
Automated Merging of Feature Models using Graph
Transformations ⋆

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, andPablo Trinidad

University of Seville, Spain
{sergiosegura,benavides,aruiz,ptrinidad} AT us.es

Abstract. Feature Models (FMs) are a key artifact for variability and common-
ality management in Software Product Lines (SPLs). In this context, the merging
of FMs is being recognized as an important operation to support the adoption and
evolution of SPLs. However, providing automated support for merging FMs still
remains an open challenge. In this paper, we propose using graph transformations
as a suitable technology and associated formalism to automate the merging of
FMs. In particular, we first present a catalogue of technology-independent visual
rules to describe how to merge FMs. Next, we propose a prototype implementa-
tion of our catalogue using the AGG system. Finally, we show the feasibility of
our proposal by means of a running example inspired by the mobile phone indus-
try. To the best of our knowledge, this is the first approach providing automated
support for merging FMs including feature attributes and cross-tree constraints.

1 Introduction

Software Product Line(SPL) engineering is an approach to developing families of soft-
ware systems in a systematic way [10]. Roughly speaking, an SPL can be defined as
a set of software products sharing a common set of features. Afeature is defined as
an increment in product functionality [5]. In this context,Feature Models(FMs) are
commonly used to provide a compact and visual representation of all the products of an
SPL in terms of features.

Typical SPL adoption strategies involve building an SPL from a set of existing soft-
ware products or extending an existing SPL to include new products [17]. In both cases,
the artifacts of different software systems must be combined into a single SPL. In this
context, the usage of specific SPL refactoring techniques isemerging as a key practice
to support the adoption and evolution of SPLs [1,18,30].

It is accepted that not only programs should be refactored inthe context of an SPL
but also FMs. In particular, the merging of FMs emerges as an appealing operation
to support the evolution of SPLs at the model level [1,12]. Inthis context, different
semantics for the operation of merging of FMs have been proposed in the literature
[26]. For the proof of concept presented in this paper, we consider the merging of FMs
as an operation that takes as input a set of FMs and returns a new FM representing, as a

⋆ This work has been partially supported by the European Commission (FEDER) and Span-
ish Government under CICYT project Web-Factories (TIN2006-00472) and the Andalusian
Government project ISABEL (TIC-2533)

minimum, the same set of products than the input FMs. Once this FM representing all
products is generated, it may be used as a starting point for driving future development.

Graph Transformationsare a very mature approach, having been used for 30 years
for the generation, manipulation, recognition and evaluation of graphs [25]. Most visual
languages can be interpreted as a type of graph (directed, labeled, etc.). This makes
graph transformations a natural and intuitive way for transforming models [11,13,21].
Graph transformations are defined in a visual way and are provided with a set of tested
tools to define, execute and test transformations. Additionally, graph transformation
theory provides a solid formal foundation enabling the checking of interesting formal
properties such as confluence, sequential and parallel (in)dependence, etc. [15]. All
these characteristics make graph transformations a suitable technology and associated
formalism for model refactoring [20,23] and software merging [19,31].

In previous work [27] we detailed our intention of providingautomated tool support
for FM refactoring using graph transformations. In this paper we present our first results
in that direction. In particular, the contribution of this paper is twofold:

– We propose a catalogue of 30 visual rules to merge FMs. In contrast to existing
proposals, our catalogue includes rules to describe how to merge FMs including
feature attributes and cross-tree constraints.

– We propose using graph transformations as a suitable technology to automate the
merging of FMs. In order to show the feasibility of our proposal, we present a
prototype implementation of our catalogue of rules using the AGG system [29]. To
the best of our knowledge, this is the first approach providing automated support
for merging FMs including feature attributes and cross-tree constraints.

The remainder of the paper is structured as follows: in Section 2, the main concepts
of feature models and graph transformations are introduced. Our proposal is presented
in Section 3. In Section 4, we survey related work. We describe the main challenges
remaining for our future work in Section 5. Finally, we summarize our main conclusions
in Section 6.

