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Summary. This paper proposes an approximate optimization algorithm combining P
systems with ant colony optimization, called ACOPS, to solve traveling salesman prob-
lems, which are well-known and extensively studied NP-complete combinatorial optimiza-
tion problems. ACOPS uses the pheromone model and pheromone update rules defined
by ant colony optimization algorithms, and the hierarchical membrane structure and
transformation/communication rules of P systems. First, the parameter setting of the
ACOPS is discussed. Second, extensive experiments and statistical analysis are investi-
gated. It is shown that the ACOPS is superior to Nishida’s algorithms and its counterpart
ant colony optimization algorithms, in terms of the quality of solutions and the number
of function evaluations.

1 Introduction

As a young and vigorous branch of natural computing, membrane computing fo-
cuses on abstracting computing models and membrane systems from the structure
and the functioning of the living cell as well as from the cooperation of cells in
tissues, organs, and other populations of cells [1, 2]. The molecular interactions
of neurons inspired the development of the neural P systems [3]. In recent years,
the interaction between membrane computing and other nature-inspired comput-
ing paradigms has been considered from various perspectives. The integration of
meta-heuristic search methodologies and P systems has given birth to membrane
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algorithms [4], which prove to be efficient and effective ways to solve various real
world problems. Generally, there are two main methods utilized in providing solu-
tions to optimization problems, approximate and complete approaches. The com-
plete algorithms are guaranteed to find an optimal solution in bounded time for
every finite size instance of an optimization problem and they may require ex-
ponential computing time in the worst case for an NP-hard problem [5]. These
approaches are ineffective in practical circumstances and other ways of tackling
these problems are considered. The approximate algorithms instead, focus on pro-
ducing good solutions in significantly less time rather than obtaining optimal solu-
tions which are hard to compute. These approaches are very important in solving
various continuous and combinatorial optimization problems [5].

The membrane algorithm, or the approximate optimization algorithm based
on P systems, is a fertile research direction which explores the great potential of
membrane computing as a distributed processing mechanism. Until now, relatively
limited work has been produced in this field. In [6, 7, 8], an approximate algorithm
using a nested membrane structure (NMS) and a local search technique to solve
traveling salesman problems was presented. The algorithm was also applied to ob-
tain good approximate solutions to the min storage problem [9]. In [10, 11], an
optimization algorithm combining the NMS and conventional genetic algorithms
was presented to solve single-objective and multi-objective numerical optimization
problems. In [12], the similarities between distributed evolutionary algorithms and
P systems were analyzed and new variants of distributed evolutionary algorithms
are suggested and applied for some continuous optimization problems. In our pre-
vious work [4, 13], a quantum-inspired evolutionary algorithm based on P systems
(QEPS) was proposed to solve knapsack and satisfiability problems. In the QEPS,
a one-level membrane structure (OLMS) was introduced and a comparison be-
tween the OLMS and the NMS was experimentally investigated. Further variants
of the QEPS were applied to analyze radar emitter signals and design digital filters
[14, 15, 16]. In [17], the application of membrane algorithms to controller design
was discussed. All these investigations support the claim made by Păun and Pérez-
Jiménez [18] that the membrane algorithm is a rather new research direction with
a well-defined scope, a set of open questions, and therefore further studies are
necessary to prove the usefulness of P systems-based approaches for real-world
applications.

The already established way of conceiving membrane algorithms is to explore
the interactions between P systems and various meta-heuristic techniques for solv-
ing different problems; their performance is assessed by comparing the results pro-
duced by them and their complexity aspects with those obtained by using already
available optimization techniques. In this paper, an approximate optimization
algorithm integrating P systems and ant colony optimization techniques, called
ACOPS, is proposed in order to solve traveling salesman problems (TSPs). This
is the first attempt to investigate the interaction between P systems and swarm
intelligence approaches in defining membrane algorithms. We use the pheromone
model and pheromone update rules of ant colony optimization (ACO) algorithms,
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and the hierarchical membrane structure and transformation/communication rules
of P systems, to specify the ACOPS algorithm. Also we discuss the parameter set-
ting of the ACOPS. A TSP is a well-known and extensively studied NP-complete
combinatorial optimization problem. Experiments conducted on fairly large TSP
instances and statistical analysis undertaken show that the ACOPS outperforms
Nishida’s algorithms and its counterpart ACO algorithms. This work is an example
of a successful use of membrane computing, in combination with efficient searching
methods, for designing approximate optimization algorithms.

