operators, so
that non-linear or more complex expressions are allowed.

(b)(a)

S S

Fig. 2. Conformance in symmetric models.

2.3 Related work

Figure 3 shows a comparative study among the most prominent (as far as we know)
quality-aware approaches to WSP. Briefly:

– The UDDI Extension(UDDIe) [28] is based on the UDDI (Universal Descrip-
tion Discovery and Integration) services. UDDIe owns an asymmetric model when
specifying demands and offers.

IBM's
WSME
MME

HP's MME
Service

UDDIe

Our
Proposal

Customer's Provider's

Name-Value Pair Properties
Static/Dynamic Binding

Scripts for Rule-based Reqs.

Composition
Single-Parameter Constraints

on Parameters of Service
(expandable)

Name-Value
Pair

Properties

Single-Par.
Conditions

on Properties
(Qualifiers)

Composition
Multiple-Parameter

Constraints on
Parameters of Service

Data Structuring

Data Dictionary:
pre-def. basic types

sequences
records

DAML+OIL Ontology:
datatypes and types

subsumption

Blue Pages

Catalogues:
pre-def. basic types
catalogue extension
basic and derived p.

Dynamic View:
The Process Model

Advertisement/Submission
Query/Submission

Matchmaking
Selecting Providers' Offers

Advertising
Querying
Browsing

Publishing
Search and Discovery

Creating Catalogues
Offers Submission

Demands Submission
Matchmaking

Catalogues,
Parameters & Measures

Stakeholders

Providers
Costumers

Advertisers
Requestors

Providers
Consumers

Providers
Costumers

Quality-of-Service
Documents

Advertisements
Queries

Agreements

Service Offers
& Requests

Publishing
Inquiry

Demands
Offers

Agreements

Static View: The Lexicon

The
Reference

Model

Fig. 3. A comparison of quality-aware approaches to WSP.

– The HP’s Matchmaking Engine(MME) [10] is based on the DAML (DARPA Agent
Markup Language) semantic web language [2]. It is the closest proposal to ours,
because it owns a symmetric model to specify quality-of-service, and it uses cons-
traints to do it, so it owns a great expressiveness. As well, it uses a Description
Logic DL’s solver as a mean of carrying out the WSP-related tasks. Nevertheless,
there is not currently any DL’s solver version able to process some of the most
complex expressions which can be specified in MME.

– The IBM’s Web Services Matchmaking Engine(WSME) [12], which is related
to Web Service Level Agreement(WSLA) [15, 17], is based on the CORBA/ODP
trader service. It owns an asymmetric model and there is no optimation of the se-
lection because search results are only the lists of conformant offers. Nonetheless,
there is a difference: relationships between demands and offers are bilateral. In the
same way quality-of-service in offers is based on parameter/value pairs whereas
demands impose conditions on them, it is also allowed that demands define their
own quality-of-service parameters whereas the offers impose conditions on them.
As an example, let an offer be given by the following quality-of-service specifi-
cation ! = fme:MTTF = 120 & your:nationality 2 fBE; : : : ; UKgg and a
demand � = fme:nationality = fISg & your:MTTF > 100g, then the offer
! is not conformant to the demand �, because the condition it imposes on the de-
mand (the Europe Union membership) is not fulfilled, despite of the offer fulfills
conditions imposed by the demand.

– Other languages for specifying quality-of-service and trader services the Quality-
of-service Modeling Language(QML) [8], the NoFun language [6], and the CORBA
trader service [22]. These proposals are not directly related to WSP.

3 Supporting WSP with Constraint Programming

We have chosen mathematical constraints as the way of specifying quality-of-service
in demands and offers. In this way, checking conformance can be carried out just as
a constraint satisfaction problem (CSP) or a constraint satisfaction optimisation pro-
blem (CSOP) [7, 11, 18, 29]. In general, CSP-based modelling is quite simple and intui-
tive (in most cases) in the context of problems which we are dealing with. Constraint
programming is an excellent support for symmetric specifications models, because it
makes possible to check whether a space is included in another one, being these spaces
treated as constraints. Our proposal owns a symmetric specification model with a great
deal of expressiveness because of using constraints.

