
Reverse Engineering Feature Models With

Evolutionary Algorithms: An Exploratory Study

Roberto E. Lopez-Herrejon1, José A. Galindo2, David Benavides2, Sergio
Segura2, and Alexander Egyed1

1 Institute for Systems Engineering and Automation
Johannes Kepler University Linz, Austria

roberto.lopez@jku.at, alexander.egyed@jku.at
2 Department of Computer Languages and Systems

University of Seville, Spain
jagalindo@us.es, benavides@us.es, sergiosegura@us.es

Abstract. Successful software evolves, more and more commonly, from
a single system to a set of system variants tailored to meet the simil-
iar and yet di�erent functionality required by the distinct clients and
users. Software Product Line Engineering (SPLE) is a software develop-
ment paradigm that has proven e�ective for coping with this scenario. At
the core of SPLE is variability modeling which employs Feature Models
(FMs) as the de facto standard to represent the combinations of features
that distinguish the systems variants. Reverse engineering FMs consist in
constructing a feature model from a set of products descriptions. This re-
search area is becoming increasingly active within the SPLE community,
where the problem has been addressed with di�erent perspectives and
approaches ranging from analysis of con�guration scripts, use of propo-
sitional logic or natural language techniques, to ad hoc algorithms. In
this paper, we explore the feasibility of using Evolutionary Algorithms
(EAs) to synthesize FMs from the feature sets that describe the system
variants. We analyzed 59 representative case studies of di�erent char-
acteristics and complexity. Our exploratory study found that FMs that
denote proper supersets of the desired feature sets can be obtained with a
small number of generations. However, reducing the di�erences between
these two sets with an e�ective and scalable �tness function remains an
open question. We believe that this work is a �rst step towards leveraging
the extensive wealth of Search-Based Software Engineering techniques to
address this and other variability management challenges.

1 Introduction

Successful software evolves not only to adapt to emerging development technolo-
gies but also to meet the clients and users functionality demands. For instance, it
is not uncommon to �nd academic, professional, or community variants of com-
mercial and open source applications such as editing, modelling, programming
or many other development tools, where each variant provides di�erent func-
tionality. Thus the distinction between variants is described in terms of their
features, that we de�ne as increments in program functionality [1].

In practice, the most common scenario starts with a �rst system and forks
a new independent development branch everytime a new variant with di�erent
feature combinations is required. Unfortunately, this approach does not scale as
the number of features and their combinations increases even slightly [2]. Soft-
ware Product Line Engineering (SPLE) is an emerging software development
paradigm that advocates a disciplined yet �exible approach to maximize reuse
and customization in all the software artifacts used throughout the entire de-
velopment cycle [2�5]. The driving goal of SPLE is to create Software Product
Lines (SPLs) that realize the di�erent software system variants in an e�ective
and e�cient manner. However, evolving SPLs from existing and invidividually-
developed system variants is not an easy endeavor. A crucial requirement is accu-
rately capturing the variability present in SPLs and representing it with Feature
Models (FMs) [3, 6], the de facto standard for variability modeling. Current re-
search has focused on extracting FMs from con�guration scripts [7], propositional
logic expressions [8], natural language [9], and ad hoc algorithms [10,11].

Previous work from some of the authors has shown Evolutionary Algorithms
(EAs) as an attractive alternative to synthesize FMs that are hard to analyze
[12�14]. In this paper, we explore the feasibility of using EAs to reverse engineer
FMs from the feature sets that describe the system variants and thus help coping
with the evolution scenario � from system variants to SPLs � described above.
Our study analyzed 59 representative feature sets from publicly available case
studies of di�erent sizes and complexity. For the implementation of our approach,
we used a speci�c instantiation of the evolutionary algorithm ETHOM [13],
integrated into the open source tool BeTTy [12].