2 Preliminaries

2.1 Feature Models

Feature Models (FM) [16] are used to model sets of software systems in terms of fea-
tures and relations among them (see Figure 1). A feature can be defined as an increment
in product functionality [5]. FMs are commonly used as a compact representation of all
the products of an SPL in terms of features.

A FM is visually represented as a tree-like structure in which nodes represent fea-
tures, and connections illustrate the relationships between them. Figure 1 depicts a sim-
plified example FM inspired by the mobile phone industry. Themodel illustrates how
features are used to specify and build software for mobile phones. The software loaded
in the phone is determined by the features that it supports. The root feature identifies the
SPL. The relationships between a parent feature and its child features can be divided
into:

Mobile Phone

Calls

Voice Data Alarm clock

Utility Functions

Messaging

SMS MMSEMS

Connectivity

WifiBluetooth

Settings

MP3

CameraJava supportRinging tones

Games

USB

MP4

Media

OS

Symbian WinCE

Mandatory

Optional

Alternative

Or

Requires

Excludes
Name: Cost
Domain: Real
Value: 85.5

Name: Memory
Domain: Real
Value: 725

Fig. 1: A sample feature model

– Mandatory. If a child feature is mandatory, it is included in all products in which
its parent feature appears. Hence, for instance, accordingto the sample model, all
mobile phones must provide support forringing tones.

– Optional. If a child feature is defined as optional, it can be optionally included in
all products in which its parent feature appears. For instance, the sample feature
model definesgamesas an optional feature.

– Alternative. A set of child features are defined as alternative if only onefeature can
be selected when its parent feature is part of the product. Asan example, according
to the model, a mobile phone will use aSymbianor aWinCEoperating system but
not both in the same product.

– Or-Relation. A set of child features are said to have an or-relation with their parent
when one or more of them can be included in the products in which its parent fea-
ture appears. Hence, for instance, according to the sample model, a mobile phone
can provide connectivity support forbluetooth, USB, wifi or any combination of the
three.

Notice that a child feature can only appear in a product if itsparent feature does.
The root feature is a part of all the products within the SPL. In addition to the parental
relationships between features, a FM can also contain cross-tree constraints between
features. These are typically of the form:

– Requires. If a feature A requires a feature B, the inclusion of A in a product implies
the inclusion of B in such product. Hence, for instance, in the example shown,
mobile phones includinggamesrequireJava support.

– Excludes. If a feature A excludes a feature B, both features cannot be part of the
same product. As an example, the SPL represented in Figure 1 removes the possi-
bility of offering support forMP3andMP4 formats in the same product.

Feature Models were first introduced as a part of the Feature-Oriented Domain
Analysis method (FODA) by Kang back in 1990 [16]. Since then,multiple extensions
to the traditional notation have been proposed in order to increase its expressiveness
[7]. In this context, some well known extensions are the so-called Extended Feature
Models[4,5,6]. Roughly speaking, extended FMs propose adding extra-functional in-
formation to the features using attributes. There is no consensus on a notation to define

attributes. However, most proposals agree that an attribute should consist at least of a
name, adomainand avalue. For instance, the feature ’MMS’ in Figure 1 includes some
feature attributes using the notation proposed by Benavideset al. in [6]. As illustrated,
attributes can be used to specify extra-functional information such as cost, speed or
RAM memory required to support the feature.

2.2 Graph Transformations

Graph Grammarsare a mature approach for the generation, manipulation, recognition
and evaluation of graphs [25]. Graph grammars have been studied and applied in a
variety of different domains such as pattern recognition, syntax definition of visual lan-
guages, model transformations, description of software architectures, etc. This develop-
ment is documented in several surveys, tutorials and technical reports [3,13,20,21,25].

Graph grammars can be considered as the application of the classic string grammar
concepts to the domain of graphs. Hence, a graph grammar is composed of an initial
graph, a set of terminal labels and a set of transformation rules (sometimes also called
graph productions). A transformation rule is composed mainly of a source graph or
Left-Hand Side (LHS) and a target graph or Right-Hand Side (RHS). The application
of a transformation rule to a so-called host graph, also called direct derivation, consists
of looking for an occurrence of the LHS graph in the host graph. If this match is found,
the occurrence of the LHS in the graph is replaced by the RHS ofthe given rule. Thus,
each rule application transforms a graph by replacing a partof it by another graph. The
set of all graphs labelled with terminal symbols that can be derived from the initial
graph by applying the set of transformation rules iteratively is the language specified
by the graph grammar.