This paper is organized as follows. Section 2 first gives a brief introduction
of TSP, P systems, and ACO, and then discusses the ACOPS in detail. Section
3 addresses some discussions with regard to parameter setting and experimental
results. Conclusions are drawn in Section 4.

2 ACOPS

This section starts with a brief description of the TSP problem, some basic P
systems concepts, and a presentation of the ant optimization algorithm. The rest
of this section is dedicated to a presentation of the ACOPS.

2.1 Traveling Salesman Problems

TSP is one of the well-known and most intensively studied combinatorial opti-
mization problems in the areas of optimization, operational research, theoretical
computer science, and computational mathematics [19, 20]. A TSP can be de-
scribed as follows. Given a set C of N cities, i.e., C = {c1, c2, · · · , cN}, and a set
D of the pairwise travel costs dij , i, j = 1, 2, · · · , N, i 6= j, i.e., D = {dij}, it is
requested to find the minimal cost of the path taken by a salesman visiting each of
the cities just once and returning to the starting point. More generally, the task is
to find a Hamiltonian tour with a minimal length in a connected, directed graph
with a positive weight associated to each edge. If dij = dji, the TSP is symmetric
in the sense that traveling from city X to city Y costs just as much as traveling in
the opposite direction, otherwise, it is asymmetric.

In the TSP, the cost could be associated with distance, time, money, energy,
etc.. A number of industrial problems such as network structure design, machine
scheduling, cellular manufacturing, and frequency assignment, can be formulated
as TSPs; consequently TSP is often used as a standard benchmark for optimization
algorithms [21]. In the theory of computational complexity, TSP belongs to the
class of NP-complete problems. In this paper, we will consider the symmetric TSPs,
in which the distance is used as the cost.

2.2 P Systems

Various P systems in the literature can be classified in three groups: cell-like P
systems, tissue- like P systems and neural-like P systems [22]. A cell-like P system,
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considered in this paper, is characterized by three components: the membrane
structure delimiting compartments, the multisets of abstract objects placed in
compartments, and the evolution rules applied to objects. The membrane structure
of a cell-like P system, shown in Fig. 1, is a hierarchical arrangement of membranes
[1]. The outermost membrane is the skin membrane separating the system from
its environment. As usual, there are several membranes inside the skin membrane.
Each of these membranes defines a region, which forms a different compartment of
the membrane structure and contains a multiset of objects, other membranes and
a set of evolution rules. The membrane without any membrane inside is called an
elementary membrane.

membrane 

skin 

elementary membrane region 

environment 
environment 

elementary region 

membrane 

Fig. 1. The membrane structure of a cell-like P system [1]

A cell-like P system with an output set of objects and using transformation
and communication rules is formally defined as follows [1, 23]

Π = (V, T, µ, w1, · · · , wm, R1, · · · , Rm, i0),

where

(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V the output alphabet);
(iii) µ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with elements of a given set
Λ – usually the set {1, 2, · · · ,m}; m is called the degree of Π;

(iv) wi, 1 ≤ i ≤ m, are strings representing multisets over V associated with the
regions, 1, 2, · · · ,m, of µ;

(v) Ri, 1 ≤ i ≤ m, are sets of rules associated with the regions, 1, 2, · · · ,m, of µ;
(vi) i0 is a number between 1 and m which specifies the output membrane of Pi.

The rules of Ri, 1 ≤ i ≤ m, have the form a → v, where a ∈ V and
v ∈ (V × {here, out, in})∗. The multiset v consists of pairs (b, t), ∈ V and
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t ∈ {here, out, in}, where here means that b will stay in the region where the
rule is used; out shows that b exits the region and in means that b will be commu-
nicated to one of the membranes contained in the current region which is chosen
in a non-deterministic way.