We devised two �tness functions. With them we identi�ed a trade-o� between
accuracy of the obtained feature model (the required feature sets vs of the ob-
tained feature sets) and number of generations. That is, proper supersets of the
desired feature sets can be obtained with a small number of generations. How-
ever, these supersets contain a large surplus of feature sets. In contrast, to reduce
such surplus does require more generations. We believe our work is a �rst step
towards leveraging the extensive wealth of Search-Based Software Engineering
techniques to address many pressing variability management challenges.

2 Feature Models and Running Example

Feature models are the de facto standard to model the common and variable
features of an SPL and their relationships [6], and thus represent the set of feature
combinations that the products of the SPL can have. Features are depicted as
labeled boxes and are connected with lines to other features with which they
relate, collectively forming a tree-like structure.

A feature can be classi�ed as: mandatory if it is part of a program whenever
its parent feature is also part, and optional if it may or may not be part of a
program whenever its parent feature is part. Mandatory features are denoted
with �lled circles while optional features are denoted with empty circles both at
the child end of the feature relations. Features can be grouped into: or relation

Fig. 1: Video On Demand SPL Feature Model

whereby one or more features of the group can be selected, and alternative
relation where exactly one feature can be selected. These relations are depicted
as �lled arcs and empty arcs respectively.

Besides the parent-child relations, features can also relate across di�erent
branches of the feature model in the so called Cross-Tree Constraints (CTC)
[15]. The typical examples of this kind of relations are: i) requires relation
whereby if a feature A is selected a feature B must also be selected, and ii)
excludes relation whereby if a feature A is selected then feature B must not be
selected. In a feature model, these latter relations are depicted with doted single-
arrow lines and doted double-arrow lines respectively. Additionally, more general
cross-tree constraints can be expressed using propositional logic [15].

Figure 1 shows the feature model of our running example, a hypothetical
SPL of Video On Demand systems. The root feature of a SPL is always included
in all programs, in this case the root feature is VOD. Our SPL also has feature
Play which is mandatory, in this case it is included in all programs because its
parent feature VOD is always included. Feature Record is optional, thus it may be
present or not in our product line members, the same holds for feature PPV (Pay
Per View). Feature Display is also mandatory and like features Play and OS

(Operating System) they are included in all our programs because their parent,
the root, is always included. Features TV and Mobile constitute an alternative
relation, meaning that our programs can have either one of them but only one.
Similarly, features Aerial and Cable, and features Std (Standard) and Smart are
respectively in alternative relations. Notice as well, requires relations between
features Smart and Advanced, meaning that if a product contains feature Smart
it must also contain feature Advanced. The same is the case between Smart and
PPV, and between Cable and PPV. Finally, features Aerial and PPV are in an
excludes relation meaning that both cannot be present in the same product.
Next we provide a more formal de�nition of feature sets and their relation with
products3.

3 Adapted from [15] where feature sets are referred to as con�gurations.

De�nition 1. A feature set is a 2-tuple [sel,sel] where sel and sel are re-
spectively the set of selected and not-selected features of a product. Let FL be the
list of features of a feature model, such that sel, sel ⊆ FL, sel ∩ sel = ∅, and
sel ∪ sel = FL.

De�nition 2. A product is valid if the selected and not-selected features adhere
to all the contraints imposed by the feature model.

For example, the feature set fs=[{VOD, Play, Display, TV, Aerial,

OS, Kernel}, {Record, Cable, Mobile, Std, Smart, Advanced, PPV}] is
valid. As another example, a feature set with features TV and Mobile is not
valid because it violates the constraint of the or relation which establishes that
these two features cannot appear selected together in the same con�guration.

Table 1 depicts the feature sets of our running example VOD SPL of Figure
1. The ticks represent the selected features whereas empty entries represent not
selected features. The column headers are abbreviations of the feature names.

