Automated Merging of Feature Models using Graph
Transformations *

Sergio Segura, David Benavides, Antonio Ruiz-Cortés,Ratalo Trinidad

University of Seville, Spain
{ser gi osegur a, benavi des, arui z, ptri ni dad} AT us. es

Abstract. Feature Models (FMs) are a key artifact for variability amenenon-

ality management in Software Product Lines (SPLs). In thigext, the merging
of FMs is being recognized as an important operation to stipipe adoption and
evolution of SPLs. However, providing automated suppartferging FMs still

remains an open challenge. In this paper, we propose usip gransformations
as a suitable technology and associated formalism to atéotha merging of
FMs. In particular, we first present a catalogue of techngiogependent visual
rules to describe how to merge FMs. Next, we propose a pqpdtyplementa-
tion of our catalogue using the AGG system. Finally, we shiogvfeasibility of

our proposal by means of a running example inspired by thelenpbone indus-
try. To the best of our knowledge, this is the first approaavigiing automated
support for merging FMs including feature attributes arabssftree constraints.

1 Introduction

Software Product Lin€SPL) engineering is an approach to developing familie®fif s
ware systems in a systematic way [10]. Roughly speaking,RIncn be defined as
a set of software products sharing a common set of featurdsattire is defined as
an increment in product functionality [5]. In this contekgature Model{FMs) are
commonly used to provide a compact and visual representatiall the products of an
SPL in terms of features.

Typical SPL adoption strategies involve building an SPInfra set of existing soft-
ware products or extending an existing SPL to include newyets [17]. In both cases,
the artifacts of different software systems must be conbint® a single SPL. In this
context, the usage of specific SPL refactoring techniquemisrging as a key practice
to support the adoption and evolution of SPLs [1,18,30].

It is accepted that not only programs should be refactordidarcontext of an SPL
but also FMs. In particular, the merging of FMs emerges asppeaing operation
to support the evolution of SPLs at the model level [1,12]tHis context, different
semantics for the operation of merging of FMs have been m@gan the literature
[26]. For the proof of concept presented in this paper, wesictan the merging of FMs
as an operation that takes as input a set of FMs and returng BMeepresenting, as a

* This work has been partially supported by the European Caesion (FEDER) and Span-
ish Government under CICYT project Web-Factories (TIN200872) and the Andalusian
Government project ISABEL (TIC-2533)

minimum, the same set of products than the input FMs. OneeRildi representing all
products is generated, it may be used as a starting pointifong future development.

Graph Transformationare a very mature approach, having been used for 30 years
for the generation, manipulation, recognition and evaduedf graphs [25]. Most visual
languages can be interpreted as a type of graph (directeeleld, etc.). This makes
graph transformations a natural and intuitive way for tfarmaing models [11,13,21].
Graph transformations are defined in a visual way and ardgedwith a set of tested
tools to define, execute and test transformations. Additlgngraph transformation
theory provides a solid formal foundation enabling the &f&g of interesting formal
properties such as confluence, sequential and parallelef@ndence, etc. [15]. All
these characteristics make graph transformations a &itiathnology and associated
formalism for model refactoring [20,23] and software maggj19,31].

In previous work [27] we detailed our intention of providiagtomated tool support
for FM refactoring using graph transformations. In this@ape present our first results
in that direction. In particular, the contribution of thiager is twofold:

— We propose a catalogue of 30 visual rules to merge FMs. Inrasinto existing
proposals, our catalogue includes rules to describe howetgenFMs including
feature attributes and cross-tree constraints.

— We propose using graph transformations as a suitable tempnto automate the
merging of FMs. In order to show the feasibility of our prophsve present a
prototype implementation of our catalogue of rules usirgABEG system [29]. To
the best of our knowledge, this is the first approach progdintomated support
for merging FMs including feature attributes and cross-trenstraints.

The remainder of the paper is structured as follows: in 8a@j the main concepts
of feature models and graph transformations are introdu@adproposal is presented
in Section 3. In Section 4, we survey related work. We desctfite main challenges
remaining for our future work in Section 5. Finally, we suntima our main conclusions
in Section 6.

2 Preliminaries

2.1 Feature Models

Feature Models (FM) [16] are used to model sets of softwastesys in terms of fea-
tures and relations among them (see Figure 1). A featureedefned as an increment
in product functionality [5]. FMs are commonly used as a caoipepresentation of all
the products of an SPL in terms of features.