3.1 Constraint programming in a nutshell

Constraint Programming (CP) has recently attracted high attention among experts from
many areas because of its potential for solving hard real-life problems. Not only it is
based on a strong theoretical foundation, but it is an attracting widespread commercial
interest, as well. Constraints formalise those dependencies in physical worlds and their
mathematical abstractions naturally and transparently. A constraint is simply a logical
relation among several variables, each taking a value in a given domain. The constraint
thus restricts the possible values that variables can take, and it represents a partial in-
formation about the variables of interest. An important feature of constraints is their
declarative manner, i.e., they specify what relationships must hold without specifying
a computational procedure to enforce them. CP is the study of computational systems
based on constraints. The idea of CP is to solve problems by stating constraints (re-
quirements) about the problem area and, consequently, finding solution satisfying all
the constraints.

The earliest ideas leading to CP may be found in the Artificial Intelligence dating
back to sixties and seventies. The scene labelling problem [30] is probably the first
constraint satisfaction problem that was formalised. The main step towards CP was
achieved when Gallaire [9] and Jaffar & Lassez [14] noted that logic programming was
just a particular kind of constraint programming. The basic idea behind Logic Program-
ming (LP), and declarative programming in general, is that the user states what has to
be solved instead of how to solve it, which is very close to the idea of constraints.
Therefore the combination of constraints and logic programming is very natural, and
Constraint Logic Programming (CLP) makes a nice declarative environment for solv-
ing problems by means of constraints. However, it does not mean that CP is restricted
to CLP. Constraints were integrated to typical imperative languages like C++ and Java,
as well.

The nowadays real-life applications of CP in the area of planning, scheduling and
optimisation rise the question if the traditional field of Operations Research (OR) is a
competitor or an associate of CP. There is a significant overlap of CP and OR in the field
of NP-Hard combinatorial problems. While the OR has a long research tradition and
(very successful) method of solving problems using linear programming, the CP em-
phasis is on higher level modelling and solutions methods that are easier to understand

by the final customer. Most recent advances promise that both methodologies can ex-
ploit each other, in particular, the CP can serve as a roof platform for integrating various
constraint solving algorithms including those developed and checked to be successful
in OR. As the above paragraphs show, the CP has an inner interdisciplinary nature. It
combines and exploits ideas from a number of fields including Artificial Intelligence,
Combinatorial Algorithms, Computational Logic, Discrete Mathematics, Neural Net-
works, Operations Research, Programming Languages, and Symbolic Computation.

Currently, we see two branches of CP, namely constraint satisfaction and constraint
solving. Both share the same terminology but the origins and solving technologies are
different. The former deals with problems defined over finite domains and, currently,
probably more than 95% of all industrial constraint applications use finite domains.
Therefore, we deal with constraint satisfaction problems mostly in this paper. The latter
shares the basis of CP, i.e., describing the problem as a set of constraints and solv-
ing these constraints. But now, the constraints are defined (mostly) over infinite or
more complex domains. Instead of combinatorial methods for constraint satisfaction,
the constraint solving algorithms are based on mathematical techniques such as auto-
matic differentiation, Taylor series or Newton method.

Constraint Satisfaction Problems [29] have been a subject of research in Artificial
Intelligence for many years. A Constraint Satisfaction Problem (CSP) is defined as a set
of variables each ranging on a finite domain, and a set of constraints restricting all the
values that variables can simultaneously take. A solution to a CSP is an assignment of
a value from its domain to every variable, in such a way that all constraints are satisfied
at once. We may want to find: i) just one solution, with no preference as to which
one, ii) all solutions, iii) an optimal, or at least a good solution, given some objective
function defined in terms of some or all of variables. Solutions to a CSP can be found
by searching (systematically) through all possible value assignments to variables.