The application of transformation rules to a given graph is called Graph Trans-
formation. Graph transformations are usually used as a general rule-based mechanism
to manipulate graphs. Most visual modelling languages can be interpreted as a type
of graph (directed, labelled, attributed, etc.). This makes graph transformations recog-
nized as a suitable technology for the specification and application of model transfor-
mations [11,13,21], model refactoring [20,23] and software merging [19,31]. Hence, as
documented in the literature, the reasons to select graph transformations as a suitable
approach for the transformation and refactoring of visual models are manifold:

– Graph transformations are a natural and intuitive way of performing pattern-based
visual model transformations.

– The maturity of graph transformations has provided it with asolid theoretical foun-
dation in the form of useful properties [15,22]. Hence, for instance, the properties
of sequentialandparallel dependenceare used to detect the set of transformation
rules that must be applied in a given sequence and the set of rules that can be applied
in parallel.

– There is a variety of mature tools to define, execute and test transformations rules.
Fujaba1 and the AGG System2 are two of the most popular general-purpose graph

1 http://wwwcs.uni-paderborn.de/cs/fujaba/
2 http://tfs.cs.tu-berlin.de/agg/

transformation tools within the research community. Nevertheless, other tools such
as GReAT3, VIATRA24 or GROOVE5 are also starting to emerge as a consequence
of the increasing popularity of graph transformations in the model-driven develop-
ment domain.

3 Our proposal

In this section we present our proposal. In particular, we first propose a catalogue of vi-
sual rules describing how to merge FMs. Then, we present a prototype implementation
of the proposed catalogue using graph transformations and the AGG system. Finally, we
clarify our contribution by means of an example inspired by the mobile phone industry.

3.1 Catalogue of rules

In Appendix A (see page 15), we present a catalogue of 30 visual, technology-independent
rules to describe how to merge FMs. More specifically, our catalogue ofmerge rulesde-
scribes how to build a FM including all the products represented by two given FMs.

Each merge rule consists of two input patterns of the FMs to bemerged (precondi-
tions) and an output pattern of the new FM generated as a result of the merging (post-
conditions). The rules can be iteratively applied by looking for matches in the input
patterns on the two FMs to be merged. A match is an assignment of the variables of the
patterns to concrete values. The elements not mentioned in any of the patterns remain
unchanged by default. The result of the merging is defined as anew FM including all
the products represented by the merged FMs. This resulting FM could be later used as
an input model in any other merging operation.

As previously mentioned in Section 1, the merging of FMs makes sense especially
when dealing with a set of related products in an SPL domain. Therefore, in order to
make this first proposal possible, we make a double assumption:

– Input FMs represent related products using a common catalogue of features. For
the sake of simplicity, we assume that features with the samename6 refer to the
same feature and consequently to the same software artifacts.

– The parental relationship between features is equal in all the FMs. That is, a feature
must have the same parent feature in all the models in which itappears.

Figure 2 depicts one of the merge rules defined in our catalogue. The input and
output patterns of the rule are placed on the left and right side of the arrow respectively.
The sample rule illustrates the case in which a feature is defined as a child of an or-
relationship and as a mandatory feature in both inputs FMs respectively. As a result of
the merging operation, the feature is included in an or-relationship in the resulting FM
preserving the configurability options (products) and the grouping structure.

3 http://www.escherinstitute.org/Plone/tools
4 http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2
5 http://groove.sf.net
6 A name could be a string, an identifier, a signature, etc.

A

BB

A

B

A

Fig. 2: A sample merge rule

Providing basic support for merging extended FMs is also a part of our contribution.
To this aim, we also define rules describing how to merge feature attributes. As an
example, Figure 3 illustrates the case in which a given feature has an attribute with the
same name in both input FMs. More specifically, both attributes have the same name
and value but different domains. As a result of the merging operation, an attribute with
the same name and value is created in the resulting model. Thedomain of the new
attribute consists of the union of the domains of the merged attributes. This way we
guarantee that the attribute can take the same values as in the input FMs.