A FM is visually represented as a tree-like structure in Wwhiodes represent fea-
tures, and connections illustrate the relationships betmieem. Figure 1 depicts a sim-
plified example FM inspired by the mobile phone industry. Tiedel illustrates how
features are used to specify and build software for mobitpk. The software loaded
in the phone is determined by the features that it suppohisrdot feature identifies the
SPL. The relationships between a parent feature and itd tdatures can be divided
into:

Mobile Phone

Utility Functions

‘ Mandatory /<>\ Alternative ———# Requires

é Optional A or - Excludes

Fig. 1: A sample feature model

— Mandatory If a child feature is mandatory, it is included in all protsid which
its parent feature appears. Hence, for instance, accotdlitige sample model, all
mobile phones must provide support farging tones

— Optional If a child feature is defined as optional, it can be optionaltluded in
all products in which its parent feature appears. For irstathe sample feature
model definegamesas an optional feature.

— Alternative A set of child features are defined as alternative if only f@agure can
be selected when its parent feature is part of the producinfexample, according
to the model, a mobile phone will usésymbiaror aWinCEoperating system but
not both in the same product.

— Or-Relation A set of child features are said to have an or-relation wihirtparent
when one or more of them can be included in the products inlwitsgparent fea-
ture appears. Hence, for instance, according to the sampdelra mobile phone
can provide connectivity support foluetooth USB wifi or any combination of the
three.

Notice that a child feature can only appear in a product ipasent feature does.
The root feature is a part of all the products within the SPLaddition to the parental
relationships between features, a FM can also contain -tresonstraints between
features. These are typically of the form:

— Requireslf a feature A requires a feature B, the inclusion of A in adaret implies
the inclusion of B in such product. Hence, for instance, i@ #¢xample shown,
mobile phones includingamegequireJava support

— ExcludesIf a feature A excludes a feature B, both features cannotaoeqh the
same product. As an example, the SPL represented in Figemmdves the possi-
bility of offering support forMP3 andMP4 formats in the same product.

Feature Models were first introduced as a part of the Fe&@uiexnted Domain
Analysis method (FODA) by Kang back in 1990 [16]. Since thanltiple extensions
to the traditional notation have been proposed in order ¢cegse its expressiveness
[7]. In this context, some well known extensions are the alted Extended Feature
Models[4,5,6]. Roughly speaking, extended FMs propose addingdxnctional in-
formation to the features using attributes. There is noeosiss on a notation to define

attributes. However, most proposals agree that an attrislubuld consist at least of a
name adomainand avalue For instance, the feature 'MMS’ in Figure 1 includes some
feature attributes using the notation proposed by Benawtlal. in [6]. As illustrated,
attributes can be used to specify extra-functional infdiomasuch as cost, speed or
RAM memory required to support the feature.

2.2 Graph Transformations

Graph Grammarsare a mature approach for the generation, manipulationgreton
and evaluation of graphs [25]. Graph grammars have beeresdtashd applied in a
variety of different domains such as pattern recognitigntax definition of visual lan-
guages, model transformations, description of softwaskitectures, etc. This develop-
ment is documented in several surveys, tutorials and teahréports [3,13,20,21,25].

Graph grammars can be considered as the application ofdaksicistring grammar
concepts to the domain of graphs. Hence, a graph grammamipased of an initial
graph, a set of terminal labels and a set of transformatites fisometimes also called
graph productions). A transformation rule is composed igaih a source graph or
Left-Hand Side (LHS) and a target graph or Right-Hand Sidd3R The application
of a transformation rule to a so-called host graph, als@dalirect derivation, consists
of looking for an occurrence of the LHS graph in the host grafathis match is found,
the occurrence of the LHS in the graph is replaced by the RHBeofiven rule. Thus,
each rule application transforms a graph by replacing agatrby another graph. The
set of all graphs labelled with terminal symbols that can eeved from the initial
graph by applying the set of transformation rules iterdyive the language specified
by the graph grammar.

The application of transformation rules to a given graphabed Graph Trans-
formation Graph transformations are usually used as a general agedbmechanism
to manipulate graphs. Most visual modelling languages @ainterpreted as a type
of graph (directed, labelled, attributed, etc.). This nzaggeph transformations recog-
nized as a suitable technology for the specification andiegtpn of model transfor-
mations [11,13,21], model refactoring [20,23] and sofevarerging [19,31]. Hence, as
documented in the literature, the reasons to select graplsformations as a suitable
approach for the transformation and refactoring of visuatigls are manifold:

— Graph transformations are a natural and intuitive way ofgrering pattern-based
visual model transformations.

— The maturity of graph transformations has provided it witold theoretical foun-
dation in the form of useful properties [15,22]. Hence, fostance, the properties
of sequentiabndparallel dependencare used to detect the set of transformation
rules that must be applied in a given sequence and the sdesthat can be applied
in parallel.