In many real-life applications, we do not want to find any solution but a good solu-
tion. The quality of solution is usually measured by an application dependent function
called objective function. The goal is to find such solution that satisfies all the cons-
traints and minimise or maximise the objective function, respectively. Such problems
are referred to as Constraint Satisfaction Optimisation Problems (CSOP), which con-
sists of a standard CSP and an optimisation function that maps every solution (complete
labelling of variables) to a numerical value [29].

3.2 Consistency and conformance

Whenever a new demand or offer is submitted, its consistency needs to be checked,
i.e., whether or not it contains any inner contradiction. This is interpreted as a CSP, so
that if the corresponding CSP is satisfiable, then the demand or offer can be considered
as consistent. The corresponding CSP for a demand or offer is composed of all the
constraints it contains. On the other hand, the best choice selection regarding with a de-
mand implies the previous checking for conformance, because the search is reduced to
conformant offers. As we are using constraint programming, checking of conformance
lies in determining whether each and every solution to the offer’s CSP is also a solution
to the demand’s CSP.

In this way, the corresponding CSP for checking the conformance is constructed
according to the definition given in [18]:

conformance(!; �), sat(c! ^ : c�) = false

where ! is the offer and c! its corresponding CSP, � is the demand and c� its corres-
ponding CSP, and sat is a function that we identify with the CSP solver which is being
used. It can be applied on a CSP c so that it returns one of the following results: true if
c is satisfiable, false if not, and? if the solver cannot determine whether c is satisfiable
or not.

3.3 Optimality

More often than not, it is possible to have several offers which are conformant to the
same demand for a web service, then we should select that offer which is the best
choice. This selection is carried out according to the assessment criteria the customer
includes in his or her demand. These criteria may be given by utility functions [3, 16,
21] which, in general, have the signature U : � ! [0; 1] where � is the measuring
domain of a quality-of-service parameter. Utility functions assign an utility assessment
(ranging from 0 to 1) to every quality-of-service value it can take, so the greater the
assessment, the better the consideration of the customer. Therefore, utility functions
allow the establishment of an objective criteria, given by customers, in order to select
those offers which better fulfill the demands. Figure 4 shows several utility functions
corresponding to examples in this section.

Utility for Mean Time To Failure

0,5

1

0,25

1209060

MTTF

0,75

45 75 105 140
0

10 20 30

0,5

1

0,25

0,75

0
5 15 25 35

MTTR

Utility for Mean Time To Repair

Modem
Modem
ISDN

ISDN Modem
ADSL

ISDN
ADSL

Modem
ISDN
ADSL

ADSL

Utility for Media Support

MEDIA

0,5

1

0,25

0,75

0

{ }

Fig. 4. Utility functions forMTTF ,MTTR, and MEDIA.

Although we can make use of any kind of function to specify utility functions, linear
piecewise functions are often the preferred. As an example, the utility function for a nu-
meric quality-of-service parameter can be defined by means of polylines determined by
a sequence of coordinate points such as (x1; u1); (x2; u2); : : : ; (xn; un), where every x
represents a value in the measuring domain of the quality-of-service, and u its assess-
ment in the range [0,1]. The corresponding utility function is then given by:

U(x) =

8
>><
>>:

u1 +
u2�u1

x2�x1

(x � x1) if x1 � x < x2

� � �

un�1 +
un�un�1

xn�xn�1

(x � xn�1) if xn�1 � x � xn

? if x < x1 o x > xn

We are not usually interested in computing the utility assessment of an unique
quality-of-service parameter, but on maximising the global assessment of offers in
order to select the best one, being these offers conformant to the demand. Neverthe-
less, we can not compute the maximum offers’ utility assessments when comparing
them. As an example, let the following offers !1 = f60 � MTTF � 120g and
!2 = f90 � MTTF � 110g. Intuitively, the first is better, because if MTTF = 120

then U(!1) = 1. However, the offer is guaranteeing the complete range, not only a
concrete value, so we can not make such assumption because it is equally possible that
MTTF = 60, and there is no control to get a concrete value. Therefore, we compare
the minimum utility assessments of offers. In this way, the latter offer is the better, be-
cause if MTTF = 90 then U(!2) = 0:5, whereas the worst assessment of the first
offer is 0.25, at most. Formally, the best offer (!S) can be defined as:

!S = ! 2
� � 8!i 2
� � f!g U
�

(!) � U�

(!i)

where ! and !i stand for offers in the set
� of conformant offers to the demand �, and
the U�

(!) utility function of an offer ! according to assessment criteria in demand � is
defined as:

U�
(!) = min

P
�2c!

w�

�
U�

(�)

st c!

where � represents a quality-of-service parameter which is involved in the offer’s CSP
c!, and U �

(�) its utility function, and w�

�
its assigned weight, according to assessment

criteria in demand �. On the other hand, weights are needed to express that a quality-
of-service parameter is preferred to another.

3.4 An example of contraint-based quality-of-service specification

Figure 5 shows several catalogues, demands, and offers written in QRL [23, 26], the
language which we have defined for specifying quality requirements. Figure 4 shows
the graphical representation of utility functions appearing in Figure 5. These demands
and offers will be used in the examples along these paragraphs.

In this case, the involved quality-of-service parameters are the Mean Time To
Failure (MTTF), the Mean Time To Repair (MTTR), and the Media Sup-
port (MEDIA). Note the included demand and offers are all consistent, because their
corresponding CSP are satisfiable, as well as offers are conformant to the demand,
because the corresponding CSP for checking the conformance are not satisfiable, ac-
cording to definitions in Section 3.2.

Since both offers are conformant to the demand, we will have to compute the uti-
lity functions to compare them. According to definitions in Section 3.3, both offers
own U(MTTF = 110) = 0:83 and U(MTTR = 10) = 0:8, velazquez owns
U(MEDIA) = 1, and zipi owns U(MEDIA) = 0:5. Therefore, utility assessment
of velazquez is 0:9 � 0:83+0:05 � 0:04+0:05 � 1 = 0:84, and utility assessment of
zipi is 0:9�0:83+0:05�0:04+0:05�0:5 = 0:815, so the best offer is velazquez.

// A catalogue of Reliability-related QoS parameters
catalogue Reliability {
 MTTF {
 description: "Mean Time to Failure";
 domain: real [0,+inf) minute;
 };
 MTTR {
 description: "Mean Time To Repair";
 domain: real [0,+inf) minute;
 };
}

// A catalogue of Multimedia-related QoS parameters
catalogue Multimedia {
 MEDIA {
 description: "Media Support";
 domain: set { modem, ISDN, ADSL };
 }
}

// Web service offer supplied by Velazquez
using Reliability, Multimedia;
offer for IVideoServer {
 O1: MTTF >= 110 and MTTF <= 120;
 O2: MTTR > 5 and MTTR <= 10;
 O3: MEDIA = {ADSL,ISDN,modem};
}

c) Several offers.

a) Catalogues of quality-of-service parameters.

// Web service demand for IVideoServer
using Reliability, Multimedia;
demands for IVideoServer {
 D1: MTTF / (MTTF + MTTR) >= 0.9;
 D2: MEDIA includes {modem,ISDN};
}
assessment {
 MTTF {90, { (0,0), (90,0.5), (120,1) } };
 MTTR {05, { (0,1), (20,0.6), (30,0) } };
 MODEM {05,
 case MEDIA = { } : 0.01;
 case MEDIA = {modem} : 0.1;
 case MEDIA = {ISDN} : 0.3;
 case MEDIA = {ISDN,modem} : 0.5;
 case MEDIA = {ADSL} : 0.9;
 case MEDIA = {modem, ADSL} : 1;
 case MEDIA = {ISDN, ADSL} : 1;
 case MEDIA = {modem, ISDN, ADSL} : 1;
 }
}

b) A demand.