A P system, regarded as a model of computation, provides a suitable frame-
work for distributed parallel computation that develops in steps. In the process
of computation, multisets of simple objects or are rewritten; the rules associated
to regions are employed in a non-deterministic and maximally parallel manner;
the rules involving both transformation and communication are responsible for
evolving the current objects and transfer them among regions according to some
targets; the output region will contain the result of the computation [13].

2.3 Ant Colony Optimization

Ant colony optimizations, ACO for short, a successful evolutionary paradigm of
swarm intelligence inspired from the social behaviors of insects and of other animals
[19], was initiated by Dorigo in the early 1990s to solve various combinatorial
optimization problems [5]. ACO is inspired by the behavior of real foraging ants,
which employ pheromone trails to mark their paths to food resources. The main
ACO algorithms in the literature include the earliest ant system, MAX-MIN ant
system, rank-based ant system, hyper-cube ant system, and ant colony system
(ACS). According to the studies in [5, 19, 20, 24], the ACS is one of the most
powerful ACO algorithms. Therefore, we consider the use of ACS to construct the
ACOPS. In what follows the TSP is taken as an example to describe the ACS.

In the ACS, the TSP is mapped onto a graph called a construction graph in
such a manner that feasible solutions of the problem correspond to paths on the
construction graph. Artificial ants successively produce better feasible solutions by
modifying pheromones deposited on the edges of the TSP graph. The pseudocode
algorithm for ACS is shown in Fig. 2, where each step is described as follows.

(i) In this step, the pheromone values are initialized to a value τ0 (τ0 = 1/ND)
at step t = 0, where N is the number of cities in a TSP and D is an arbitrary
solution.

(ii) In the While loop, M represents the number of ants. Initially the M ants are
randomly placed in the N nodes of the TSP graph as the initial state of a
tour construction. Each ant uses a pseudorandom proportional rule to choose
the next city it will visit. For instance, the kth ant in the ith city chooses
the next city j by using the following formula

j =

{
arg max

l∈Nk
i

{[τil]α[ηil]β}, if q ≤ q0

J, otherwise
(1)

where τil is the pheromone value of the edge connecting the ith node and the
lth node; ηil is a heuristic information value; the parameters α and β(α > 0
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Begin 
1t 

(i) Initialize pheromone values 

While (not termination condition) do

For k=1, 2, … , M

For n=1, 2, … , N

(ii)       Construct a tour 

(iii)       Local pheromone update 

End For 

End For

(iv) Global pheromone update
1t t !

End While 

End Begin 

Fig. 2. Pseudocode algorithm for ACS

and β > 0) determine the relative importance of the pheromone value τil and
the heuristic information ηil; N k

i (N k
i ⊆ N ) is the set of all nodes that the

kth ant in the ith city can visit, where N is the set of all the nodes in the TSP
graph; q0(0 ≤ q0 ≤ 1) is a user-defined parameter specifying the distribution
ratio of the two choices; q is a random number generated by using a uniform
distribution function in the interval [0, 1]; J means that the next city j is
chosen by using a random proportional rule, i.e., the kth ant in the ith city
visits the city j at the next step according to the probability

pk
ij =





[τij ]
α[ηij ]

β

∑
l∈Nk

i

[τil]
α[ηil]

β , j ∈ N k
i

0, otherwise
(2)

(iii) After an ant constructs a tour, it will update the pheromone value τij of the
tour by applying a rule as follows

τij = (1− υ)τij + υτ0 (3)

where υ(0 < υ < 1) is a local pheromone decay coefficient. The local
pheromone update is used to encourage subsequent ants to choose other edges
and, hence, to produce different solutions, by decreasing the pheromone value
on the traversed edges. Thus, this step is helpful to the exploration of more
solutions.

(iv) This step is to update the pheromone values of all the edges in the TSP graph
by employing the best solution searched. To be specific, the pheromone value
τij(t) of the edge connecting the ith node and the jth node at generation t
is modified as the pheromone value τij(t + 1) at generation t + 1, i.e.,
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τij(t + 1) = (1− ρ)τij(t) + ρ∆τij(t) (4)

where ρ(0 < ρ ≤ 1) is a global pheromone decay coefficient and is also called
the evaporation rate of the pheromone, and ∆τij(t) is

∆τij(t) =
{

1/Db, if (i, j) ∈ Tb

0, otherwise (5)

where Db is the minimal distance searched, that is, the best solution searched,
and Tb is the shortest path corresponding to Db. The global pheromone
update is to guide ants toward the best path searched.