— There is a variety of mature tools to define, execute andrassformations rules.
Fujaba! and the AGG Systefrare two of the most popular general-purpose graph

! http://wwwcs.uni-paderborn.de/cs/fujaba/
2 http://tfs.cs.tu-berlin.de/agg/

transformation tools within the research community. Néhaless, other tools such

as GReAP, VIATRA24 or GROOVP are also starting to emerge as a consequence
of the increasing popularity of graph transformations ia thodel-driven develop-
ment domain.

3 Our proposal

In this section we present our proposal. In particular, wa firopose a catalogue of vi-
sual rules describing how to merge FMs. Then, we presenttatgpe implementation
of the proposed catalogue using graph transformationdend®G system. Finally, we
clarify our contribution by means of an example inspiredhry mobile phone industry.

3.1 Catalogue of rules

In Appendix A (see page 15), we present a catalogue of 30lytechnology-independent
rules to describe how to merge FMs. More specifically, oualogue ofmerge rulesle-
scribes how to build a FM including all the products représéioy two given FMs.

Each merge rule consists of two input patterns of the FMs tmémyed (precondi-
tions) and an output pattern of the new FM generated as a fshle merging (post-
conditions). The rules can be iteratively applied by logkfor matches in the input
patterns on the two FMs to be merged. A match is an assignmére wariables of the
patterns to concrete values. The elements not mentionadyionfahe patterns remain
unchanged by default. The result of the merging is definedrasnaFM including all
the products represented by the merged FMs. This resultvhgduld be later used as
an input model in any other merging operation.

As previously mentioned in Section 1, the merging of FMs nsadense especially
when dealing with a set of related products in an SPL domdierd&fore, in order to
make this first proposal possible, we make a double assumptio

— Input FMs represent related products using a common cateloffeatures. For
the sake of simplicity, we assume that features with the saaned refer to the
same feature and consequently to the same software astifact

— The parental relationship between features is equal ihalFMs. That s, a feature
must have the same parent feature in all the models in whagbpiears.

Figure 2 depicts one of the merge rules defined in our cataloghe input and
output patterns of the rule are placed on the left and riglet sf the arrow respectively.
The sample rule illustrates the case in which a feature ime@fas a child of an or-
relationship and as a mandatory feature in both inputs Flgjsaatively. As a result of
the merging operation, the feature is included in an ortiaahip in the resulting FM
preserving the configurability options (products) and theuging structure.

% http://lwww.escherinstitute.org/Plone/tools

* http:/dev.eclipse.org/viewcvs/indextech.cgi/gmtrresubprojects/VIATRA2
5 http://groove.sf.net

6 A name could be a string, an identifier, a signature, etc.

a 2 e]

Fig. 2: A sample merge rule

Providing basic support for merging extended FMs is alsaegé@ur contribution.

To this aim, we also define rules describing how to merge feadttributes. As an
example, Figure 3 illustrates the case in which a given fedtas an attribute with the
same name in both input FMs. More specifically, both attdbuiave the same name
and value but different domains. As a result of the mergirgrafon, an attribute with
the same name and value is created in the resulting modelddimain of the new
attribute consists of the union of the domains of the merdtiates. This way we
guarantee that the attribute can take the same values asiimpiint FMs.

Attribute Name: N
Domain: D1
Value: V

Attribute Name: N ;
Domain: {D1} U {D2} :

Fig. 3: Merging feature attributes

3.2 Correctness of the catalogue

We consider our catalogue of merge rules to be correct ifargntees that the set of
products represented by the resulting FM includes, as anmimi, the set of products
represented by the merged FMs. Performing an exhaustivek aifethe correctness
and completeness of the catalogue of rules is out of the sufbihés paper. However,
in order to perform a preliminary validation of the catalegwe used FAMA [8], a
framework for the edition and automated analysis of FMs.tNe& describe the main
steps we followed to test each merge rule:

1. We modelled two example input FMs that matched the inptiépss of the merge
rule to be validated.
2. We used FAMA to extract the set of products representechéyekample input

FMs.
3. We created a new FM simulating the application of the girerge rule to the

example input FMs.

7 http://lwww.isa.us.es/fama

4. We used FAMA again to extract the set of products represidny the new FM.
5. We finally checked that the set of products representechéyiriput FMs were
included in the set of products represented by the output FM.

3.3 Implementation using graph transformations

In this section we propose using model transformations aspgnopriate mechanism
to provide automated tool support for merging FMs. In pafc, we present a pro-
totype implementation of our catalogue of merge rules forgimg FMs using graph
transformations.

In order to implement our proposal, we selected a populdrwithin the graph
grammar communityThe Attributed Graph Grammar System (AG9]. AGG is a
free Java graphical tool for editing and transforming gsabi means of graph trans-
formations. AGG graphs may be typed over a type graph antwattd by Java objects
and types. Rule application order may be controlled by digjdules into layers. Due to
its formal foundation, AGG offers validation support fomsistency-checking of graph
transformation systems according to graph constrairitgalrpair analysis to find con-
flicts between rules [20,22] and checking of terminatiotecia. All these reasons made
us select AGG as a suitable tool to implement our proposal.

