Automated Reasoning for Multi-step Feature Model Configuratian Problems

Jules White, Brian Dougherty, and Doulas C. Schmidt David Benavides
Vanderbilt University, Nashville, TN USA University of Seville, Seville, Spain
Email:{jules, briand, schmidt}@dre.vanderbilt.edu Email:benavides@us.es

Abstract model[12], which abstracts the components and points of
variaiblity in a software product deatures

The increasing complexity and cost of software-intensive Feature models are typically implemented as tree-like
systems has led developers to seek ways of increasing sofstructures that specify how the components and points
ware reusability. One software reuse approach is to developof variability affect one another. For example, the fea-
a Software Product-line (SPL), which is a reconfigurable ture model of a car in Figure 1 can optionally include
software architecture that can be reused across projects.anAut omated Driving Controller. If the car includes
Creating configurations of the SPL that meets arbitrary re- this feature it must also include tel | i si on Avoi dance
quirements is hard. Breaki ng feature. Any arbitrary configuration can be

Existing research has focused on techniques that pro-checked against the feature model to determine if it is a
duce a configuration of the SPL in a single step. This paper complete and correct configuration of a software product.
provides three contributions to the study of multi-step con- When an SPL is configured for a new set of require-
figuration for SPLs. First, we present a formal model of ments, developers must find a selection of the features from
multi-step SPL configuration and map this model to con- the feature model that (1) satisfy the requirements and (2)
straint satisfaction problems (CSPs). Second, we show howadhere to the rules in the feature model. This configuration
solutions to these CSP configuration problem CSPs can beprocess involves reasoning over a complex set of constraints
derived automatically with a constraint solver. Third, we to meet an end goal. Various tools [2, 13, 1, 4, 5, 15] have
present empirical results demonstrating that our CSP-basedbeen developed to help reduce the complexity of this pro-
technique can solve multi-step configuration problems in- cess by automating parts of the feature selection process.
volving hundreds of features in seconds. Open problems. Some configuration problems require
starting at an arbitrary state and deriving a new configura-
tion that meets the target requirements. For instance, an
automotive software designer using an SPL may start with
no features selected and derive a selection of features for

The high-cost of developing distributed real-time and the automobile software to meet the needs of a new model
embedded (DRE) systems has pushed developers to fin¢gear car. Often, however, constraints limit developers from
novel solutions to increase the reusability of software. directly transitioning from the starting state to the desired
One promising reuse approach is Software Product-linesend configuration.
(SPLs) [7], which are software architectures that are de- For example, assume that a group of automotive SPL
signed with built-in points of variability that can be al- developers want to modify the configuration of an existing
tered so that the software can be more readily reused acrosSPL car model to include automated driving capabilities, as
projects. For example, an SPL for a car can be built with the shown in Figure 1. The developers have determined that the
ability to use multiple engine control software components cost of adding all the new features will be 88 million dollars.
so it can be adapted to cars with different engine types. The developers only have a annual development budget of

Ensuring that a correct software product is produced 35 million dollars to reconfigure the SPL variant, however,
from an SPL involves building models of the rules for con- Which means that the developers cannot simply add all fea-
figuring the points of variabilty. For example, an SPL con- tures in a single year. Management has also asked the de-
figuration for a car cannot simultaneously employ two dif- velopers to make continual progress on developing the car
ferent engine control software components or the wrong by adding new features to it every year.
component for the given engine type. A common tech- To manage these constraints, the developers must incre-
nique for specifying SPL configuration rules isfeature mentally add the desired features over a series of steps,

1 Introduction

Copyright held by the author/owner.

11

Legend
Current Configuration Desired Configuration =] Als selected

(requires 88 million dollars in changes)

[E——— Arequires B
’7 S l Car T [t
- ol [==—
e A [A] Bisan
*\\ \ I optional
. - [B] feature of A
@) o) Ny = i
Autornated \ AutomatedT [A] A requires

Driving Sensors
Controller
\ N\
\ \
\ 7 o \

Driving
Controller

e B either B or C
m‘ [BJ[C] butnotboth

Cost to Add Features
Automated Driving 20
Controller

\

Parallsl "
Parklng

S P ! ! |

N requires | requires !

Enhanced | __ | Standard Erhanced _______________J
Avoidance requires Avoidance Avoidance requires