2.4 ACOPS

In this subsection, we use the hierarchical framework of cell-like P systems and
its evolution rules in a slightly modified way, and the parameterized probabilistic
model, i.e., the pheromone model, of ACO, to specify the ACOPS algorithm. More
specifically, the ACOPS applies the OLMS [13] to organize objects and evolution
rules. The objects consist of ants or TSP construction graphs. The evolution rules,
which are responsible to evolve the system and select the best ant, include a tour
construction, and transformation/communication rules implemented by using local
and global pheromone update rules.

More precisely the P system-like framework will consist of:

(i) a membrane structure µ = [0[1]1, [2]2, · · · , [m]m]0 with m+1 regions delimited
by m elementary membranes and the skin membrane denoted by 0;

(ii) a vocabulary that consists of all the ants;
(iii) a set of terminal symbols, T, TSP construction graphs;
(iv) initial multisets w0 = λ,

w1 = A1A2 · · ·AM1 ,
w2 = AM1+1AM1+2 · · ·AM2 ,
· · · · · ·

wm = AM(m−1)+1AM(m−1)+2 · · ·AMm

where Ai, 1 ≤ i ≤ M , is an ant; Mj , 1 ≤ j ≤ m, is the number of ants in the
wj ;

∑m
j=1 Mj = M , where M is the total number of ants in this computation;

(v) rules which are categorized as
a) tour construction rules in each of the compartments 0 to m; these are

transformation-like rules which construct tours for the ants (see (ii) in
the ACS presentation);

b) communication rules which use pheromone values to update the edges
of the TSP graphs. There are three levels of communication rules. The
first level corresponding to the local pheromone update strategy of the
ACS is utilized to exchange information between the current ant and
its subsequent ant. The second and third levels of communication rules
come from the global pheromone update strategy in the ACS. The second
one implements information exchange between the best ant and the rest
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within a certain membrane. The third one performs the communication
between the ants in the elementary membranes and those in the skin
membrane.

In the ACOPS the initial colony of ants is scattered across the membrane
structure. The initial colony will consist of the multisets w1, · · · , wm. Each of
the ants in the elementary membranes uses the rules of type (a) to sequentially
construct its tours. Going through N(the number of cities) steps, an ant will
sketch a whole path for the N cities. If all the ants have their paths, the current
generation is assessed compartment by compartment to select the best fit ant for
each elementary membrane. The best ant is used to adjust the pheromone values
in the TSP graph to communicate with the other ants in the same elementary
membrane. Every gi(i = 1, 2, · · · ,m) generations for the ith compartment, the best
ant is sent out to the skin membrane. Thus m ants from m elementary membranes
form the initial objects in the skin membrane. These ants evolve independently g0

generations to elect a best one to communicate with the ants in each elementary
membrane. The process will stop according to a preset termination condition, such
as a certain number of iterations. The pseudocode algorithm for the ACOPS is
summarized in Fig. 3, where each step is described as follows.

Begin 

1t  

(i) Initialize the membrane structure 

While (not termination condition) do

(ii)    Scatter ants into elementary membranes 

(iii)    Determine iterations for each of elementary membranes

For i =1, 2, .., m

(iv)    Perform ACS inside the ith elementary membrane 

End

(v) Form a colony of ants in the skin membrane 

(vi) Perform ACS in the skin membrane 

(vii) Execute global communication 

1t t !

End

End

Fig. 3. Pseudocode algorithm for the ACOPS
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1

0

…

2

m

Fig. 4. The one level membrane structure

(i) In this step, the OLMS, shown in Fig. 4, is constructed. How to choose the
parameter m will be discussed in Section 3.

(ii) The M ants forming a colony are scattered across the m elementary mem-
branes in such a random way that guarantees each elementary membrane
contains at least two ants. This is helpful to perform the second level of the
communication process. Thus, the number of ants in an elementary mem-
brane varies from 2 to M − 2m + 2.