A
Attribute Name: N
Domain: D1
Value: V

A
Attribute Name: N
Domain: D2
Value: V

A
Attribute Name: N
Domain: {D1} U {D2}
Value: V

Fig. 3: Merging feature attributes

3.2 Correctness of the catalogue

We consider our catalogue of merge rules to be correct if it guarantees that the set of
products represented by the resulting FM includes, as a minimum, the set of products
represented by the merged FMs. Performing an exhaustive check of the correctness
and completeness of the catalogue of rules is out of the scopeof this paper. However,
in order to perform a preliminary validation of the catalogue, we used FAMA7 [8], a
framework for the edition and automated analysis of FMs. Next, we describe the main
steps we followed to test each merge rule:

1. We modelled two example input FMs that matched the input patterns of the merge
rule to be validated.

2. We used FAMA to extract the set of products represented by the example input
FMs.

3. We created a new FM simulating the application of the givenmerge rule to the
example input FMs.

7 http://www.isa.us.es/fama

4. We used FAMA again to extract the set of products represented by the new FM.
5. We finally checked that the set of products represented by the input FMs were

included in the set of products represented by the output FM.

3.3 Implementation using graph transformations

In this section we propose using model transformations as anappropriate mechanism
to provide automated tool support for merging FMs. In particular, we present a pro-
totype implementation of our catalogue of merge rules for merging FMs using graph
transformations.

In order to implement our proposal, we selected a popular tool within the graph
grammar community:The Attributed Graph Grammar System (AGG)8 [29]. AGG is a
free Java graphical tool for editing and transforming graphs by means of graph trans-
formations. AGG graphs may be typed over a type graph and attributed by Java objects
and types. Rule application order may be controlled by dividing rules into layers. Due to
its formal foundation, AGG offers validation support for consistency-checking of graph
transformation systems according to graph constraints, critical pair analysis to find con-
flicts between rules [20,22] and checking of termination criteria. All these reasons made
us select AGG as a suitable tool to implement our proposal.

AGG graph transformation rules consist of three parts: a left-hand side graph (LHS)
and a right-hand side graph (RHS), a mapping between nodes and edges on both sides
and a set of Negative Application Conditions (NACs). NACs are preconditions pro-
hibiting certain object structures on the graph from being transformed. Figure 4 shows
a screenshot of the AGG GUI. On the left hand side, a tree view displays the working
graph and the rules of the proposed grammar. In the upper central area, the NAC (if any)
and the LHS and RHS graphs of the selected rule are displayed.Finally, the central area
is reserved for the host graph.

Merge rules and graph transformation rules are based on verysimilar concepts. In
particular, both approaches use visual patterns to describe modifications in the structure
of a model/graph in terms of pre- and postconditions. Hence,in order to implement our
proposal, we mapped our catalogue of merge rules into AGG rules. Next, we outline
the main steps we followed to implement our proposal in AGG:

1. Firstly, we defined a set of typed nodes and edges in order torepresent FM as
graphs. Hence, for instance, we defined a feature as a type of node and an optional
relationship as a type of edge. Additionally, we set different visual layouts for the
different types of nodes and edges in order to make graphs easily comprehensi-
ble. As an example, we used solid and dashed edges to represent mandatory and
optional relationships respectively.

2. Next, we created an attributed type graph. From an intuitive point of view, a type
graph may be considered as a meta-graph expressing the well-formedless rules that
must hold for all graphs. AGG type graphs may include abstract nodes (i.e. not
instantiable), node type inheritance and UML-like multiplicities. Graphs obtained
as a result of a transformation rule are automatically checked for compliance with

8 Version 1.6.2.2

Fig. 4: The AGG System

the type graph. This way, consistency-checking is automatically performed during
the merging process. In the current version of our prototype, the type graph was
based on a simplified version of the meta-model for attributed FMs presented in
[9].