// Web service offer supplied by Zipi
using Reliability, Multimedia;
offer for IVideoServer {
 O1: MTTF >= 110 and MTTF <= 120;
 O2: MTTR > 5 and MTTR <= 10;
 O3: MEDIA = {ISDN,modem};
}

Fig. 5. Demands and offers written in QRL.

4 Implementation and Experimental Results

4.1 Overview of the prototype’s architecture

We are developing a prototype of a run-time framework for WSP [19, 20, 24, 27], whose
preliminary version is available at http://www.lsi.us.es/˜octavio. In this
paper, we give a brief review, together with some experimental results we have recently
obtained. A components view of the run-time framework is shown in Figure 6.

Selecting a multi-level architecture along with the deployment of the components
as web applications or web services have been critical design decisions. Components
are split up among the upper user-interface level, the intermediate service and utility
levels, and the bottom repository level. These components can be reusable and inter-
changeable. Service level includes those components which implement the IImport-
Service interface (functions related to submission of demands and searching for best
conformant offer), and the IExportService interface (functions related to submis-
sion of offers).

These components have need of invoking checkings for consistency, conformance,
and optimum search. These functions are implemented by the Quality Trader Web Ser-
vice [19] at the utility level. Each function has a similar operation:

1. It takes the involved demands and offers written in XML as parameters.

2. It invokes the appropriate XSLT transformations in order to generate automatically
the corresponding CSP.

3. It invokes a CSP solver which processes the CSP in order to get the result, which is
finally returned.

The CSP solver which is invoked is ILOG’s OPL Studio [13], which is an integrated
development environment for mathematical programming and combinatorial optimisa-
tion applications. The OPL language (OPtimisation Language) is used to define CSP
and CSOP models.

IAuthenticate

IExportServiceIImportService

AFE
(Administration Front-End)

DA
(Data

Access)

CAP
(Certification

Authority
Proxy)

URS
(User

Runtime
System)

SRM
(Service

Repository
Manager)

QT
(Quality
Trader)

IDataAccess
ITraderService

Utilities

Services

Users

Data

Repositories

...

Fig. 6. Architecture of the run-time framework.

4.2 Experimental results

Recently, we have carried out several tests, in order to get measures about performance
of quality trader. We have implemented the first prototype in a Microsoft .NET environ-
ment, using the Visual Studio C#-based utilities and compilers. The main characteristics
of the server computer are an AMD Athlom XP 1.8Gb processor with 560 Mb RAM.
These tests have been focussed on latency of consistency, which is possibly the sim-
plest of operations which are involved in WSP. In this paper, latency means the time
from invokation of operation to return of a result. Figure 7 summarises the time our im-
plementation took to check the consistency of a demand (of course, it could have been
an offer).

Latency of Consistency

0

200

400

600

800

1000

1200

1 11 21 31 41 51 61 71 81 91

Number of Parameters

M
ill

is
ec

o
n

d
s

Total time
XSLT time
CSP time

Fig. 7. Average time to check the consistency.

Experimental data have been specified in this way: the N th execution involves a
QoS specification containing N constraints. Each QoS specification is constructed ac-
cording to this criteria: the first constraint involves a single integer-typed parameter, the
second constraint involves a real-typed parameter, the third a set-typed parameter, the
fourth an enumerated-type parameter, the fifth a boolean parameter, and so on, up to N
constraints. Consistency of every QoS specification has been checked up to 50 times,
so that 7 shows the average latency of invokations.

Figure 7 shows that XSLT processing is roughly implying up to 80 per cent. In this
way, a first conclusion is that another alternative should be studied in case of a final
version of the platform, such as the use of compilers or similar. XML and XSLT are
good solutions for a prototype version, but it is not an efficient solution at all. On the
other hand, XML and XSLT are (nearly) the universal standard of communications on
the Internet, and it owns a very high versatility because it makes easier any adaptation,
as well as the treatment of corresponding XML schemas as truly ontologies on QoS
specification. We have used the Microsoft DOM library, so that another alternative is
the use of components with improved XSLT-related functions, such as SAX, or similar.