We reiterate that in this paper we address the problem of reverse engineering
feature models out of a lists of feature sets such as that in Table 1. It should
be stressed though that a list of feature sets can be denoted by di�erent feature
models. In other words, the mapping from feature sets to feature models is one-
to-many. This characteristic makes EAs specially attractive as di�erent potential
feature models can be analyzed and ranked according to distinct criteria. Next
we present a short description the EAs infrastructure we employed.

Table 1: Feature Sets of VOD Software Product Line

FSet VOD Play Rec Disp OS TV Mob Sm Std Ker Adv Aer Cab PPV

FS1 X X X X X X X X X
FS2 X X X X X X X X
FS3 X X X X X X X X
FS4 X X X X X X X
FS5 X X X X X X X X X
FS6 X X X X X X X X
FS7 X X X X X X X
FS8 X X X X X X X X
FS9 X X X X X X X X X X
FS10 X X X X X X X X X
FS11 X X X X X X X X X
FS12 X X X X X X X X
FS13 X X X X X X X X X X
FS14 X X X X X X X X X
FS15 X X X X X X X X X
FS16 X X X X X X X X
FS17 X X X X X X X X X X
FS18 X X X X X X X X X

3 Evolutionary Algorithms with ETHOM

We relied on the EA tool ETHOM (Evolutionary algoriTHm for Optimized fea-
ture Models) to implement our approach [13]. In this section, we present a basic
overview of the main characteristics of ETHOM, and in next section we describe
how it was applied for reverse engineering feature models.

3.1 Encoding

One of the most salient characteristics of ETHOM is its encoding of individuals
(i.e chromosomes) which is speci�cally tailored to represent feature models. A
feature model is thus represented as an array divided in two parts, one for the
tree structure of the feature model and one for its cross-tree constraints. The
enconding of the feature model of our running example in Figure 1 is shown in
Figure 2.

The chromosomes of the structural part of the tree are tuples of the form
<PR,CN> where:

� PR denotes the type of relationship a feature has with its parent. It can be
M for mandatory, Op for optional, Alt for alternative, and Or for or relation.

� CN denotes the number of children of the feature.

In addition, the order of these tuples is determined by a Depth-First Traversal
(DFT) starting from the root. It should also be noted that the root of the feature
model is not encoded. For example, the chromosome at entry with DFT value 6,
corresponds to feature Mobile that is an alternative (PR value is Alt) feature of
its parent (feature Display), and has two children (CN value is 2), namely Std

and Smart. As another example, chromosome at entry with DFT value 11. This
chromosome encodes feature Advanced, with an optional relation with its parent
feature OS (PR value is Op), and with no children (CN value is 0).

The chromosomes of the cross-tree constraints are tuples of the form <TC,O,D>

where:

� TC encodes the type of cross-tree constraint. An R value denotes a requires
constraint whereas an E value denotes an excludes constraint.

� O encodes the origin feature of the cross-tree constraint represented with the
corresponding DFT value.

� D encodes the destination feature of the cross-tree constraint represented
with the corresponding DFT value.

For example, the tuple <E,4,12> encodes the excludes cross-tree constraint be-
tween features Aerial (DFT value 4) and PPV (DFT value 12). As another
example, the tuple <R,8,11> encode a requires cross-tree constraint between
features Smart (DFT value 8) and Advanced (DFT value 11).

Fig. 2: ETHOM Encoding of Video On Demand feature model

3.2 Initial Population and Selection

There are di�erent alternatives in the literature to randomly generate feature
models [12,16]. ETHOM uses the following con�guration parameters:

� Population size.
� Number of features.
� Percentage of cross-tree constraints.
� Maximum branching factor, de�ned as the maximum number of subfeatures
of a feature, considering all the types of relationships.

� Percentage of mandatory relations.
� Percentage of optional relations.
� Percentage of Alternative relations.
� Percentage of Or relations.

There are multiple alternatives to implement selection in the EA literature
[17]. The current version of ETHOM provides roulette wheel and tournament
selection [13].