\ P

5
Lateral Range
Finder

el
Avoidance Braklng

O
Forward
Range Finder
~

(
Lateral Range
Finder
T

O
Parallel
Parking

T

Collision S
Avoidance Braking Reseiitor
~

Standard
Avoidance

Figure 1: A Configuration Problem Requiring Multiple Steps

over several years the developers will produce a series of in-to it. These techniques do not, however, support the need
termediate configurations that leverage each other to reacho split the configuration over multiple steps to adhere to a
the desired configuration. For example, they can developchange constraint, such as the maximum development bud-
a subset of the new features in the first year's car config-get per year. A gap therefore exists in current techniques
uration, add more of the remaining desired features in thewhen developers need to reason about and automate config-
second year, and add the rest of the desired features andration over multiple steps.
reach the new configuration in the third year. This process Solution overview and contributions. To fill the gap in
of producing a series of intermediate configurations—i.e. existing research, we have developed an automated method
a configuration path—is shown in Figure 2. We call this for deriving a set of configurations that meet a series of
sequence of activitiesraulti-step configuration problem requirements over a span of configuration steps. We call
A key challenge is that the developers cannot arbitrar- our technique thé1UIti-step Software Configuration prob-
ily pick and choose features to add in a given year to meetLEm solver(MUSCLE). MUSCLE transforms multi-step
the budget constraint. For example, developers will vio- feature configuration problems into constraint satisfaction
late the feature model rules if they choose to Baidal | el problems (CSPs) [10]. Once a CSP has been produced for
Par ki ng in year 3 withoutat eral Range Fi nder, which the problem, MUSCLE uses a constraint solver (which is an
is required via a cross-tree constraint, as shown in Figure 2.automated tool for finding solutions to CSPs) to generate a
Developers must therefore not only adhere to their con- series of configurations that meet the multi-step constraints.
straints on the changes that can be produced in a given year This paper provides the following contributions to the
(such as the maximum allowed annual development bud-study of feature model configuration over a span of multiple
get) but also ensure that the changes they choose create st%ps id ¢ | model of multi-st f
valid configuration at the end of each year. The developers io € provide a formal model of mufti-Step configura-
also cannot choose an intermediate configuration to transi- 5 \I/Vg’show how the formal model of multi-step configu-
tion through that will not function and hence cannotbe sold. =" "~ P 9
. . . . ration can be mapped to a CSP,
Further complicating the multi-step configuration prob- . . -
: 3. We show how multi-step requirements, such as limits
lem is that developers may need to foresee tradeoffs that .
. . on the cost of feature changes between two successive
must be made along the way. For example, it is not possible . : o :
. 7 . . configurations, can be specified using our CSP formu-
to simultaneously addol | i si on Avoi dance Braki ng . : i .
and Enhanced Avoi dance in the same year since their lation of multl-step corjf|gurat|on, , -
total development cost is 36 million dollars, as shown 4. We describe mechanisms for optimally deriving a set
R P R of configurations that meet the requirements and min-
in Figure 2. Developers must therefore adal | i si on . o) .
. : . imize or maximize a property of the configurations or
Avoi dance Braking andStandard Avoi dance one year

(to simultaneously meet the budget constraint and the fea- 5. (\:/32 flsg# c:\?vtlzgv?/r(r)rfjlﬁ ’Stseupcthsirtnoigtﬁ)onn;l%zrnatg)en ggrs_t,
turg model constraints) and then remove Siandar d . formed, such as deriving the series of configurations
Avoi dance feature at a later step to add the desired that meet a set of end-goals in the fewest time steps,
Enhanced Avoi dance feature. and
Prior work on configuration analysis and automation [13, Paper organization. The remainder of the paper is orga-

1, 4, 5] focused on creating one configuration that meets anized as follows: Section 2 summarizes the challenges of
specific set of requiremenise., they find a configurationin performing automated configuration reasoning over a se-
one step and assume that it is possible to directly transitionquence of steps; Section 3 describes a formal model of

12

Development Feature Model

Year 1 Budget Year 2 Rules Violated | Year 3 Year 4
Exceeded !!!! m

nvalid !!
Configuration
Path

\/Valid

Configuration ,
Path /

Figure 2: Potential Configuration Paths

multi-step configuration; Section 4 explains MUSCLE's Each successive series of points represents potential con-

CSP-based automated multi-step configuration reasonindigurations of the feature model at a given step. For ex-

approach; Section 5 analyzes empirical results from ex-ample, the configuratior®y. .. B; represent the intermedi-

periments demonstrating the scalability of MUSCLE; Sec- ate configurations that can be reached in one step from the

tion 6 compares MUSCLE with related work; and Section 7 starting configuration. In this section we use this graph for-

presents concluding remarks. mulation of the problem’s solution space to showcase the
challenges of finding valid solutions.

2 Challenges

A multi-step configuration problem for an SPL involves 2.1 (?ha”enge 1: Graph Complexity _)
transitioning from a starting configuration through a series A critical challenge to developers attempting to derive
of intermediate configurations to a configuration that meets Solutions to multi-step configuration problems manually or
a desired set of end state requirements. The solution spack® Use a graph algorithm is that there are an exponential
for producing a series of successive intermediate configuraumber of potential intermediate configurations and paths

tions to reach the desired end state can be represented astgat could be used to reach the desired end state. In the

directed graph, as shown in Figure 3(a). worst case, at any given intermediate step, there can be
Starting Desired O(2") points (wheren is the number of features in the fea-
Configuration Configuration ture mode). In the worst case, therefore, there drgoZen-
: Step1 Step2 ’ /’> ‘ tial subsets of the features in the feature model that could
. form a configuration. Moreover, for a multi-step configura-

tion problem oveK time steps, there ai®(K2") possible
intermediate points.