AGG graph transformation rules consist of three parts:tahahd side graph (LHS)
and a right-hand side graph (RHS), a mapping between nodiesdges on both sides
and a set of Negative Application Conditions (NACs). NACe areconditions pro-
hibiting certain object structures on the graph from bemgsformed. Figure 4 shows
a screenshot of the AGG GUI. On the left hand side, a tree vieplal/s the working
graph and the rules of the proposed grammar. In the uppaatanta, the NAC (if any)
and the LHS and RHS graphs of the selected rule are displ&irelly, the central area
is reserved for the host graph.

Merge rules and graph transformation rules are based onsumilar concepts. In
particular, both approaches use visual patterns to deseritdifications in the structure
of a model/graph in terms of pre- and postconditions. Heinoarder to implement our
proposal, we mapped our catalogue of merge rules into AG&riNext, we outline
the main steps we followed to implement our proposal in AGG:

1. Firstly, we defined a set of typed nodes and edges in orderpieesent FM as
graphs. Hence, for instance, we defined a feature as a typmlefand an optional
relationship as a type of edge. Additionally, we set difféndgsual layouts for the
different types of nodes and edges in order to make grapliy easnprehensi-
ble. As an example, we used solid and dashed edges to repmeardatory and
optional relationships respectively.

2. Next, we created an attributed type graph. From an imtuftbint of view, a type
graph may be considered as a meta-graph expressing théowakdless rules that
must hold for all graphs. AGG type graphs may include abstmades (i.e. not
instantiable), node type inheritance and UML-like multifiies. Graphs obtained
as a result of a transformation rule are automatically ceédkr compliance with

8 Version 1.6.2.2

Y AGG V1.6.2.2 A=)
Bl EN Mode Iranstorm Parser Anayzer Preferences Help

&/ /(@ [T6] o[~ ™[R [a]%c[c] (%] T¢] o R D XA] 0 &

[e]ml@ TR Rinoe [RINEA+][-] M@= slyes [u] ol &
foratras -

;
+ 6000

1 [EmmITypeGraph
L+ Grann

[Mand-2 of GraGra

Grapnt
Nobio
U* Mobile-Backup
o L=R] [0}Root
o C=R] (tiopt-1
- C=R] (1jopt-2
¥ [1IMand-1
- =R [ijand2
o [E=R] [1)Mand-Mand
> E=R] [110pt-0pt
o [C=R] [1]0pt-Mand T
& E=R] [1iMand-Opt
o [C=R] [1]Mand-AKt-1 b <
o =] [1)Mand-Ar-2 e
~ EER tjoptan-1 Tyvecraph of Gratra =
o [C=R] [1jopt-At-2
o [C=R] [1]0r-Mand-1-1
o [L=R] (110r-Mand-1.2
o L= (1j0r-Mand-2-1
o [L=R] [1]0r-Mand-2-2
o L=R] (1j0r-0pt-1-1 '
o L=R] (1j0r-0pt-1-2 Lo _____
* 110r-0pt-2-1 .
o [L=R] [1)0r-0pt-2-2
- BR AnALT
o =R (anan2
o E=R] [10r-0r-1
o E=R] (1)0r-0r-2
& E=R] 1janor
o C=R] (1jor-At
o E=R] [2A1-1
o C=R] [2A1t12
o LRI 2121 .
il] 8D

Optionalchild

nasatribute

hasReiationship

0.+ haschiig

5 CiRoot
e | hasrettonshin

Fig.4: The AGG System

the type graph. This way, consistency-checking is autarallyi performed during
the merging process. In the current version of our protatiipe type graph was
based on a simplified version of the meta-model for attridhliMs presented in
[9].

3. The following step was mapping each merge rule into oneaemGG rules. To
this aim, we implemented the input and output patterns ohikege rules as the
LHS and RHS graphs of the graph transformation rule resgyti

4. In addition to the LHS and RHS graphs, we finally defined @éalutl NACs to
restrict when rules can be applied. Hence, for instancecay]NACs avoid the
execution of a transformation rule more than once.

As an example, Figure 5 shows a screenshot of the AGG rulestaseplement
the merge rule presented in Figure 2. From left to right, tAEN_LHS and RHS graphs
of each rule are presented. As illustrated, different typedes are used to represent
features and or relationships. In a similar way, differgmes of edges are used to
represent the relationships between features. Additigriadth nodes and edges are
provided with attributes which are used to set propertiek s1$ the name of features or
the kind of FM a node/edge is representing (i.e. input or oi)tp

In addition to the elements of the model, we also used sonpehstructures and
attributes to implement our proposal. This is a common prasthen implementing
graph transformations [13]. For instance, we used auyihades (visually represented
as circles) to maintain traceability between the or refatfops in the input and output
graphs. In a similar way, we used attributes to define hejpfoperties as the number
of children of the or relationships (see Figure 5).