3.3 Crossover.

There are multiple alternatives to implement crossover in the EA literature [17].
The current version of ETHOM provides one-point and uniform crossover [13].
Fig. 3 depicts an example of the application of one-point crossover in ETHOM.
The process starts by selecting two parent chromosomes to be combined. For
each array in the chromosomes, the tree and CTC arrays, a random point is
chosen (so-called crossover point). Finally, the o�spring is created by copying
the content of the arrays from the beginning to the crossover point from one
parent and the rest from the other one. Notice that the characteristics of this
encoding guarantee a �xed size for the individuals.

3.4 Mutation.

ETHOM de�nes four mutation operators that are applied with the probability
set in the con�guration. The mutation operators available are:

Fig. 3: Example of one-point crossover in ETHOM [13].

� Operator 1. Changes randomly a relation between two features from one
kind to any other kind. For example, from mandatory (M) to optional (Op)
or from Op to Alternative (Alt).

� Operator 2. Changes the number of children CN, to a number selected from
0 to a maximum branching factor parameter set up in ETHOM.

� Operator 3. Changes the type of cross-tree constraint, from excludes to re-
quires and vice versa.

� Operator 4. Changes either the origin or destination feature (with equal
probability) of a cross-tree constraint. It is checked that the resulting CTC
does not have the same origin and destination values.

It should be noted that with application of cross-over and mutation operators
there is possibility of creating feature models that are not semantically correct.
ETHOM provides mechanisms for their identi�cation and repair. For further
details, please consult [13].

4 Applying ETHOM for Extracting Feature Models

In this section, we describe the concrete instantiation of ETHOM developed
for reverse engineering feature models and how it was used in the experimental
setting of our exploratory study.

4.1 ETHOM Con�guration Parameters and Fitness Functions

Based on our previous experience using ETHOM to generate hard-to-analyze
feature models, we set up ETHOM remaining con�guration parameters as shown
in Table 2. Notice that, as mentioned in Section 3.4, infeasible individuals (i.e.
semantically incorrect feature models), are replaced.

A crucial decision in our study was selecting an adequate �tness function.
Overall, our goal is to obtain features models that produce exactly the set of
products desired. Unfortunately, existing work on formal analysis of feature mod-
els indicates that �nding the relations between feature models and their related
product speci�cations (e.g. logic representation) can be a hard and expensive
computational task [8,15,16]. For this reason, we decided to analyze two �tness

Table 2: ETHOM con�guration parameters
Parameter Value selected

Selection strategy Roulette-wheel
Crossover strategy One-point
Crossover probability 0.7
Mutation probability 0.01
Initial population size 100
Infeasible individuals Replace
Maximum generations 25

functions, one that focuses on obtaining the desired feature sets disregarding any
surplus of feature sets and one that does penalize surplus. We argue that study-
ing both alternatives could provide some insights as to whether the extra cost
of computing the penalty would yield a faster (i.e. less number of generations)
and more accurate result.

Relaxed Fitness Function. The relaxed �tness function FFRelaxed maxi-
mizes the number of desired feature sets contained in a feature model disregard-
ing any surplus feature sets that the model could denote. FFRelaxed is de�ned
as follows:

FFRelaxed(sfs, fm) = |{fs : sfs | validFor(fs, fm)}|

Where sfs is the set of desired feature sets, fs is an individual feature set in sfs,
fm a feature model, and validFor(fs,fm) is a function that receives a feature
model and determines if a given feature set is contained in the set of feature sets
represented by the feature model fm4.