Further compounding this problem is that for any inter-
mediate configuration at stép there are in the worst case

; 2" —1 points at steff + 1 that could be reached from it by

Cost to changé from ’y ci adding or removing features to its feature selection. The in-
configuration Ato Bi | ‘mediate configurations termediate configurations that do not precede the end point
will therefore have 2— 1 outgoing edges. Section 4 dis-
cusses how MUSCLE uses CSP-based automation to elim-
inate the need for developers to manually find solutions
to these multi-step configuration problems, which reduces

; \ configuration time and cost.
I —

y Y
= | .
§ o BO 5 Cco ——
=" V| o~ e
~ K ‘\‘ '.'
‘\ II ‘\ l'
S s

(a) A Graph of a Multi-step Configuration Problem

Desired
Configuration

Endpoint

\'/ st
constraints___ . ->
-
| -

met at CO e

\
T
J -} B0 s0 . 0

L1
7N \

2.2 Challenge 2: Paint Configuration Constraints
Although there are a substantial number of potential
intermediate configurations, many of these configurations
will not meet developer requirements. For example, many
B . of the K2" arbitrary subsets of feature selections will repre-
(b) Optimization of Total Steps sent configurations that do not adhere to the feature model

Figure 3: Multi-step Configuration Graphs

13

constraints. Moreover, other external constraints, such asninimize total cost (the sum of the edge weights). In other
sdety constraints requiring a specific feature to be selectedcases, it may be more imperative to meet the desired end
at all times, may not be met. We term these constraints onpoint constraints in as few time steps as possible.
the allowed configurations at a given stgpint configura- For example, in Figure 3(b), developers have an initial
tion constraints development budget of 35 million dollars and then a subse-
Point configuration constraints eliminate many potential quent yearly budget of 50 million dollars.
configuration paths. These constraints may create small ad- Although the cost of the path through intermediate con-
ditional restrictions, such as that a particular feature mustfigurationsB; andC; is cheaper (70 million), developers
always be selected. Complex step-based constraints maynay prefer to pass througBy andCy since they will al-
also be present, such as a particular automotive feature beready have a configuration that meets the end goaly.at
comes unavailable after a specific time step (year) becaus®evelopers must therefore not only contend with numer-
the supplier discontinues it. Finally, a multi-step configu- ous multi-step constraints, but must also perform complex
ration problem may not dictate an exact starting and end-optimizations on the properties of the configuration path.
ing configuration, but merely a series of point configuration Section 4.5 shows how optimization can be performed on
constraints that must hold for the start and end points of MUSCLE’s CSP formulation of multi-step configuration to
the configuration path. The myriad of possible point con- allow developers to find the fastest and most cost-effective
figuration constraints significantly increases the challengemeans of achieving a configuration goal.
of finding a valid configuration path for a multi-step con-
figuration problem. Section 4.3 describes how MUSCLE 3 A Formal Definition of Multi-step Configu-
models these constraints using a CSP, which enables a CSP ration
solver to automatically derive solutions that adhere to these

constraints and thus reduce tedious and error-prone manual 11iS section presents a formal model of multi-step con-
configuration. figuration. In its most general form, multi-step configura-

tion involves finding a sequence of at madstconfigura-
tions that satisfy a series of point configuration constraints
and edge constraints. This definition requires the start and
end configurations meet a set of point constraints, but does
not dictate that there be @nglevalid starting and ending

2.3 Challenge 3: Configuration Change/Edge
Constraints

The automotive example in Figure 1 requires that devel-
opers adding new features spend no more than 35 mi"ionconfiguration.
dollars in one year. The cost of adding/removing features General formal model. We define a multi-
can be captured as the length or weight of the edges conx

k < =) step configuration problem using the 6-tuplésc =<
necting two transitions. For example, to transition directly ¢ pc A(Fr,Fu), K, Fstart, Feng >, Where:

from the starting configuration to the desired end configu- ¢ E is the set of edge constraints, such as the maximum

ration requires 88 million dollars and has an edge weight of development cost per year for features,

88. . e PC is the set of point configuration constraints that
Developers must not only find a path that reaches the must be met at each step, such as the feature model

desired end state without violating the point configuration rules that developers may require to be adhered to

constraints in Section 2.2, but also ensure that any con- across all steps (feature model rules do not have to be

straints on the edges connecting successive configurations enforced at each time step),
are met. Transitioning directly from the start configuration ¢ A(Fr Ry) is a function that calculates the change cost

to end configuration would violate the edge constraint of or edge weight of moving from a configuratiéh at
the 35 million dollar yearly development budget. Edge con- stepT to a configuratiorry at stepJ,

straints further reduce the number of valid paths and add o K is the maximum number of steps in the configuration
complexity to the problem. Section 4.4 shows how these problem,

edge restrictions can be encoded as constraints on MUS- o Fg, is a set of configuration constraints on the start-
CLE’s CSP variables to plan Conf|gurat|0n pathS that adhere |ng Configuration’ such as a list of features that must

to development budgets, which is hard to determine manu- initially be selected,
ally. e Fong is a set of configuration constraints on the final
configuration, such as a list of features that must be
2.4 Challenge 4: Configuration Path Optimiza- selected or maximum cost of the final configuration.
tion

. _ . We define a configuration path from st€wverK steps
There may often be multiple correct configuration paths ¢ o K-tuple

that reach the desired end point. In these cases, develop-
ers would like to optimize the path chosen, for example to P=<Fr,Fri1,...Frok-1>

14

, Wwhere the configuration at stdpis denoted by~r. Each Change calculation function examples.The function
configurationFr, denotes the set of selected features at stepA(Fr, Fy) calculates the cost of changing from one config-
T. uration to another configuration at a different step. For ex-

Section 4 shows how this formal model can be specified ample, the following change calculation function computes
as a CSP. Although we use CSPs for reasoning on the forthe cost of changing from one configuration to another:

mal model, we could also use SAT solvers, propositional Fadded = FU-—Fr

logic, or other techniques to reason about this model. The A(Fr,Ry) = S fixc, fi € Fadded

formal model is thus applicable to a wide range of reasoning

approaches. wheref; is theii, added feature ang is the price of adding
that feature.