3. The following step was mapping each merge rule into one or more AGG rules. To
this aim, we implemented the input and output patterns of themerge rules as the
LHS and RHS graphs of the graph transformation rule respectively.

4. In addition to the LHS and RHS graphs, we finally defined additional NACs to
restrict when rules can be applied. Hence, for instance, typical NACs avoid the
execution of a transformation rule more than once.

As an example, Figure 5 shows a screenshot of the AGG rules used to implement
the merge rule presented in Figure 2. From left to right, the NAC, LHS and RHS graphs
of each rule are presented. As illustrated, different typednodes are used to represent
features and or relationships. In a similar way, different types of edges are used to
represent the relationships between features. Additionally, both nodes and edges are
provided with attributes which are used to set properties such as the name of features or
the kind of FM a node/edge is representing (i.e. input or output).

In addition to the elements of the model, we also used some helper structures and
attributes to implement our proposal. This is a common practice when implementing
graph transformations [13]. For instance, we used auxiliary nodes (visually represented
as circles) to maintain traceability between the or relationships in the input and output
graphs. In a similar way, we used attributes to define helpfulproperties as the number
of children of the or relationships (see Figure 5).

Both AGG rules execute the same merging operation on the models but assume a
different starting situation. On the one hand, transformation rule 1 is executed when the

or-relation has not been created on the output FM yet. In thiscase, the application of
the rule implies the creation of the or-relation. On the other hand, transformation rule 2
illustrates the case in which the or-relation has been previously created as a result of a
previous transformation rule. In both cases, a NAC is used toguarantee that the rule is
applied to the same elements only once.

TRANSFORMATION RULE 1

TRANSFORMATION RULE 2

Fig. 5: AGG rules

AGG works exclusively with the graphs created using its editor and not with exter-
nal models. Thus, input models must be represented as AGG graphs before applying
transformations. In a similar way, once the transformationis performed, the obtained
graph must be translated to the target model. The automated translation of a FM to an
AGG graph and vice versa is out of the scope of this paper. However, since AGG uses
XML to store the graphs, we consider XSL transformations could be used as a suitable
strategy for the translations model-to-graph and graph-to-model in the context of AGG.

3.4 Overview and running example

A software company specialized in mobile phone control systems provides two main
families of products to its customers. The company has noticed that both families of
products share a wide common set of features, and it has decided to combine all of
them into an SPL in order to reduce development costs and time-to-market.

As a first step, the software architect has decided to design the FM of the SPL as a
starting point for driving future development. However, the high number and complex-
ity of existing products make the design of this FM a time-consuming and error-prone

activity. As a result of this, the software architect decides to use an automated approach
like the one presented in this paper in order to improve the efficiency and reliability of
the process. Next, we summarize the main steps he/she shouldfollow to apply or re-use
our proposal:

1. Design the catalogue of merge rules to be used. Notice thatdifferent application
domains could require different merging criteria. In a similar way, other extensions
to the traditional notation of FMs could require a differentset of merge rules. In our
example, the software architect selects our catalogue of rules as a suitable approach
to merge extended FMs.

2. Check the correctness of the catalogue. We have proposed using automated analysis
of FMs by means of FAMA. However, other alternatives such as using theorem
provers may be also feasible [1].

3. Implement the catalogue of rules. We propose using graph transformations and the
AGG system as a suitable approach. However, we consider other graph transforma-
tion engines could also be used for this purpose. In the context of our example, the
software architect decides to use our implementation of thecatalogue in AGG.

4. Design a common catalogue of features and use it to model the FMs to be merged.
Figure 6 depicts the simplified FMs of the two families of products of the company.

5. Execute the merging process. Figure 7 illustrates a screenshot of the FM generated
in AGG as a result of the automated merging process. Notice that the input FMs
and some of the attributes are not included due to space constraints.