Both AGG rules execute the same merging operation on the imbdeassume a
different starting situation. On the one hand, transforomatule 1 is executed when the

or-relation has not been created on the output FM yet. Indage, the application of
the rule implies the creation of the or-relation. On the ottend, transformation rule 2
illustrates the case in which the or-relation has been pusly created as a result of a
previous transformation rule. In both cases, a NAC is us@flitoantee that the rule is
applied to the same elements only once.

TRANSFORMATION RULE 1

4[[1]0r-Mand-1-1 of GraGra &
=T - = =]
[| [I e 2 | [111 [z | [e | e I
mocel="Input1" | model="0utout” ‘ model="Tnput1" |model: Input2” | model="0utput” model="InpLt-1" ‘model="Input2" ‘moa‘s/:‘ompm“
name=parent name| | name=parent_name | ¢ name| | t name) t_name t_name t name| | t_name
{7hasRelationship | hasRelationship | 7-hasRelationship g:MandatoryChild i S:MandatoryChild
v v v v
[e:or | [or] [gor | [4Feature | =i Gor 4 Feature or
modz=TnputA" modei="Output’ mode Ut 1 moder npit 2* rodsEmpuET”| moder="nput 2" modeoupuE
nchildren=n nchildren=nc nchildren=n name=child_name name=child_name nchitdren=1
¥ T - < -]
N ol { ghaschild {erhaschild T~ o P { nasGhild
N < - H
) | Ry »
Kil L A KN M I I K
TRANSFORMATION RULE 2
[1]0r-Mand-1.2 of GraGra &

| 0

E
|modef: "Output”
| tname|

e
‘mob‘e.’:“lnpuﬁ 3
| t name)

ame|

i [i
‘maa‘m:“mpum i ‘man‘e/: Input2"
L L L.

e
|modﬂf: "Outpui’
t_name) |

Jame‘

it
model"Tnput-1"
t_name

is i 4 MandatoryGhild

2 | g:nasrelationship 11:MandatoryChitd {12:nasRslationship

A 3 . 4
R Emr| [B ||| B [B [
Feature | i | =i ‘ |mode="Ouipur [mode=Taput ‘nmue\:"\npur:“ | mode=0upur

nams

modz0utpur L X L] | | 1 | _name | 1
name=child_name ; R 4 [Tl T S g 147 7

{ 10-haschild™ « - | 10hasChild ~ ; | hasChild

a - L > u
8RR
<] I [0 < I I» < 1L vl

Fig.5: AGG rules

AGG works exclusively with the graphs created using itsadind not with exter-
nal models. Thus, input models must be represented as AGghgtzefore applying
transformations. In a similar way, once the transformatsoperformed, the obtained
graph must be translated to the target model. The automaesldtion of a FM to an
AGG graph and vice versa is out of the scope of this paper. Merysince AGG uses
XML to store the graphs, we consider XSL transformationdadte used as a suitable
strategy for the translations model-to-graph and grapimadel in the context of AGG.

3.4 Overview and running example

A software company specialized in mobile phone controlesyst provides two main
families of products to its customers. The company has adttbat both families of
products share a wide common set of features, and it hasatktadcombine all of
them into an SPL in order to reduce development costs andtornearket.

As a first step, the software architect has decided to debgRM of the SPL as a
starting point for driving future development. Howeveg thigh number and complex-
ity of existing products make the design of this FM a timesianing and error-prone

activity. As a result of this, the software architect desitieuse an automated approach
like the one presented in this paper in order to improve tfieieficy and reliability of
the process. Next, we summarize the main steps he/she gbdavdto apply or re-use
our proposal:

1. Design the catalogue of merge rules to be used. Noticedifiatent application
domains could require different merging criteria. In a $&mivay, other extensions
to the traditional notation of FMs could require a differsaet of merge rules. In our
example, the software architect selects our catalogudes 85 a suitable approach
to merge extended FMs.

2. Checkthe correctness of the catalogue. We have propesegautomated analysis
of FMs by means of FAMA. However, other alternatives such singitheorem
provers may be also feasible [1].

3. Implement the catalogue of rules. We propose using grapisformations and the
AGG system as a suitable approach. However, we considergitiygh transforma-
tion engines could also be used for this purpose. In the gbat@ur example, the
software architect decides to use our implementation of#talogue in AGG.