3.1 Constraint and Function Examples

We now describe how the formal model presented above4 A CSP Model of Multi-step Configuration
can be used to model typical SPL configuration constraints. This section describes how MUSCLE uses CSPs to auto-
We show how common configuration needs, such as the sematically derive solutions to multi-step configuration prob-
lection of specific features or budgetary constraints, can belems. To address the challenges outlined in Section 2 we
mapped to portions of our multi-step configuration problem show that deriving a configuration path for a multi-step con-
tuple. figuration problem can be modeled as a CSP [10] using the

Edge constraint examples.The set of edge constraints formal framework from Section 3. After a CSP formulation
E can include numerous types of constraints on the tran-of a multi-step configuration problem s built, MUSCLE can
sition from one configuration to another. For example, a use a CSP solver to automatically derive a valid configura-
constrainte; € E may dictate that the maximum weight of = tion path on behalf of the developer. Automating the con-
any edge between successive configuratiofsifr .1 € P figuration path derivation helps reduce the complexity from
have at most weight 35 (for the automotive problem from Challenge 1 in Section 2.1. Moreover, the CSP solver can
Figure 1): be used to perform optimizations that would be extremely

hard to achieve manually.
VT € (0.K—1), A(Fr,Fri1) <35 Prior work on automated feature model configuration [3,

Edge constraints may also vary depending on the step, fort®: 16] has yielded a framework for representing feature
example a development budget may start at $35 million andmodels and configuration problems as CSPs. This section

may expand as a function of the step: shows how a new formulation of feature models and con-
35 figuration problems can be developed that (1) incorporates
VT € (0.K—1), A(Fy,Fria) < T-(01+T) multiple steps, (2) allows a constraint solver to derive a con-

figuration path for evolving a feature selection over mul-
Edge constraints may also be attached to specific time stepsiiple intermediate steps to meet an end goal, (3) permits
VT €(0.4,6.K—1), A(Fr,Fry1) < % the specification of intermediate cqnfiguration const_raints,
A(Fs,Fs) < 40 (4) allows for change/edge constraints on the transition be-
tween feature selections, and (5) can be leveraged to opti-

Point configuration constraint examples.The point con- ;6 configuration path properties, such as path length or
figuration constraints specify properties that must hold for . ;

the feature selection at a given step. Both the starting and

ending points for the multi-step configuration problem are 4.1 CSP Automated Configuration Background

defined as point configuration constraints on the first and ACSP i f variabl d f .
last steps. For example, we want to start at a specific con- h ; b:s a sFet ofvaria | es ar:{ a get oxconiga!nts over
figurationFgart and reach another configuratiBghg: t_e variables. or examp féX e ?A(<10)is a
simple CSP involving the integer variablésandY. A
(FO = I:start) A (FK = Fend)

constraint solver is an automated tool that takes a CSP as

Another general constraimtc; € PC could require that for ~ input and produces labelingor set of values for the vari-

any stepT, the feature selectiof; satisfies the feature ables that simultaneously satisfies all of the constraints. The

model constraints c: solver can also be used to find a labeling of the variables
VT € (0.K—1), Fr = Fc that maximizes or minimizes a function of the variatdes

maximizeX +Y yieldsX =9,Y = 8.

Developers could also require that a specific set of features A feature model can be modeled as a CSP through a se-

Fstart, Such as safety critical braking features, be selected atries of integer variables, where the variabld; € F cor-

all times: responds to thgy, feature in the feature model. A config-
VT € (0..K—1), Fstann C Fr uration is defined as a series of values for these variables

15

Feature Model CSP Feature Model CSP
A] Bis a _ _ f, Feature fj is _
i mandatory (fa=1)>f=1) fo selected fo =1
(B] child of A fro=1)>f=1) T T+1
Bi Feature f; is not _
A '.S &l & 4 selected at step fir=0
B optional fo=1)>f=1) T and selected fi7e1 =1
feature of A at step T+1
A requires (fa=1)> (fo+f.= 1)
= either B or C _ _
[B] but not both (fo=1)>(F.=1) T T et
(fe=1)>F=1) selected at step fir=1
T and not firer =0
Figure 4: Mapping Feature Model Rules to a CSP Select_e}d 1at step
+

sweh thatfi = 1 implies that theyy, feature is selected in the)))

configuration. If they, feature is not selected, — 0. Con- Figure 5: An Example of Variables Representing Feature

figuration rules from the feature model are represented as>9€ction State at Specific Steps

constraints over the variableskn as shown in Figure 4.
More details on building a CSP from a feature model are

described in [15, 3]. what constitutes a valid intermediate configuration) can be

modeled as constraints on the varialfigs= Fr. Each point

4.2 Introducing Multiple Steps into the CSP configuration constraint has a specific set of stégs,dur-
' 9 P P ing which it must be met,e., the constraint must only eval-

The goal of automated configuration over multiple-Steps 516 15 true on the precise steps for which it is in effect.
is to find a configuration path that permutes a given starting example, a simple constraint would be that tPéahd
configuration through a sequence of intermediate configura-grd configura{tions must have the featuieselected. The

tions to reach a desired end state. For example, the configuget of steps for which this constraint must hold would be
ration paths in Figure 2 capture sequential modifications to Too= 12,3}

the car configuration, shown in Figure 1, that Wi” incorpo- CSP model of point configuration constraints.A CSP
rate high-end featur(_es mtq the base automobile model. Togoint configuration constrainpg € PC, requires that:
reason about a configuration path over a span of steps, w

first introduce a notion of a configuration step into MUS-
CLE’s CSP model of configuration.