Mobile Phone (A)

Calls

Voice Data

Utility Functions

Messaging

SMS MMS

Connectivity

Bluetooth

Settings

USBOS

Symbian WinCE Name: Speed
Domain: Real
Value: 12

Name: Memory
Domain: Real
Value: 200

Mobile Phone (B)

Calls

Voice Data

Utility Functions

Messaging

SMS MMS

Settings

MP3CameraJava supportGames

Media

OS

Symbian WinCE

Name: Memory
Domain: Real
Value: 200

EMS

Fig. 6: Feature models to be merged

Once the resulting FM is generated, it could be automatically analysed to extract
helpful information such as the number of potential products, commonality of features,
set of features of minimum cost, etc [8]. This information could be later used to make
relevant design decisions such as selecting the set of features that should be part of the
core architecture of the SPL [24].

4 Related Work

This work is partially inspired by the proposal of Alveset al. [1], in which they mo-
tivate the need for refactoring FMs. In their work, the authors propose a catalogue of

Fig. 7: Automated merging of feature models in AGG

refactoring rules describing the refactoring operations that can be performed on sin-
gle FMs. They also motivate the need for merging FMs (what they call bidirectional
refactorings). Additionally, the authors propose using the automated analysis of FMs,
using Alloy as a suitable mechanism, to check the correctness of the catalogue [14].
In contrast to our work, the merging of extended FMs or the automated support for
FM refactoring are topics not covered by their proposal. Nevertheless, we presume that
graph transformation could be also used as a suitable mechanism to implement their
catalogue. This way, their proposal could be complementaryto ours for providing a
complete tool support for FM refactoring.

Schobbenset al. [26] survey feature diagrams variants and generalize the various
syntaxes through a generic artifact calledFree Feature Diagrams(FFD). In their work,
the authors identify and define three kinds of merging operations on FMs:intersection,
union and reduced product. To the best of our knowledge, they do not provide auto-
mated support for the merging of FMs. However, we consider this a complement to
our proposal, since it states clearly the semantic of the different merging operations on
FMs. In this context, we presume that our proposal could be used to implement any of
the identified merging operations by designing an appropriate catalogue of rules.

Czarneckiet al. [12] propose an algorithm to compute a FM from a given proposi-
tional formula. They point at reverse engineering and merging of FMs as some of the
main applications of their approach. In contrast to our work, their algorithm does not
support the merging of feature attributes and cross-tree constraints.

Another related work is proposed by Apelet al. [2], who present an algebra for
Feature-Oriented Software Development (FOSD). As part of their approach, they in-
troduce the so-called Feature Structure Trees (FST) as a mechanism to organize the
structural elements of a feature hierarchically. In this context, the authors present a pro-
cedure for composing features based on the composition (merging) of FST using tree
superimposition. Roughly speaking, tree superimpositiondescribes how to compose
trees by starting from the root and proceeding recursively.As in our work, they assume
that nodes with the same name refer to the same software artifacts. Compared to our

work, they focus on single features instead of complete FMs.In addition, they do not
consider cross-tree constraints or feature attributes as we explore in our proposal.

Liu et al.study SPL refactoring at the code level and propose what theycall Feature
Oriented Refactoring (FOR) [18]. They focus on providing a semi-automatic refactoring
methodology to enable the decomposition of a program, usually legacy, into features.
This approach complements our work, since it could be used asa suitable strategy to
obtain the FMs of the legacy systems to be merged into an extractive approach.

5 Discussion and Future Work

In this paper we present our first research results toward theautomated merging of FMs
by using graph transformations. However, there still are many open issues that must be
addressed to provide a solid tool support. In particular, weidentify several challenges
for our future work:

– Providing formal semantics to our approach. To this aim, we plan to define the
merge operation using a formal semantic for FMs [26].

– Validating the catalogue or rules to be correct and completeaccording to the given
semantics. We consider that the tools for the automated analysis of FMs may be
helpful for that purpose. However, we also plan to study theorem provers and model
checkers such as PVS9 or Groove10 for that aim.

– For the proof of concept performed in this paper, we deliberately made some strong
assumptions (e.g. feature must have the same name). A more complex approach
should allow the merging of FMs including synonym names or different attribute
domains. We plan to study the works in the area of the integration of database
schemas and ontologies for this aim [28].