(iii) This step determines the number of iterations for each elementary membrane
to independently perform ACS. To be specific, the number gi(i = 1, 2, · · · ,m)
of iterations for the ith elementary membrane is generated randomly between
gmin and gmax, i.e.,

gi = gmin + brand(0, 1) · (gmax − gmin)c (6)

where gmin and gmax are lower and upper limits of iterations for elementary
membranes, respectively; b·c is a function rounding an element to the nearest
smaller integer.

(iv) In each of the m elementary membranes, the ACS algorithm shown in Fig. 2
is performed independently, i.e., the tour construction, local pheromone up-
date and global pheromone update are sequentially carried out for gi(i =
1, 2, · · · ,m) iterations.

(v) The colony of ants in the skin membrane is formed by using the best ants of
elementary membranes. Each compartment sends the best ant out into the
skin membrane and therefore there are m ants in total.

(vi) The ACS algorithm shown in Fig. 2 is performed independently in the skin
membrane for g0 iterations as in step (iv). The parameter g0 is determined
using (6).

(vii) The global communication is used to exchange some information between
the ants in the skin membrane and those in the elementary membranes. To
be specific, the best one ant in the skin membrane is employed to update
the pheromone values of the TSP graph in each of elementary membranes.
This operation has a positive effect on the ants in the compartments toward
better fitness, the shorter path.
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3 Experiments and Results

The performance of the ACOPS is tested on various TSP instances. First of all,
it is discussed how to set the number of elementary membranes by using 4 TSP
benchmarks. Then 20 benchmarks are applied to compare ACOPS and its coun-
terpart ACO algorithm. Subsequently, experimental comparisons between ACOPS
and Nishida’s algorithms are performed on 8 benchmark TSP problems. In these
experiments, several parametric and non-parametric tests are employed to analyze
the ACOPS behavior.

3.1 Parameter Setting

This subsection uses four TSP benchmarks, Eil76, Eil101, Ch130 and Ch150, to
discuss how to choose the number m of elementary membranes and the number
gi(i = 1, 2, · · · ,m)of generations for each elementary membrane. The four TSPs
have N =76, 101, 130 and 150 cities, respectively. According to the studies in
the literature, the parameters in the experiments are chosen as follows: M = 40,
α = 1, β = 3, ρ = 0.6, υ = 0.1 and q0 = 0.9. We use the number 10000 of function
evaluations as the termination criterion for all tests.

We first investigate the effect of the number of elementary membranes on the
ACOPS performance. On the basis of the ACOPS description, the parameter m
varies from 2 to 20. The parameters gmin and gmax are set to 10 and 30, respectively.
The performances of the ACOPS for each of the 19 cases are evaluated by using the
best solutions and their corresponding elapsed time per run, and the mean of best
solutions and their corresponding mean of elapsed time per run, of 20 independent
runs. Experimental results are shown in Fig. 5 – Fig. 12.

It can be seen from Fig. 5 – Fig. 12 that there are some general trends. Both the
best solutions and the mean of best solutions over 20 runs have fluctuant behavior.
To be specific, there is a first rapid fall and then several waves of higher values
follow. The elapsed time per run has a general increase as m goes up from 2 to 20.
It is worth pointing out that the general trends become clearer as the complexity
of the problem increases. From these experimental results, a trade-off value for the
parameter m between the quality of solutions and the elapsed time could be about
4.

In what follows we set the number of elementary membranes to 4 to conduct
a further investigation on the effects of the number of communications (NoC)
between the skin membrane and the elementary membranes, i.e., the number of
global communications, on the ACOPS performance. Let the NoC vary from 1 to
40. The number of function evaluations (NoFE) as the stopping criterion is 10000.
The parameter gmin is set 10. Thus, according to the ACOPS description, the gmax

can be obtained from the following formula

gmax =
2 ·NoFE

NoC · (N + m)
− gmin (7)
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Fig. 5. Experimental results of Eil76 with different membranes
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Fig. 6. Experimental results of Eil76 with different membranes
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Fig. 7. Experimental results of Eil101 with different membranes

where N and m are the total number of ants and the number of elementary mem-
branes (also is the number of ants in the skin membrane), respectively. We also
use the four TSP benchmarks, Eil76, Eil101, Ch130 and Ch150, to carry out the
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Fig. 8. Experimental results of Eil101 with different membranes
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Fig. 9. Experimental results of Ch130 with different membranes
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Fig. 10. Experimental results of Ch130 with different membranes

experiments. For each of the 40 cases, we record the best solutions and their corre-
sponding mean of elapsed time per run, and the mean of best solutions and their
corresponding mean of elapsed time per run, to assess the ACOPS performance.
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Fig. 11. Experimental results of Ch150 with different membranes
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Fig. 12. Experimental results of Ch150 with different membranes