CSP model of configuration steps.To introduce con-
figuration steps into MUSCLE’s configuration CSP, we
modify the configuration CSP formulation outlined in Sec-
tion 4.1. We no longer use a varialfieto refer to whether
or not thei, feature is selected or deselected. Insteesl,
refer to the selection state of each feature at a specific
step T with the variablefit, i.e, if the iy, feature is se-
lected at ste@, fir = 1. We refer to an entire configura-
tion at a specific step as a set of values for these variables
fir € Fr. A solution to the CSP is configuration path de-
fined by a labeling of all of the variables in the K-tuple:
<Fr,Fri1. Frok-1>.

For example, if theABS feature (denoted,) is not se-
lected at stefd and is selected at stdp+ 1, then:

VT € Tpe, Fr = PG

Arbitrary point configuration constraints can be built using
this model to restrict the valid configurations that are passed
through by the configuration path. This flexible point con-
figuration constraint mechanism allows developers to spec-
ify and automatically find solutions to problems involving
the constraints from Challenge 2 in Section 2.2.

CSP point configuration constraint example. Assume
that we want to find values fdfy...Fr k such that we
hever violate any of the feature model constraints at any
step. Further assume that the constraints in the feature
model remain static over thésteps (feature model changes
over multiple steps can also be modeled). If fhefeature
is a mandatory child of thig, feature, we add the constraint:

far =0 VT €(0...K), (fr =1) & (Fjr = 1)
farri=1
.) L) That is, we require that at any stépif the iy, feature Er)
Figure 5 shows a visualization of how tii¢ € Fr vari- is selected, thdy, feature r) is also selected. Further-
ables map to feature selections. more, at any step, if the ji, feature Ejr) is selected, the
4.3 CSP Point Configuration Constraints ith feature (1) is also selected. Other example point con-

To address Challenge 2 from Section 2.2, the point con-figuration constraints can be mapped to the CSP as shown
figuration constraints (which are the constraints that definein Figure 6(a) and Figure 6(b).

16

Feature Model Over K Time csP
Steps
B is always a | forall T in (0..K):
mandatory (far =1) > (for=1)
| B] child of A (for=1) > (far = 1)
Bis alt'fvayT forall T in (0..K):
4 an optiona _ _
[B] feature of A (for = 1) > (fr =1)
A always forall T in (0..K):
= requires (fr=1) > (for+fer=1)
[B][C] either Bor C (for=1)> (far=1)
but not both r=1)> (fur=1)

(a) Point Configuration Constraints for Feature Model Stmactu

\ Feature Model CSP
[U=C K Feature f ZKf K+1
(T] [Tl 1 1=

fo fo remains t=0

o] @)
ENREN selected for K K-1

! ! steps from >d«=0
@ T=0 &
T=0 o0 Fir=0) =1
e W fy is and

o] 0O
L) Dl cested ©

eselecte
2dn=0
t=0

(b) Point Configuration Constraint for Feature Selection
Figure 6: Point Configuration Constraint Examples

4.4 CSP Edge/Change Constraints
Challenge 3 from Section 2.3 described how developers

must be able to specify and adhere to constraints on the dif-

weight of the edgeveightedg€T,U)) can then be calcu-
lated as a function of the edge tuple. For example, ifighe
feature costs; to add or remove then

n n
weightedgéT,U)) = Y stuxCi+) ditu *C;
tedgeT,U)) i; TU *Ci i;) iTU *Ci

CSP edge/change constraint exampléel'he cost of in-
cluding a particular feature may change over time. For
example, the cost of adding a GPS guidance system to a
car does not remain fixed, but instead typically decreases
from one year to the next as GPS technology is commodi-
tized. We can model and account for these changes in
MUSCLE's CSP formulation and constrain the configura-
tion path so that it adds features at times when they are suf-
ficiently cheap. We will define an edge constraint that takes
into account changing feature modification costs and limits
the change in cost between two successive configurations to
$35 million dollars.

We assume we can calculate that the price of including
the i, feature so that it is included in the feature selection
at stepT by the function:

Cost(i,T)

_ (|
CT+1
We can then define the cost of adding features to a configu-
ration as:
weightedgeéT, T+ 1)) =

n

Z(S-rprl * COSl(i,T + 1))

We can now limit the cost of any two successive configura-
tions via the edge constraint:

VT € (0.K — 1), weightedgéT, T +1)) < 35

ference between two configurations at different steps. These
edge/change constraints can be modeled in the CSP as cory g Multi-step Configuration Optimization

straints over the variables in two configuratidisandFy .