– As we previously mentioned, some of the main advantages of using AGG are its
mechanisms for consistency-checking and conflict analysisof rule applications.
Exploiting massively these mechanisms and especially the critical pair analysis
technique to detect conflicts between merge rules [22] is an important part of our
on-going research.

– Finally, we plan to make our proposal available by integrating it into the FAMA
plug-in [8].

6 Conclusions

In this paper we propose using graph transformations as a suitable technology and as-
sociated formalism to implement the merging of FMs. In particular, we first presented a
catalogue of visual rules to describe how to merge FMs. In this context, we detailed how
we used the FAMA plug-in for a basic validation of the catalogue. Then, we introduced
a prototype implementation of our catalogue using graph transformations and the AGG
system. Finally, we looked at how to apply and re-use our proposal by means of a run-
ning example inspired by the mobile phone industry. In contrast to existing proposals,

9 http://pvs.csl.sri.com/
10 http://groove.sf.net

we support the merging of FMs including feature attributes and cross-tree constraints.
We also emphasize that our proposal could be extended or adapted to support other
merging criteria (e.g. intersection) or FM’s notations.

Acknowledgments

We would like to thank the reviewers of the Second Summer School on Generative and
Transformational Techniques in Software Engineering, whose comments and sugges-
tions helped us to improve the paper substantially. We also thank Patrick Heymans for
his useful comments.

References

1. V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C.Lucena. Refactoring product
lines. In GPCE ’06: Proceedings of the 5th international conference on Generative pro-
gramming and component engineering, pages 201–210, New York, NY, USA, 2006. ACM
Press.

2. S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner. An algebra for feature-oriented
software development. Technical Report MIP-0706, Department of Informatics and Mathe-
matics, University of Passau, Germany, July 2007.

3. L. Baresi and R. Heckel. Tutorial introduction to graph transformation: A software engineer-
ing perspective. InICGT ’02: Proceedings of the First International Conference on Graph
Transformation, pages 402–429, London, UK, 2002. Springer-Verlag.

4. D. Batory. Feature models, grammars, and propositional formulas. InSoftware Product
Lines Conference, LNCS 3714, pages 7–20, 2005.

5. D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature models: Chal-
lenges ahead.Communications of the ACM, December, 2006.

6. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

7. D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A survey on the automated anal-
yses of feture models. InJornadas de Ingenierı́a del Software y Bases de Datos (JISBD),
2006.

8. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tooling a framework for
the automated analysis of feature models. InProceeding of the First International Workshop
on Variability Modelling of Software-intensive Systems (VAMOS), pages 129–134, 2007.

9. D. Benavides, S. Trujillo, and P. Trinidad. On the modularization of feature models. InFirst
European Workshop on Model Transformation, September 2005.

10. P. Clements and L. Northrop.Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison–Wesley, August 2001.

11. K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.IBM
Syst. J., 45(3):621–645, 2006.

12. K. Czarnecki and A. Wasowski. Feature diagrams and logics: There and back again. In11th
International Software Product Line Conference (SPLC 2007), pages 23–34, Los Alamitos,
CA, USA, 2007. IEEE Computer Society.

13. K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, G. Taentzer,
D. Varró, and S. Varró-Gyapay. Model transformation by graph transformation: A compar-
ative study. InMTiP 2005, International Workshop on Model Transformations in Practice
(Satellite Event of MoDELS 2005), 2005.

14. Rohit Gheyi, Tiago Massoni, and Paulo Borba. A theory forfeature models in alloy. InFirst
Alloy Workshop, pages 71–80, Portland, United States, nov 2006.

15. R. Heckel, J. Malte Küster, and G. Taentzer. Confluence of typed attributed graph transfor-
mation systems. InICGT ’02: Proceedings of the First International Conference on Graph
Transformation, pages 161–176, London, UK, 2002. Springer-Verlag.

16. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

17. C.W. Krueger. Easing the transition to software mass customization. InPFE ’01: Revised
Papers from the 4th International Workshop on Software Product-Family Engineering, pages
282–293, London, UK, 2002. Springer-Verlag.

18. J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy applications. In
ICSE ’06: Proceeding of the 28th international conference on Software engineering, pages
112–121, New York, NY, USA, 2006. ACM Press.