FFRelaxed is maximized to have as many feature sets from sfs as possible.
Thus its maximum is the size of the set of desired feature sets sfs. However this
function has a shortcomming, namely, that a feature model can contain more
feature sets besides those in sfs. An ideal solution would then include all the
feature sets in sfs and no more additional feature sets. However, reaching the
maximum would not guarantee this. For instance, consider the feature sets of
Table 1 and the feature model shown in Figure 1. If we apply FFRelaxed, we will
get a value of 18 which is the maximum in this case since this is the number of
feature sets we want the feature model to include and in this case this is exactly
the set of feature sets represented by the feature model. However, if we change,
for instance, the relationship between the root feature (VOD) and the feature
Play from mandatory to optional, the number of feature sets represented by the
feature model quickly raises from 18 to 36 but the value of the �tness function
would remain the same since all the 18 desired feature sets are included but more

4 For more details on the implementation of function valid please refer to [15].

are also included. The opposite could also eventually happen, i.e. that the feature
model includes less feature sets than the ones expected. For instance, imagine
that we add an excludes relationship between features Record and Mobile in
the feature model of Figure 1. The total number of feature sets represented by
the model will be reduced from 18 to 13 (feature sets FS5, FS6, FS13, FS14, and
FS17 would not be included). If we apply now FFRelaxed, the result will be 13
not reaching the maximum of the �tness function in this case.

Strict Fitness Function. The strict �tness function FFStrict penalizes having
more feature sets than those desired. FFStrict is maximized and its values can
range from 0 up to the concrete number of feature sets we want the feature
model to have. It is de�ned as follows:

FFStrict(sfs, fm) ==

{
0 : #products(fm) 6= |sfs|
FFRelaxed(sfs, fm) : #products(fm) = |sfs|

Where sfs is the set of desired feature sets and #products(fm) is a function
that receives a feature model and returns the number of feature sets it represents
5. FFStrict returns 0 in the case the number of feature sets represented by the
feature model is not equal to the number of desired feature sets and the value
of applying FFRelaxed otherwise. A potential shortcomming of this function is
that it equally penalizes all feature models that have more feature sets than the
number desired, irrespective of how big the di�erences are.

4.2 Experimental Setting

In order to assess our approach we analyzed case studies from the SPLOT web-
site [18], a publicly available repository of feature models that contains both
academic and real-life examples. We selected 59 representative feature models
based on their number of features and number of products. The number of prod-
ucts ranged from 1 to 896 and the number of features from 9 to 27. We chose
these thresholds so that the �tness functions analysed yield results within a
reasonable amount of time using the available tooling support.

Figure 4 sketches the overall control �ow for each selected feature model.
First, we used FAMA [19], a tool for the analysis of feature models, to generate
the feature sets represented by a given feature model. ETHOM follows a standard
EA control �ow. Using information gathered from FAMA (e.g. number of features
and feature names) the initial population is created. The evaluation takes into
account the feature sets of the products we are looking for and a �tness function,
either FFRelaxed or FFStrict. If the EA �nds an individual with the feature
sets desired, it records the number of generations along with time elapsed to
obtain them and stops. Otherwise, ETHOM then proceeds with the standard
selection, crossover and mutation steps before continuing with the evaluation of
the new generation. As shown in Table 2, there is also a stop criteria according
to the maximum number of generations, 25 generations in our study.

5 Implemented based on function number of products de�ned in [15].

Fig. 4: Experiment Control Flow

4.3 Evaluation Results and Analysis

We performed 10 runs for each of the two �tness functions for each of the 59
feature models we selected in order to get average values. The evaluation of
both functions started with the same initial populations. All the experiments
were performed on a Intel Xeon E5620 c©with 16 cores running at 2.40GHz.
This machine has 25 GB of shared RAM with other 5 machines inside a cloud,
and was running CentOS 5 and Sun Java 1.6. Note that for our evaluation only
one core was used per model. Execution time was measured using Java utilities.