By extending the CSP techniques we have developed in past

work [16], we can specifically capture which features are
selected or deselected between any two steps and constra
these changes via budget or other restrictions.

CSP model of edge/change constraint3o capture dif-
ferences between feature selections between $tepsiU,
we create two new sets of variabl8gy andDty. These
variables have the following constraints applied to them:

Vstu € Sru, (stu=1) < (fr=0)A(fu=1)

Vditu € Dry, (ditu=1) < (fir =1 A(fu =0)

If a feature is selected at time st€mnd not at time step,
thendity is equal to 1. Similarly, if a feature is not selected
at stepT and selected at stép, Sty is equal to 1.

An edgeedg€T,U) between the configurations at steps
T andU is defined as a 2-tuple:

edgdT,U) =< Druy,Sru >

Challenge 4 from Section 2.4 showed that optimizing the
configuration path is an important issue. CSP solvers can
I:automatically perform optimization while finding values for
the variables in a CSP (though it may be impractical time-
wise for some problems). We can define goal functions over
the CSP variables to leverage these optimization capabilities
and address Challenge 4.

In some cases, developers may not want to just find any
configuration path that ends in the desired state. Instead,
they may want a path that produces a configuration that
meets the end goals as early as possible. For example, in the
automotive problem from Section 1 developers may want to
find a configuration path that meets their constraints and in-
cludes the high-end features in the base model in fewer than
five years.

CSP model of path length. To support path length
optimization, we define a measure of the number of steps
needed to reach a valid end state. We must therefore deter-

An edge is thus defined by the features deselected and semine if the constraints on the final configurati@ng (which

lected to reach configuratidfy from configuratiorr. The

17

is the goal state) are met by some configuration prior to the

Feature Variables Fr Point Constraint pcq

last configurationfr whereT < K —1). If we meet the fi- Car for — for=1
nal state constraints sooner than the final configuration, ther] Sensers fir (for=1) & (fir=1)
we have found a configuration process that requires fewer éﬁ&;@aggm.er for (for=1) — (for=1)
configuration steps. Collision (fr=1) o (far=1)

To track whether or not a configuration has met the con-| Biakng for pco= (far=1) = (for +frr= 1)
straints on the ending configuratiég,g, we create a series Parallel Parking || fat forall _| (far=1) — (for + f51= 2)

of variablesvr € W to represent whether or not the configu- | - Lateral Range fer | TINO-D] (1= 1) = (f1r=1)
rationFr € P satisfiednq. For each configuratiofr € P,

if Fongis satisifed: Eoreerd Range | for (for=1) = (Frr=1)
(Fr = Fend) = (Wr = 1) Realdahas frr (frr=1) — (fr= 1)
obanced for — (fsr= 1) — (far+for=2)

i.e, if at any step (up to and including the last step) we
satisfy the end state requirements, wgtequal to 1. We . .) , ,
also require that after one step has reached a correct end-19ureé 7: Point Configuration Constraints for the Automo-
ing configuration, the remaining steps also keep the correctPile Example
configuration and do not alter it:

wr=1) = (wri1=1 o= {foo, o, foo)

wr=1) = (SlLostrii+3YodrTi1=0) F1 = (foo, f11,..- fa1)

Optimization examples.We can optimize to find the short- Fa = (foo, f14,... fsa)
est configuration path to reach the goals over K steps by
asking the solver to maximize: The mappings of the automobile features from Figure 1 to
K1 CSP variables can be seen in Figure 7. A configuration path
12 Wt is defined by a set of feature selections for each of the five
=0 years:

I . L P=<Fo,F,...Fs>
The reason that maximizing this sum will minimize the

number of steps taken to reach the desired end state is thathe point constraintpcy € PC, ensures that the feature

the sooner the state is reached, the more stepsill equal model constraints are met by each year’s configuration, as

1. shown in Figure 7. We must also specify the point configu-
The most straightforward optimization functions are de- ration constraint for the starting configuration:

fined as functions of the variables in the configuration path

F. = (foo=1)A(fro=1) A (f0=0)A(f30=0
P. For example, we can instruct the solver to minimize the start (foo _) (f10 _) (f20 _) (fs0 _)
. . . . /\(f40—0)/\(f50—0)/\(f60—O)/\f70—0)
cost of the ending configuration. Assume that the cogf,of A(fgo=0)
feature at stefX is denoted by the variablg € Cx, mini-
mizeCy, where: A Moreover, we must ensure that the high-end features are
Gk = iji *G included in the last confi ion:
e guration:

Other optimizations can be performed on the weights of Fend = (fra=0)A(foa=1)A(fra=1)A(faa=1)A
the edges. For example, to find the configuration path with (faa=1)A(faa=1) A (fsa=1) A (fea=1)
the lowest development cost, where the development cost is N(fga=1)
the edge weight the goal is to minimize:

K_1 Our complete set of point configuration constraintBG—=
Z weight(edgeT, T + 1)) (p%).
=0

Finally, we must specify how the change cost between
two configurations is calculated and enforce the edge con-

4.6 A Complete Multi-step CSP Example straint that at most $35 million dollars is spent per year.

We now provide a complete mapping of the automotive A(Fr,Fry1) = 2077141+ 14837141+ 19547741 + 8S57T41
configuration problem in Section 1 to MUSCLE’s multi- +11sg7741+ 1S7TT41 + 16887741
step CSP. For this problem, the automotive developers want E = (VT €(0..3), A(Fr,Fri1) <35

to include the high-end features into the base model over

the course of five year&(= 5). We first create a series of Given this CSP formulation, we can use a constraint solver
configuration variables to represent the feature selection ato automatically derive a solution to the multi-step automo-
the end of each of the five years: tive configuration problem described in Section 1.