The independent runs for each case are 20. Experimental results are shown in
Fig. 13 – Fig. 20.

Figures 13 – 20 show that the best solutions and the mean of best solutions
over 20 runs have a behavior oscillating between various maxima and minima.
The elapsed time per run goes through a drastic fluctuation and then stays a
relatively steady level. We note that the trends become clearer as the complexity
of the problem increases. Considering a trade-off between quality of solutions and
the elapsed time, the recommended value for the NoC could be chosen in the
range [15, 35]. Thus, given a certain value of NoFE, an appropriate value for the
parameter gmax could be determined in an interval, according to (7).

3.2 Comparisons with ACO and Statistical Analysis

To draw a comparison between the ACOPS and its counterpart ACO, we use 20
symmetric TSP benchmark problems to conduct experiments. The test problems,
shown in Table 1, were chosen either because there were data available online in
the literature, or the optimal solutions are known. They are challenging enough
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Fig. 13. Experimental results of Eil76 with NoC
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Fig. 14. Experimental results of Eil76 with NoC
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Fig. 15. Experimental results of Eil101 with NoC

for making fair comparisons between the two algorithms, in terms of solving diffi-
cult instances of TSPs. In the following experiments, the ACOPS and ACO have
identical settings for parameters: M = 40, α = 1, β = 3, ρ = 0.6, υ = 0.1, q0 = 0.9
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Fig. 16. Experimental results of Eil101 with NoC
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Fig. 17. Experimental results of Ch130 with NoC
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Fig. 18. Experimental results of Ch130 with NoC

and the NoFE, also listed in Table 1, for different TSPs as the termination cri-
terion. Additionally, in the ACOPS, the number of elementary membranes, the
parameters gmin and gmax are set to 4, 10 and 30, respectively. The performances
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Fig. 19. Experimental results of Ch150 with NoC
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Fig. 20. Experimental results of Ch150 with NoC

of the ACOPS and ACO are evaluated by using the following statistical results
over 20 independent runs: the best, the worst and the average length of paths.
Experimental results are listed in Table 1.

As shown in Table 1, the ACOPS achieves better results than the ACO in 19
out of 20 instances, in terms of the best and mean solutions. We go further to ap-
ply statistical techniques to analyze the behavior of the two algorithms, ACOPS
and ACO, over the 20 TSPs. Parametric and non-parametric approaches are two
main ways of statistical methods [25]. The parametric approach, also called single-
problem analysis, employs a parametric statistical analysis t-test to check whether
there is a significant difference between two algorithms applied to an optimiza-
tion problem. The non-parametric approach, also called multiple-problem analy-
sis, utilizes non-parametric statistical tests, such as Wilcoxon’s and Friedman’s
tests, to compare different algorithms whose results represent average values for
each problem, regardless of the inexistence of relationships among them. Thus, a
95% confidence Student t-test is first used to check whether there are significant
differences between ACOPS and ACO. Two non-parametric tests, Wilcoxon’s and
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Table 1. A comparison between ACOPS and ACO (‘+’ and ‘-’ represent significant
difference and no significant difference, respectively. ‘—’ means no optimum available)