5 Conclusions and Future Work

In this paper, we have presented our run-time framework for automating WSP. The
solution is based on usage of mathematical constraints in order to specify quality-of-
service in demands and offers, so we have achieved a lot of interesting properties. First,
it owns a great deal of expressiveness, allowing non-linear or more complex expressions
involving multiple parameters to be specified. As the same expressiveness is allowed to
specify quality-of-service in demands and offers, our approach is symmetric. As well,
our approach includes the possibility to express the assessment criteria, which is very
important to select the best choice according to a demand.

Currently, we have developed a prototype of the run-time framework. It includes
a quality trader web service as the core component, which offers services such as the
checking for consistency and conformance, and the search/selection of the best choice.
Preliminar experimental results have been presented, standing out the marked influence
of XSLT processing in perfomance of the trader service. However, new experiments
have to be carried out to get a more complete vision of the framework perfomance.

Regarding with the future work, we want to point out that our approach can be
extended in several ways in order to achieve new characteristics: the inclusion of tem-
porality in constraints, the inclusion of negotiation clauses to improve the flexibility of
the model whenever no solution can be found at first, and the inclusion of importance
and soft clauses in order to enlarge the solution space of the search. In fact, definitions
of temporality and negotiation are currently in study [25], so we are beginning the first
phases of the improvement of our prototype to include them.

Finally, the integration of our model on the current technology is also a pending
work. We are aware of the uselessness of our approach if we do not have a working
prototype integrated with any of them, such as UDDI or similar. In this way, our quality
trader is a component leveled at the top of a pyramid, wherein the lowerer levels are de-
voted to functional-aspects of WSP [1]. This stage of development is currently starting,
but we hope to have a completely functional prototype in the very near future.

References

1. A. Beugnard, J-M. Jézéquiel, N. Plouzeau, and D. Watkins. Making components contract
aware. IEEE Computer, pages 38–45, July 1999.

2. Joint US/EU Agent Markup Language Committee. DARPA Agent Markup Language. Tech-
nical report, US’s DARPA Defense Advance Research Projects Agency and EU’s IST Infor-
mation Society Technologies, 2000. http://www.daml.org.

3. J.J. Dujmovic. A Method for Evaluation and Selection of Complex Hardware and Software
Systems. In Proceedings of the 22nd International Conference for the Resource Management
and Performance Evaluation of Enterprise Computing Systems, volume 1, pages 368–378,
1996.

4. B. Farbey and A. Finkelstein. Software acquisition: a business strategy analysis. In Proc. of
the Requirements Engineering (RE’01). IEEE Computer Society Press, 2001.

5. A. Finkelstein and G. Spanoudakis. Software package requirements and procurement. In
Proc. of the 8th Int’l IEEE Workshop on Software Specification and Design (IWSSD’96).
IEEE Press, 1996.

6. X. Franch and P. Botella. Putting non-functional requirements into software architecture. In
Proc. of the IXth Intl. Workshop on Software Specification and Design, Ise-Shima (Isobe),
Japan, April 1998.

7. E.C. Freuder and M. Wallace. Science and substance: A challenge to software engineers.
Constraints IEEE Intelligent Systems, 2000.

8. S. Frolund and J. Koistinen. QML: A language for quality of service specification. Technical
Report HPL-98-10, Hewlett–Packard, 1998.

9. H. Gallaire. Logic programming: Further developments. In Proc. of the IEEE Symposium
on Logic Programming, pages 88–96, Boston, 1985. IEEE-CS Press.

10. J. González-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. Technical Report HPL-2001-265, Hewlett-Packard, 2001.

11. P. Hentenryck and V. Saraswat. Strategic directions in constraint programming. ACM Com-
puting Surveys, 28(4), December 1996.