18

5 Results Automated Single-step Configuration:Several single-
step feature model configuration and validation techniques
have been proposed [2, 13, 1, 4, 5, 15]. These techniques

¢ ted multi-sten SPL p tion techni hould b use CSPs and propositional logic to derive feature model
omated muitl-step configuration technique shou econfigurations in a single stage as well as assure their va-

able to scale to hundreds of features and multiple steps. Thiﬁidity. These techniques help address the high complexity
section presents empirical results from experiments we per-

) . of finding a valid feature selection for a feature model that
formed to detgrmlne the scalability of MQSCLE._ meets a set of intricate constraints.
Our experiments were performed with an implemen-

tation of the MUSCLE provided by the open-source As- _/Vh|!e these tec;hmqu_es are useful for the derivation and
. . . validation of configurations in a single step, they do not
cent Design Studio (available fromode. googl e. conl

of ascent - desi gn- studi o). The Ascent Design Stu- consider feature configuration over the course of multiple

dio’s implementation of MUSCLE is built using the Java steps. n scenanas, such as the automotive exar_”p'e from
. Section 1, the ability to reason about configuration over
Choco open-source CSP solver (available frohoco.

) multiple steps is critical. MUSCLE provides this automated
sour cef orge. net). The experiments were performed on reasoning across multiole steps. Moreover. MUSCLE can
a computer with an Intel Core DUO 2.4GHZ CPU, 2 gi- 9 P PS. '

gabytes of memory, Windows XP, and a version 1.6 Javaa.ISO be used for_ smgle—step con_flguratlons since Itis a spe-
Virtual Machine (JVM). The JVM was run in server mode cial case of multi-step configuration where there is only one
i . stepK = 1.

using a heap size of 40 megabytes (-Xms40m) and a maxi- i , . .

mum memory size of 256 megabytes (-Xmx256m). Staged Configuration: Czarnecki et al. [8] describe a
To test the scalability of MUSCLE we needed 1,000s of method for using staged feature selection to achieve a fi-

feature models to test with, which posed a problém since n_al target cor_wfigurz_;\tion. This multi-stage selegtion con-

there are not many large-scale feature models available toSlders cases in which the selection of features in a previ-

researchers. To solve this problem, we used a random fegOUs stage impacts the validitiy of later stage feature selec-

ture model generator developed in prior work [16]. The tions. Ourtechn_|que glso examines the pro_ductpn of a fea-
feature model generator and code for these experiments | ure model configuration over multiple configuration steps.

available in open-source form along with the Ascent Design US_CLE is complementary to Czarnecki et al.s work and
Studio. We used a maximum branching factor of 5 children provides a general formal framework that can be used to

per feature and a maximum of 1/3 of the features were in anperform automated reasoning on staged configuration pro-
XOR groupl cesses. Moreover, MUSCLE can also be used to reason

We measured the solving time of MUSCLE by gener- gb_out other muItl—step.conflguratlon processes that do not
. . . . fit into the staged configuration model, such as the the ex-
ating random multi-step configuration problems and solv-

. : . . ample from Section 1 where each step must reach a valid
ing for configuration paths that involved larger and larger configuration

numbers of steps. The problems were created by generating) . o
Staged configuration can be modeled as a special in-

a semi-random feature model with 500 features as well as !) . -
starting and ending configurations. MUSCLE was used to stance of multi-step configuration. Specifically, staged con-
figuration is an instance of a multi-step configuration prob-

derive a configuration path between the two configurations. i
lem where:E = 0, Fstat = 0, Fena = (Fk—1 = Fc), K is

Our experiments were performed widrge-scale con- ' '
figuration Fr;athswhich Werepproduced by fo%cing the solver S€t .to the number of stages(Fr,Fy) is '.'IOt deflned., and
to find a configuration path that involved switching between Fcis the .Set. of feature model constraints. That is, there
two children of the root feature that were involved in an ¢ N9 I|r_n|tat|on_s on the changes th_at can b_e made between
XOR group. For a feature model with 500 features config- successive configurations, the_ starting confl_gura_non has no
({eatures selected, and the ending configuration yields a valid

ured over 3 steps, the worst case solving time we observe ¢ del f tion. The staced f tion def
was roughly 3 seconds. The worst case solving time for fea- catre moadetcontiguration. The staged configuration det-

ture models configured over 10 steps was 16s. These initiafnition can be refined to guarantee that successive stages
results indicate that the technique should be sufficiently fastOnIy add featuresvT € (0..K —1),Fr C Froa.

for feature models with hundreds of features. Classen et al. [6] have investigated creating a formal se-
mantics for staged configuration. Furthermore, they have

provided a definition of a configuration path through a se-
6 Related Work ries of stages for a feature model. Whereas Classen et al.
have focused on configuration paths that continually reduce
variability, MUSCLE is a formal model that allows for both
1XOR feature groups are features that require the set of their selectedtN€ reduction and introduction of variability in the config-
children to satisfy a cardinality constraint (the constraint is 1..1 for XOR). uration process. Moreover, MUSCLE allows for complete

As described in Section 2.1, configuring an SPL over
multiple steps is a highly combinatorial problem. An au-

This section compares MUSCLE with related work.