Figure 5 summarizes the results obtained for FFRelaxed. In total, the algo-
rithm reached the maximum of the �tness function in 94,64% of all the runs with
an average execution time of 11 minutes. The average number of generations to
reach a maximum was 5 with a standard deviation of 3,39. We found that there
was only a model where the �tness function did not reach the maximum (within
25 generations) in any of the runs, shown in histogram of Figure 5(a). The per-
centage of cases where the maximum of the �tness function was reached within
the �rst 2 generations was around 30%. This would suggest that our algorithm

Fig. 5: FFRelaxed Results

Fig. 6: FFStrict Results

is performing quite e�ectively. However, we found that the number of denoted
feature sets in the evolved feature models was far from the expected number of
feature sets. To gauge at this di�erence, we de�ned the following surplus metric:

Surplus(sfs, fm) =
#products(fm)− |sfs|

|sfs|
× 100 (1)

This metric thus shows the percentage of increment or reduction of feature
sets denoted by an evolved feature model. The di�erences obtained in our runs
are shown in Figure 5(b). Please do note the logarithmic scale of the percentage
surplus axis. On average, the value was 2401,24% of surplus feature sets with
respect to the value expected. We did not �nd any feature model with the best
score of the �tness function with less number of feature sets than sfs. We did not
�nd any feature model with exactly the same number of feature sets either. With
these data, we conjecture that our algorithm using FFRelaxed would get similar
results to those of a random search because the number of generations to get a
maximum of the �tness function is small and the surplus of the resulting feature
model is high. It might also suggest that the �tness function is not guiding too
much the algorithm and thus using random search of feature models would o�er
similar results. To con�rm this conjecture, a proper and dedicated experiment
comparing both approaches is called for, which is part of our future work.

Figure 6 summarizes our �ndings for FFStrict. With this �tness function
16 out of the 59 feature models reached a maximum within the limit of 25
generations, with an average of number of generations of 16,66 and a standard
deviation of 5,56, see histogram in Figure 6(a). This would suggest that our
algorithm is performing worse; however, it is important to highlight the accuracy
obtained by the 43 feature models that did not reach the maximum. The accuracy
here was de�ned as follows:

Accuracy(sfs) = bestF itnessAchieved(sfs)/|sfs| × 100 (2)

Where sfs is the set of desired feature sets, and function bestFitnessAchieved

collects the best �tness value obtained in all the generations of the 10 runs
evaluated for a sfs (i.e. each feature model of our study). Figure 6(b) shows the

accuracy percentages (y-axis) plotted arbitrarily by increasing number of feature
sets of the corresponding feature model (x-axis). On average, the accuracy was
54,81% but with a wide standard deviation value of 25,4%. This result shows
that even though penalty of not having the exact number of expected feature sets
may appear harsh, it contributed to hone in the search to yield good accuracy
percentages.

5 Related Work

There is extensive and increasing literature in reverse engineering mostly from
source code. The novelty of our work lies on the application of EAs for reverse
engineering of variability. In this section, we shortly describe those works that
focus on reverse engineering feature models from speci�cations and those that
employ search-based techniques.

Recent work by Haslinger et al. proposes an ad hoc algorithm to reverse
engineer feature models from feature sets [10]. It works by identifying occurrence
patterns in the selected and not selected features that are mapped to parent-child
relations of feature models. Currently, they do not address general feature models
that can contain any type of cross-tree constraints. The main distinction with our
work is that only one feature model can be reversed engineered, whereas in our
approach we could provide di�erent feature models (if they exist) as alternatives
for the designers to choose from.

Work by Czarnecki and Wasowski study reverse engineering of feature mod-
els but from a set of propositional logic formulas [8]. They provide an ad hoc
algorithm that can potentially extract from a single propositional logic formula
multiple feature models but that tries to preserve the original formulas and re-
duce redundancies. Subsequent work by She et al. highlighted the limitations of
this approach, namely problems selecting the parents of features and incomplete-
ness [7]. They proposed a heuristic to address these two issues that complements
dependency information with textual feature description. In contrast with our
work, their starting point are con�guration and documentation �les.