12. Y. Hoffner, S. Field, P. Grefen, and H. Ludwig. Contract-driven creation and operation of
virtual enterprises. Computer Networks, (37):111–136, 2001.

13. ILOG. OPL Studio. http://www.ilog.fr.
14. J. Jaffar and J.L. Lassez. Constraint logic programming. In Proc. of the ACM Symposium on

Principles of Programming Languages, pages 111–119, Boston, 1987.
15. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level

agreements for web services. Technical Report RC22456 (W0205-171), IBM International
Business Machines Corporation, 2002.

16. J. Koistinen and A. Seetharaman. Worth–based multi-category quality–of–service negotia-
tion in distributed object infrastructures. In Proceedings of the Second International Enter-
prise Distributed Object Computing Workshop (EDOC’98), La Jolla, USA, 1998.

17. H. Ludwig, A. Keller, A. Dan, and R.P. King. A service level agreement language for
dynamic electronic services. Technical Report RC22316 (W0201-112), IBM International
Business Machines Corporation, 2002.

18. K. Marriot and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

19. O. Martín-Díaz, A. Ruiz-Cortés, D. Benavides, A. Durán, and M. Toro. A quality-aware ap-
proach to web services procurement. In Fourth International VLDB Workshop Technologies
for E-Services, Springer LNCS 2819, pages 42–53, Berlin, Germany, 2003.

20. O. Martín-Díaz, A. Ruiz-Cortés, R. Corchuelo, and A. Durán. A Management and Exe-
cution Environment for Multi-Organisational Web-based Systems. In ZOCO: Métodos y
Herramientas para el Comercio Electrónico, pages 79–88, San Lorenzo del Escorial, Spain,
2002.

21. L. Olsina, D. Godoy, G. Lafuente, and G. Rossi. Specifying Quality Characteristics and At-
tributes for Websites. In Proceedings of the Web Engineering Workshop, in conjunction with
21st International Conference on Software Engineering (ICSE), pages 84–93, May 1999.

22. OMG. Trading Object Service Specification. Technical report, Object Management Group,
2000. Version 1.0.

23. A. Ruiz-Cortés. A Semi-qualitative Approach to Automated Treatment of Quality Require-
ments (in Spanish). PhD thesis, E.T.S. de Ingeniería Informática. Dpto. de Lenguajes y
Sistemas Informáticos. Universidad de Sevilla, 2002.

24. A. Ruiz-Cortés, R. Corchuelo, and A. Durán. An automated approach to quality-aware web
applications. In Enterprise Information Systems IV, pages 237–242. Kluwer Academic Pub-
lishers, 2003.

25. A. Ruiz-Cortés, R. Corchuelo, A. Durán, and M. Toro. Enhancing Win–Win requirements
negotiation model. In Applied Requirements Engineering. Catedral, 2002.

26. A. Ruiz-Cortés, A. Durán, R. Corchuelo, B. Bernárdez, and M. Toro. Automated Checking
of Quality Requirements in Multi-Organisational Systems (in Spanish). In 4th Workshop on
Requirements Engineering (WER’01), pages 195–201, Buenos Aires, Argentina, 2001.

27. A. Ruiz-Cortés, R. Corchuelo, A. Duran, and M. Toro. Automated support for quality re-
quirements in web-services-based systems. In Proc. of the 8th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS’2001), Bologna, Italy, 2001. IEEE Press.

28. A. ShaikhAli, R. Al-Ali O. Rana, and D. Walker. UDDIe: An extended registry for web
services. In Proc. of the IEEE Int’l Workshop on Service Oriented Computing: Models,
Architectures and Applications at SAINT Conference. IEEE Press, January 2003.

29. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1995.
30. D.L. Waltz. Understanding line drawings of scenes withshadows. Psychology of Computer

Vision, New York, 1975.
31. Gerhard Weikum. The Web in 2010: Challenges and opportunities for database research.

Lecture Notes in Computer Science no 2000, 2001.