19

configurations to be met at multiple points in the configura- Workshop on Variability Modelling of Software-intensive

tion process. Systems (VAMOS2007.
Quality Attribute Evaluation: Several techniques have [3] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
been proposed for using quality attribute evaluation [9, 11, Reasoning on Feature Models. Rtoceedings of the 17th

14] to guide a configuration process. These techniques pro- Conference on Advanced Information Systems Engineering
vide a framework for assessing the impact of each feature Porto, Portugal, 2005. ACM/IFIP/USENIX.

selection on the overall capabilities of the configured sys- [4] D- Beuche. Variant Management with Pure:: variants.
tem. As a result, quality characteristics, such as reliability, l;;gﬂ:?g;p%b;ure'SyStems GmbH, - http://www.pure-
can be taken into account when selecting features. These ' ' .
techniques are also designed for single step configuration 2] R: Buhrdorf, D. Churchett, and C. Krueger. Salion's Expe-

. . rience with a Reactive Software Product Line Approach. In
processes. These techniques could be used in a complemen- prceedings of the 5th International Workshop on Product

tary fashion to MUSCLE to produce the point configuration, Family EngineeringSiena, Italy, November 2003.
edge, and other constraints in the multi-step configuration g A classen, A. Hubaux, and P. Heymans. A Formal Seman-
model. tics for Multi-level Staged Configuration. |Rroceedings
7 C ludi R K of the Third Workshop on Variability Modelling of Software-
oncluding kemarks intensive Systempages 51-60, January 2009.
Many production SPL configuration problems require [7] P.Clements and L. NorthrofSoftware Product Lines: Prac-
developers to evolve a configuration over multiple steps, tices and Patterns. Addison-Wesley, Boston, USA, 2002.

rather than in a single iteration. Multi-step configuration, [8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Con-
however, must take into account constraints on the change figuration Using Feature ModelsSoftware Product Lines:
between successive configurations, such as the increase in ~ Third International Conference, SPLC 2004, Boston, MA,
cost of an automobile’s configuration from one year to the USA, August 30-September 2, 2004: Proceeding84.

next. Moreover, even though configuration is performed [9] L. Etxeberria and G. Sagardui. Variability Driven Quality
over multiple steps, a valid configuration must still be pro- Evaluation in Software Product Lines. 8oftware Product

duced at the end of each year, further adding complexity Iézls?_ggznfgrggge, 2008. SPLC'08. 12th Internatiorpiges

Wh"ef‘ maintaining a furlctlonal system configuration. [10] P. V. HentenryckConstraint Satisfaction in Logic Program-
_ It |s.hard to determine a sequence of featurg |_"qodel con- ming MIT Press, Cambridge, MA, USA, 1989.
figurations and feature selections such that an initial config- - N .

. . . . [11] A. Immonen. A method for predicting reliability and avail-
uration can be transformed into a desired target configura- ability at the architectural leveResearch Issues in Software

tion. This paper introduces a technique, called Mgiti- Product-Lines-Engineering and Management, T. Kakola and
step Software Configuration probLEm sol&USCLE), JC Dueiias, Editor2005.

for modeling and solving multi-step configuration prob- [12] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
lems. MUSCLE represents the problem as a CSP, which FORM: A Feature-Oriented Reuse Method with Domain-
enables CSP solvers to determine a path from a starting con- specific Reference Architecturegnnals of Software Engi-

figuration to a target configuration. The output from MUS- neering 5(0):143-168, January 1998.
CLE is a valid sequence of feature selections that will lead [13] M. .Mannion. Using first-order logic for produc.t line model
from a starting configuration to the desired target configu- validation. Proceedings of the Second International Confer-

ration while also taking into account resource constraints. ence on Software Product Lines, 2379:176-187, 2002.
Open-source implementations of MUSCLE are available [14] F. Olumofin and V. Misic. ~Extending the ATAM Ar-

in the Ascent Design Studicagcent - desi gn- st udi o. chitecture Evaluation to Product Line Architectures. In
googl ecode. com) and FAMA (mwy. i sa. us. es/ f ang)?. IEEE/IFIP Working Conference on Software Architecture,
WICSA 2005.
References [15] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt.
Automating Product-Line Variant Selection for Mobile De-
[1] D. Batory. Feature Models, Grammars, and Prepositional vices. InProceedings of the 11th Annual Software Product
Formulas Software Product Lines: 9th International Confer- Line Conference (SPLCKyoto, Japan, Sept. 2007.
ence, SPLC 2005, Rennes, France, September 26-29, 2005(16] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and
Proceedings2005. A. Ruiz-Cortez. Automated Diagnosis of Product-line Con-
[2] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. figuration Errors in Feature Models. Rroceedings of the
FAMA: Tooling a framework for the automated analysis of Software Product Lines Conference (SPLO)nerick, Ire-
feature models. IrProceeding of the First International land, Sept. 2008.

2This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

20