19. T. Mens. Conditional graph rewriting as a domain-independent formalism for software evolu-
tion. In AGTIVE ’99: Proceedings of the International Workshop on Applications of Graph
Transformations with Industrial Relevance, pages 127–143, London, UK, 2000. Springer-
Verlag.

20. T. Mens. On the use of graph transformations for model refactoring.Generative and Trans-
formational Techniques in Software Engineering. LNCS, 4143:219–257, 2006.

21. T. Mens, P.V. Gorp, D. Varró, and G. Karsai. Applying a model transformation taxon-
omy to graph transformation technology.Electronic Notes in Theoretical Computer Science
(ENTCS), 152:143–159, 2006.

22. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph trans-
formation.Software and Systems Modeling, 6(3):269–285, September 2007.

23. T. Mens and T. Tourwé. A survey of software refactoring.IEEE Trans. Softw. Eng.,
30(2):126–139, February 2004.

24. J. Peña, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Building the core architecture of a
multiagent system product line: With an example from a future nasa mission. In7th Inter-
national Workshop on Agent Oriented Software Engineering. LNCS, 2006.

25. G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

26. P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Diagrams: A Survey and A
Formal Semantics. InProceedings of the 14th IEEE International Requirements Engineering
Conference (RE’06), Minneapolis, Minnesota, USA, September 2006.

27. S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Toward automated refactoring of
feature models using graph transformations. In Ernesto Pimentel, editor,VII Jornadas so-
bre Programación y Lenguajes, PROLE 2007, pages 275–284, Zaragoza. Spain, September
2007.

28. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.Journal on Data
Semantics IV, pages 146–171, 2005.

29. G. Taentzer. Agg: A graph transformation environment for modeling and validation of soft-
ware. In 2nd Int. Workshop on Applications of Graph Transformation, volume 3062 of
Lecture Notes in Computer Science. Springer, 2004.

30. S. Trujillo, D. Batory, and O. Diaz. Feature refactoringa multi-representation program into
a product line. InGPCE ’06: Proceedings of the 5th international conference on Genera-
tive programming and component engineering, pages 191–200, New York, NY, USA, 2006.
ACM Press.

31. B. Westfechtel. Structure-oriented merging of revisions of software documents. InProceed-
ings of the 3rd international workshop on Software configuration management, pages 68–79,
New York, NY, USA, 1991. ACM.

Appendix A. Merge Rules

A

B

A

B B

A

B

A

B B

A

B

A

B B

FM-A FM-B FM

Root Root Root

A

B

A A

B

A

B

A A

B

A

A

A

B Features (FM-B)

B Features (FM-B)

(a) Root and binary relationships

FM-A FM-B FM

A
Attribute Name: N

Domain: D1

Value: V1
A

Attribute Name: N

Domain: D2

Value: V2
A

Attribute Name: N

Domain: {D1} U {D2}

Value:

A
Attribute Name: N

Domain: D

Value: V

A A
Attribute Name: N

Domain: D

Value: V

A
Attribute Name: N

Domain: D1

Value: V
A

Attribute Name: N

Domain: D2

Value: V
A

Attribute Name: N

Domain: {D1} U {D2}

Value: V

V1 V2

(b) Feature attributes

A

B

FM-A FM-B FM

B

A

A

BB

A

B

A

B

A

B

B

A

B

A

B

B

A

A

A

A

B Features (FM-B)

A

BB

A

A

B BB

A

B

A

B

A

B

A

A

A

B Features (FM-B)

B

A

B

A

A

B

A

B

A

B

B

A

(c) Or-/Alternative relationships

FM-A FM-B FM

A B A B A B

A B A B A B

A B

A B

A B A B A B

A B

A B

A B

A B

A B A B A B

A B A B

A B A B

A B A A B

A B B A B

A B A A B

A B B A B

A,B Features (FM-B)

A,B Features (FM-B)

B Features (FM-B)

A Features (FM-B)

B Features (FM-B)

A Features (FM-B)

(d) Cross-tree constraints