Closer to our work is Acher et al. that also tackle the reverse engineering
of feature models from feature sets [11]. The salient di�erence between our ap-
proaches is that their work maps each feature set into a feature model which are
later merged in to a single feature model. This mapping and merge operation
rely on propositional logic techniques and tools which can be computationally
expensive. A more detailed comparison and analysis of the advantages and dis-
advantages of both approaches is part of our future work.

Finally, our exploratory study was inspired by and builds upon the previous
work on BeTTy, a benchmark and testing framework for feature model analy-
sis [12]. This framework is geared to generate feature models that are hard to
analyze, be it in execution time or memory footprint.

6 FutureWork

We argue that our exploratory study has opened up several research venues on
the application of SBSE techniques for variability management. The following
are some areas we plan to pursue as future work.

Improvement of �tness functions. The cornerstone of our work is devising an
adequate �tness function that contains the set of products required, as tight as
possible, but still remains scalable. A possibility is to experiment with functions
that consider feature model metrics [20].

Parameter landscape analysis. Currently, ETHOM is equally con�gured for
all the feature models we used in our runs. A detailed analysis of the param-
eter landscape of the problem is duly called for. We plan to experiment with
ETHOM's con�guration parameters. The ultimate goal is to see whether any
particular parameter con�gurations can yield better results and how they would
scale for larger feature models and feature sets.

Variability-aware mutation operators. Currently ETHOM blindly applies mu-
tation operators without any considerations of any potential variability impli-
cations, that is, how it could impact the set of products denoted by a feature
model. We want to extend the set of mutation operators so that they consider
the impact they may have on variability. We could then set up di�erent proba-
bilities so that they could be applied distinctly perhaps depending on the nature
of the required set of products. Integrating the work on analysis of feature model
changes is a starting point [16,21].

Quality of feature models. So far the emphasis of our work has been on ob-
taining a feature model that denotes the required set of feature sets. However, as
we mentioned, more than one feature model can denote the same set of feature
sets. The question is now, towards which equivalent feature model should the
search be directed to? We believe that quality metrics for feature models [20]
as well as quanti�cation of developers feedback could also be integrated [22] to
help answer this question.

Novel applications. Software Product Line Engineering covers the entire de-
velopment life cycle [4], from early design to deployment and maintenance. Thus,
there are plenty of areas where SBSE could be potentially applied. A salient one
is testing, where EA approaches could be tailored to consider variability impli-
cations in their search. A solid �rst step in that direction is the work by Segura
et al. [21]. As another example, the area of �xing inconsistencies in models with
variability [23, 24]. These new applications will in turn require more general
feature model and problem encodings and e�ective �tness functions.

Comparative studies. As mentioned throughout the paper, we plan to perform
a comparative study of basic search techniques (e.g. hill climbing), other EAs,
and feature model composition (e.g. [11]) with our approach.

7 Conclusions

In this paper we explored the feasibility of EAs for reverse engineering feature
models from feature sets. We devised two �tness functions that respectively

focused on: i) getting the desired feature sets while disregarding any surplus
(FFRelaxed), ii) getting the desired number of feature sets and then on the
desired feature sets (FFStrict).

With these two functions we were able to identi�ed a trade-o� between accu-
racy of the obtained feature model (the required feature sets vs of the obtained
feature sets) and number of generations. That is, proper supersets of the the de-
sired feature sets can be obtained with a small number of generations. However,
these supersets contain a large surplus of feature sets. In contrast, reducing such
surplus does require more generations but still can yield good accuracy results.
Despite this encouraging results, devising a �tness function that can reduce, if
not eliminate, this trade-o� is still an open question. We hope that this work
has highlighted some of the the many potential areas where SBSE techniques
can help tackle many open challenges in the realm of variability management.