TSP NoFE
ACO ACOPS

t-test OptimumBest Average Worst Best Average Worst
ulysses16 1e+4 74.11 74.11 74.11 73.99 74.02 74.23 3.47e-6(+) 74

att48 2e+4 33588.34 33654.16 33740.35 33523.71 33644.97 34060.49 7.05e-1(-) 33524
eil76 3e+4 545.39 546.22 551.93 544.37 551.62 555.55 3.48e-7(+) 538

kroA100 4e+4 21577.69 21776.91 22320.91 21285.44 21365.64 21552.00 4.00e-8(+) 21282
eil101 4e+4 642.66 652.30 684.19 640.98 648.48 664.24 2.03e-1(-) 629
lin105 4e+4 14383.00 14472.38 14482.31 14383.00 14444.77 14612.43 8.61e-2(+) 14379
ch130 4.5e+4 6204.09 6268.43 6333.16 6148.99 6205.54 6353.69 1.02e-3(+) 6110
gr137 4.5e+4 718.92 725.02 749.93 709.91 718.85 738.35 6.63e-3(+) —
pr144 5e+4 58587.14 58612.82 58687.80 58535.22 58596.00 58761.43 2.24e-1(-) 58537
ch150 5e+4 6595.00 6630.59 6689.79 6548.89 6570.86 6612.46 1.05e-7(+) 6528
rat195 6e+4 2370.24 2392.69 2434.39 2348.32 2355.23 2373.79 1.61e-7(+) 2323
d198 6e+4 16172.77 16266.93 16530.79 16073.13 16192.89 16381.91 3.75e-2(+) 15780

kroa200 6e+4 29597.01 29988.74 30466.71 29453.10 29552.92 29688.13 1.92e-6(+) 29437
gr202 6e+4 496.48 496.96 499.53 488.41 494.21 499.44 6.82e-4(+) —
tsp225 7e+4 4067.96 4146.32 4262.76 3904.46 3971.68 4044.32 2.11e-9(+) 3916
gr229 7e+4 1739.77 1763.80 1802.44 1725.84 1756.28 1792.91 2.11e-1(-) —
gil262 8e+4 2452.82 2487.58 2512.85 2407.68 2431.58 2450.65 4.86e-10(+) 2378
a280 9e+4 2626.44 2683.21 2787.61 2595.31 2636.49 2728.06 8.46e-4(+) 2579
pr299 10e+4 51050.78 52103.27 53698.23 49370.69 51021.74 52251.21 7.69e-4(+) 48191
lin318 10e+4 44058.08 45297.99 46410.50 42772.12 43433.54 45194.62 5.95e-9(+) 42029

Friedman’s tests, are applied to check whether the two algorithms are significantly
different or not. The level of significance considered is 0.05. Results of t-test are
listed in Table 1. Results of Wilcoxon’s and Friedman’s tests are shown in Table 2.
In Table 1 and 2, the symbols ‘+’ and ‘-’ represent significant difference and no
significant difference, respectively. The t-test results in Table 1 demonstrate that
there are 16 significant differences between the two algorithms. The p-values of the
two non-parametric tests in Table 2 are far smaller than the level of significance
0.05, which indicates that the ACOPS really outperforms the ACO. It is worth
noting that the study in [25] shows that the non-parametric statistical tests are
more appropriate than parametric statistical tests in the analysis of the behavior
of optimization algorithms over multiple optimization problems.

Table 2. Results of non-parametric statistical tests for ACOPS and ACO in Table 1.
‘+’ represents significant difference

Tests ACOPS vs ACO

Wilcoxon test(p-value) 1.6286e-004(+)

Friedman test(p-value) 5.6994e-005(+)

3.3 Comparisons with Nishida’s Algorithms and Statistical Analysis

In [6, 7, 8], Nishida proposed a membrane algorithm combining an NMS P sys-
tems structure and a local search. Eight TSP benchmarks were applied to test the
performances of the algorithm and its variants. In his experiments, the NMS with
2, 10, 30, 50, 70 and 100 membranes, respectively, was discussed. The maximal
number of iterations, which can be equivalent to a certain number of function eval-
uations (NoFE), was used as the termination criterion. The number of trials was
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20. The ACOPS algorithm stops according to a prescribed NoFE. The parameters
of the ACOPS are assigned as follows: M = 40, α = 1, β = 3, ρ = 0.6, υ = 0.1,
q0 = 0.9, m = 4, gmin = 10 and gmax = 30. Experimental comparisons between the
ACOPS and the Nishida’s algorithm are listed in Tables 3-5, in which NoM repre-
sents the number of membranes. The results of the ACOPS are obtained from 20
independent runs. In Tables 3 and 4, the results of Nishida’s algorithm are obtained
from [7, 8] and the NoFE for each cases are calculated according to the number
of iteration and the number of membranes. The performance of the ACOPS is
also tested on the Eil51 and KroA100 TSPs with different NoFE. Table 5 lists the
experimental results of Nishida’s algorithm and the equivalent NoFE for each of
the 8 TSP instances calculated by using 50 membranes and 100000 iterations. The
results of Wilcoxon’s and Friedman’s tests are given in Table 6.