4. Design a common catalogue of features and use it to moel&lkts to be merged.
Figure 6 depicts the simplified FMs of the two families of puots of the company.

5. Execute the merging process. Figure 7 illustrates asshet of the FM generated
in AGG as a result of the automated merging process. Notagtlie input FMs
and some of the attributes are not included due to spaceraorist

5
[Utiity Functions | [settings | [Media_|
Games [Java support [Camera]
S
Messaging

p 4

Fig. 6: Feature models to be merged

Once the resulting FM is generated, it could be automagicalblysed to extract
helpful information such as the number of potential producdbmmonality of features,
set of features of minimum cost, etc [8]. This informatiomltbbe later used to make
relevant design decisions such as selecting the set ofréssatioat should be part of the
core architecture of the SPL [24].

4 Related Work

This work is partially inspired by the proposal of Alvesal.[1], in which they mo-
tivate the need for refactoring FMs. In their work, the authpropose a catalogue of

Root
name="NlahilzPhans"

R T~ OpfionalChild oy
MandatonChilg ~ -QpionalChild = ~ o

~ s

MandatoryChild

T Featurs Feature

|name="wedia"| P ’ |name="Cannactivity'|

name="Seffings"

5N w® ’oN
! A os ¥ A
Mandatoryhild Optionaichild s < OptionalChild ’ \
/ o A optionalChild \ OptionalChild
MandatenChild N 7 fe \ / \
<

™ _ OptionalChild OptionalChild
N

\ / \

» A | | 4 L |
N e — e |[Foawe | [Feawe] [Featue]

[eare | [P -— |name="0E"| |name="Biuetootr |

|name="Tessagng’| |name="Games'| | name="Java Suppor| |[nams="05"| |name="CGamera' | [nam=="MP¥'|

MandatoryChild \ OptionalChilt haspeiationship ! hasRefationship | hasatribute
Qv o 4 var
Featurs Feature \ OptionalChild

haschiid /i paschild hasChild / "hasChild name="Speed’
A 3 ’ domain="Real

g P Value="12"
[Atribute — ¥ L L Featurs Feature
name="Memory"| 3SATIRL |Feature Feature Feature name="WinCE'| |name="Symbian"
domain="Real" name="SMS"| [name="MMS" | name="EMS"
Value="200"

Fig. 7: Automated merging of feature models in AGG

refactoring rules describing the refactoring operatidra tan be performed on sin-
gle FMs. They also motivate the need for merging FMs (whay ttedl bidirectional
refactoring3. Additionally, the authors propose using the automatedyais of FMs,
using Alloy as a suitable mechanism, to check the correstoéthe catalogue [14].
In contrast to our work, the merging of extended FMs or themated support for
FM refactoring are topics not covered by their proposal.éttheless, we presume that
graph transformation could be also used as a suitable mischao implement their
catalogue. This way, their proposal could be complemerttaigurs for providing a
complete tool support for FM refactoring.

Schobbengt al. [26] survey feature diagrams variants and generalize theus
syntaxes through a generic artifact callede Feature Diagram&-FD). In their work,
the authors identify and define three kinds of merging ojmraton FMsintersection
unionandreduced productTo the best of our knowledge, they do not provide auto-
mated support for the merging of FMs. However, we considisr ahcomplement to
our proposal, since it states clearly the semantic of tHergifit merging operations on
FMs. In this context, we presume that our proposal could led tsimplement any of
the identified merging operations by designing an apprapdatalogue of rules.

Czarneckkt al.[12] propose an algorithm to compute a FM from a given proposi
tional formula. They point at reverse engineering and nmgygif FMs as some of the
main applications of their approach. In contrast to our wéhkir algorithm does not
support the merging of feature attributes and cross-trastaaints.

Another related work is proposed by Apet al. [2], who present an algebra for
Feature-Oriented Software Development (FOSD). As parheit tapproach, they in-
troduce the so-called Feature Structure Trees (FST) as hanistn to organize the
structural elements of a feature hierarchically. In thisteat, the authors present a pro-
cedure for composing features based on the compositiorg{nggrof FST using tree
superimposition. Roughly speaking, tree superimpositiescribes how to compose
trees by starting from the root and proceeding recursivadyn our work, they assume
that nodes with the same name refer to the same softwaracastiiCompared to our

work, they focus on single features instead of complete HMaddition, they do not
consider cross-tree constraints or feature attributeseassxplore in our proposal.

Liu et al.study SPL refactoring at the code level and propose whatdhkfeature
Oriented Refactoring (FOR) [18]. They focus on providingm$automatic refactoring
methodology to enable the decomposition of a program, lyslegjacy, into features.
This approach complements our work, since it could be usedsastable strategy to
obtain the FMs of the legacy systems to be merged into anatixteaapproach.