The sources of our exploratory study can be downloaded from:
http://www.lsi.us.es/~dbc/material/ssbse2012

Acknowledgments

This research is partially funded by the Austrian Science Fund (FWF) project
P21321-N15 and Lise Meitner Fellowship M1421-N15, and Marie Curie Actions
- Intra-European Fellowship (IEF) project number 254965. It is also supported
by the European Commission (FEDER) and Spanish Government under CI-
CYT project SETI (TIN2009-07366) and by the Andalusian Government under
THEOS project and Talentia scholarship. We would also like to thank Jules
White and the MAGNUM research group for its support running the required
experiments.

References

1. Zave, P.: Faq sheet on feature interaction http://www.research.att.com/ pamela/-
faq.html.

2. Krueger, C.W.: Easing the transition to software mass customization. In van der
Linden, F., ed.: PFE. Volume 2290 of Lecture Notes in Computer Science., Springer
(2001) 282�293

3. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

4. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer (2005)

5. van d. Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer (2007)

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University (1990)

7. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In Taylor, R.N., Gall, H., Medvidovic, N., eds.: ICSE, ACM (2011)
461�470

8. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC, IEEE Computer Society (2007) 23�34

9. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semanti-
cally composable feature models from natural language requirements. In Muthig,
D., McGregor, J.D., eds.: SPLC. Volume 446 of ACM International Conference
Proceeding Series., ACM (2009) 211�220

10. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse engineering feature
models from programs' feature sets. In Pinzger, M., Poshyvanyk, D., Buckley, J.,
eds.: WCRE, IEEE Computer Society (2011) 308�312

11. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire,
P.: On extracting feature models from product descriptions. [25] 45�54

12. Segura, S., Galindo, J., Benavides, D., Parejo, J.A., Cortés, A.R.: BeTTy: bench-
marking and testing on the automated analysis of feature models. [25] 63�71

13. Segura, S., Parejo, J.A., Hierons, R.M., Benavides, D., Ruiz-Cortés, A.: ETHOM:
An Evolutionary Algorithm for Optimized Feature Models Generation. Technical
Report ISA-2012-TR-01, Applied Software Engineering Research Group. Depart-
ment of Computing Languages and Systems. University of Sevilla., ETSII. Avda.
de la Reina Mercedes s/n (2 2012)

14. Segura, S., Parejo, J., Hierons, R., Benavides, D., A.Ruiz-Cortés: Automated gen-
eration of hard feature models using evolutionary algorithms. Journal Submission
(2012) Under review.

15. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20
years later: A literature review. Inf. Syst. 35(6) (2010) 615�636

16. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In:
ICSE, IEEE (2009) 254�264

17. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer Verlag
(2003)

18. Generative Software Development Lab. Computer Systems Group, University
of Waterloo, C.: Software Product Line Online Tools(SPLOT). http://www.splot-
research.org/ (2012)

19. : FAMA Tool Suite. http://www.isa.us.es/fama/ (2012)
20. Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line

feature models using structural metrics. Software Quality Journal (2010)
21. Segura, S., Hierons, R.M., Benavides, D., Cortés, A.R.: Automated metamorphic

testing on the analyses of feature models. Information & Software Technology
53(3) (2011) 245�258

22. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In Crnkovic, I., Gruhn, V., Book, M., eds.:
ECSA. Volume 6903 of Lecture Notes in Computer Science., Springer (2011) 220�
235

23. Lopez-Herrejon, R.E., Egyed, A.: Fast abstract. Searching the variability space
to �x model inconsistencies: A preliminary assessment. In: Third International
Symposium Search Based Software Engineering SSBSE 2011.

24. Lopez-Herrejon, R.E., Egyed, A.: Towards �xing inconsistencies in models with
variability. [25] 93�100

25. Eisenecker, U.W., Apel, S., Gnesi, S., eds.: Sixth International Workshop on Vari-
ability Modelling of Software-Intensive Systems, Leipzig, Germany, January 25-27,
2012. Proceedings. In Eisenecker, U.W., Apel, S., Gnesi, S., eds.: VaMoS, ACM
(2012)