Table 3. Comparisons of Nishida’s algorithm and ACOPS with Eil51 TSP

Nishida’s algorithm ACOPS

NoM 2 10 30 50 70 4
NoFE 1.2e+5 7.6e+5 2.36e+6 3.96e+6 5.56e+6 1e+4 2e+4 3e+4 4e+4 5e+4
Best 440 437 432 429 429 429.4841 429.4841 428.9816 428.9816 428.9816
Worst 786 466 451 444 443 435.5985 436.3928 434.9739 433.6050 433.8558

Average 522 449 441 435 434 432.3858 431.8023 431.3146 430.5506 430.4495

Table 4. Comparisons of Nishida’s algorithm and ACOPS with KroA100 TSP

Nishida’s algorithm ACOPS

NoM 2 10 30 50 70 100 4
NoFE 3e+5 1.9e+6 5.9e+6 9.9e+6 1.39e+7 1.99e+7 1e+4 2e+4 4e+4 6e+4 8e+4 1e+5
Best 23564 21776 21770 21651 21544 21299 21331 21285 21285 21285 21285 21285
Worst 82756 24862 23940 24531 23569 22954 22332 21665 21552 21475 21427 21575

Average 34601 23195 22878 22590 22275 21941 21593 21407 21367 21337 21320 21362

Table 5. Comparisons of Nishida’s algorithm and ACOPS with 8 TSPs

TSP
Nishida’s algorithm — ACOPS

NoFE Best Average Worst NoFE Best Average Worst

ulysses22 9.9e+7 75.31 75.31 75.31 2e+4 75.31 75.32 75.53

eil51 9.9e+7 429 434 444 4e+4 429 431 434

eil76 9.9e+7 556 564 575 6e+4 546 551 558

eil101 9.9e+7 669 684 693 8e+4 641 647 655

kroA100 9.9e+7 21651 22590 24531 1e+5 21285 21320 21427

ch150 9.9e+7 7073 7320 7633 1.2e+5 6534 6560 6584

gr202 9.9e+7 509.7 520.1 528.4 1.4e+5 489.2 492.7 497.1

tsp225 9.9e+7 4073.1 4153.6 4238.9 7e+4 3899.6 3938.2 4048.2

As compared with Nishida’s algorithm, the ACOPS uses much smaller NoFE
to achieve better solutions, which is shown in Table 3-5. Small NoFE means low
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computing complexity. The non-parametric statistical analysis shows that the two
algorithms have also a significant difference.

Table 6. Results of non-parametric statistical tests for Nishida’s algorithm and ACOPS
in Table 5. ‘+’ represents significant difference

Tests Nishida’s algorithm vs ACOPS

Wilcoxon test(p-value) 0.0156 (+)

Friedman test(p-value) 0.0339 (+)

4 Conclusions

This work is the first attempt to discuss the interaction between P systems and ant
colony optimization. We present an approximate optimization algorithm combin-
ing the hierarchical structure of compartments and communication/transformation
evolution rules of P systems, and the pheromone model of ant colony optimization.
The introduced approach is used to solve the well-known and extensively studied
NP-hard problem, traveling salesman problem. The better optimization perfor-
mance of the ACOPS is verified by comparing it with its counterpart ACO and
Nishida’s algorithms. In order to thoroughly test the capabilities of this approach,
our future studies will focus on the use of the ACOPS to producing solutions to
some real-world engineering problems.
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18. Păun, G., Pérez-Jiménez, M. J.: Membrane computing: Brief introduction, recent
results and applications, Biosystems, 85(1), 2006, 11-22, 2006.
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