5 Discussion and Future Work

In this paper we present our first research results towardut@mated merging of FMs

by using graph transformations. However, there still areyr@pen issues that must be
addressed to provide a solid tool support. In particularjdeatify several challenges

for our future work:

— Providing formal semantics to our approach. To this aim, ‘em o define the
merge operation using a formal semantic for FMs [26].

— Validating the catalogue or rules to be correct and completerding to the given
semantics. We consider that the tools for the automategsisalf FMs may be
helpful for that purpose. However, we also plan to study teéeoprovers and model
checkers such as PV8r Groové? for that aim.

— For the proof of concept performed in this paper, we delitedyanade some strong
assumptions (e.g. feature must have the same name). A mongleoapproach
should allow the merging of FMs including synonym names ffedént attribute
domains. We plan to study the works in the area of the integraif database
schemas and ontologies for this aim [28].

— As we previously mentioned, some of the main advantagesinf§ GG are its
mechanisms for consistency-checking and conflict analysisile applications.
Exploiting massively these mechanisms and especially tiieat pair analysis
technique to detect conflicts between merge rules [22] isrgooitant part of our
on-going research.

— Finally, we plan to make our proposal available by integigit into the FAMA

plug-in [8].

6 Conclusions

In this paper we propose using graph transformations asabseitechnology and as-
sociated formalism to implement the merging of FMs. In maittir, we first presented a
catalogue of visual rules to describe how to merge FMs. ldbintext, we detailed how
we used the FAMA plug-in for a basic validation of the catalegThen, we introduced
a prototype implementation of our catalogue using graptsfamations and the AGG
system. Finally, we looked at how to apply and re-use our @gsapby means of a run-
ning example inspired by the mobile phone industry. In casitto existing proposals,

% http://pvs.csl.sri.com/
10 http://groove.sf.net

we support the merging of FMs including feature attributed eross-tree constraints.
We also emphasize that our proposal could be extended oteatitp support other
merging criteria (e.g. intersection) or FM’s notations.

Acknowledgments

We would like to thank the reviewers of the Second Summer 8atmGenerative and
Transformational Techniques in Software Engineering, sehcomments and sugges-
tions helped us to improve the paper substantially. We &laok Patrick Heymans for
his useful comments.

References

1. V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and.@ena. Refactoring product
lines. INnGPCE '06: Proceedings of the 5th international conferenceGenerative pro-
gramming and component engineerimpgges 201-210, New York, NY, USA, 2006. ACM
Press.

2. S. Apel, C. Lengauer, D. Batory, B. Moller, and C. Kastren algebra for feature-oriented
software development. Technical Report MIP-0706, Depantnof Informatics and Mathe-
matics, University of Passau, Germany, July 2007.

3. L. Baresiand R. Heckel. Tutorial introduction to grapmsformation: A software engineer-
ing perspective. INCGT '02: Proceedings of the First International Conferenan Graph
Transformationpages 402—-429, London, UK, 2002. Springer-Verlag.

4. D. Batory. Feature models, grammars, and propositiomahidlas. InSoftware Product
Lines Conference, LNCS 371gages 7-20, 2005.

5. D. Batory, D. Benavides, and A. Ruiz-Cortés. Automatedlysis of feature models: Chal-
lenges aheadCommunications of the ACNDecember, 2006.

6. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Autordaiasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17thnatenal Conference, CAISE
2005 3520:491-503, 2005.

7. D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Seghraurvey on the automated anal-
yses of feture models. ldornadas de Ingenieria del Software y Bases de Datos (JJSBD
2006.

8. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Coff8A: Tooling a framework for
the automated analysis of feature modelsPtaceeding of the First International Workshop
on Variability Modelling of Software-intensive System&8NMDS) pages 129-134, 2007.

9. D. Benavides, S. Trujillo, and P. Trinidad. On the moduksion of feature models. IRirst
European Workshop on Model Transformati®@eptember 2005.

10. P. Clements and L. Northrofoftware Product Lines: Practices and Patter8&l Series in
Software Engineering. Addison—Wesley, August 2001.

11. K. Czarnecki and S. Helsen. Feature-based survey oflriradsformation approache8M
Syst. J.45(3):621-645, 2006.

12. K. Czarnecki and A. Wasowski. Feature diagrams anddogicere and back again. Irith
International Software Product Line Conference (SPLC 20p@ges 23-34, Los Alamitos,
CA, USA, 2007. IEEE Computer Society.

13. K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levend&ys2J). Prange, G. Taentzer,
D. Varro, and S. Varro-Gyapay. Model transformation bgdr transformation: A compar-
ative study. InMTiP 2005, International Workshop on Model Transformasidn Practice
(Satellite Event of MODELS 2003)005.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Rohit Gheyi, Tiago Massoni, and Paulo Borba. A theoryidature models in alloy. IRirst
Alloy Workshoppages 71-80, Portland, United States, nov 2006.

R. Heckel, J. Malte Kiister, and G. Taentzer. Confluefitgped attributed graph transfor-
mation systems. IMCGT '02: Proceedings of the First International Conferenzn Graph
Transformationpages 161-176, London, UK, 2002. Springer-Verlag.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Petersonurée@riented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR, Software Engineering
Institute, Carnegie Mellon University, November 1990.

C.W. Krueger. Easing the transition to software massmigation. InPFE '01: Revised
Papers from the 4th International Workshop on Software Bebdramily Engineeringpages
282-293, London, UK, 2002. Springer-Verlag.

J. Liu, D. Batory, and C. Lengauer. Feature orientecctefang of legacy applications. In
ICSE '06: Proceeding of the 28th international conferenceSmftware engineeringpages
112-121, New York, NY, USA, 2006. ACM Press.

T. Mens. Conditional graph rewriting as a domain-inaejeat formalism for software evolu-
tion. In AGTIVE '99: Proceedings of the International Workshop omplgations of Graph
Transformations with Industrial Relevangeages 127-143, London, UK, 2000. Springer-
Verlag.

T. Mens. On the use of graph transformations for modattefing. Generative and Trans-
formational Techniques in Software Engineering. LNEB13:219-257, 2006.

T. Mens, P.V. Gorp, D. Varro, and G. Karsai. Applying adebtransformation taxon-
omy to graph transformation technolodsiectronic Notes in Theoretical Computer Science
(ENTCS) 152:143-159, 2006.

T. Mens, G. Taentzer, and O. Runge. Analysing refagatependencies using graph trans-
formation. Software and Systems Modeljri§3):269-285, September 2007.

T. Mens and T. Tourwé. A survey of software refactorinEEE Trans. Softw. Eng.
30(2):126-139, February 2004.

J. Pefia, M. Hinchey, A. Ruiz-Cortés, and P. Trinidadiildng the core architecture of a
multiagent system product line: With an example from a feito@sa mission. Iith Inter-
national Workshop on Agent Oriented Software EngineellifNCS, 2006.

G. Rozenberg, editoiHandbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: FoundationgVorld Scientific, 1997.

P. Schobbens, P. Heymans, J. Trigaux, and Y. BontempsureeDiagrams: A Survey and A
Formal Semantics. IRroceedings of the 14th IEEE International Requirementifgering
Conference (RE'06Minneapolis, Minnesota, USA, September 2006.

S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trthidaward automated refactoring of
feature models using graph transformations. In Ernestefteh editor\VIl Jornadas so-
bre Programacion y Lenguajes, PROLE 20@éages 275-284, Zaragoza. Spain, September
2007.

P. Shvaiko and J. Euzenat. A survey of schema-based imgqgbproacheslournal on Data
Semantics IYpages 146-171, 2005.

G. Taentzer. Agg: A graph transformation environmentiiodeling and validation of soft-
ware. In2nd Int. Workshop on Applications of Graph Transformatisalume 3062 of
Lecture Notes in Computer Scien&pringer, 2004.

S. Trujillo, D. Batory, and O. Diaz. Feature refactoranmulti-representation program into
a product line. INGPCE '06: Proceedings of the 5th international conferenoeGenera-
tive programming and component engineeripgges 191-200, New York, NY, USA, 2006.
ACM Press.

B. Westfechtel. Structure-oriented merging of revisiof software documents. Rroceed-
ings of the 3rd international workshop on Software configioramanagemenpages 68—79,
New York, NY, USA, 1991. ACM.

Appendix A. Merge Rules

FM-A

.
E g

=] g

B ¢ Features (FM-B)

]

B ¢ Features (FM-B)

" Altribute Name: N §

T
1
- Domain: D1 |
1

| Attribute Name: N

]
i
-~} Domain: D2 |
i

[Attribute Name: N

i
~-| Domain: {D1} U {D2} i
i

| Attribute Name: N |
-+ Domain: D1 |
1 Value: v i
[P i

i
-} Domain: D2 !
i

VET v
[i

!

! i]

LAt ! [i [i
V1£V2

i
| Domain: {D1} U (D2} i
i

(b) Feature attributes

FM

FM-B

B £ Features (FM-B)

[<F=]

B € Features (FM-B)

FM-A

(c) Or-/Alternative relationships

FM-A

FM-B

FM

AB ¢ Features (FM-B)

A,B ¢ Features (FM-B)

B ¢ Features (FM-B)

A ¢ Features (FM-B)

B ¢ Features (FM-B)

A ¢ Features (FM-B)

-------- --------
-------- L] | [

(d) Cross-tree constraints

