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Summary. A sequence of papers have been recently published, pointing out various
intractable problems which may be solved in certain fashions within the framework of
spiking neural (SN) P systems. On the other hand, there are also results demonstrating
limitations of SN P systems. In this paper we define recognizer SN P systems providing a
general platform for this type of results. We intend to give a more systematic character-
ization of computational power of variants of SN P systems, and establish their relation
to standard complexity classes.

1 Introduction

The spiking neural P systems, incorporating in membrane computing ideas from
spiking neurons, see, e.g., [18], were introduced in [12]. In short, an SN P system
consists of a set of neurons placed in the nodes of a graph, representing synapses.
The neurons send signals (spikes) along synapses (edges of the graph). This is done
by means of firing rules, which are of the form E/ac → a; d, where E is a regular
expression, c is the number of spikes consumed by the rule, and d is the delay from
firing the rule and emitting the spike. The rule can be used only if the number of
spikes collected by the neuron is “covered” by expression E, in the sense that the
current number of spikes in the neuron, n, is such that an ∈ L(E), where L(E) is
the language described by expression E. In the interval between firing a rule and
emitting the spike, the neuron is closed/blocked, it does not receive other spikes
and cannot fire again. There also are rules for forgetting spikes, of the form as → λ
(s spikes are just removed from the neuron). Starting from an initial distribution of
spikes in the neurons and using the rules in a synchronized manner (a global clock
is assumed), the system evolves. A sequence of transitions among configurations
of an SN P system, starting in the initial configuration, is called a computation.
One of the neurons is designated as the output neuron and its spikes can also exit
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the system. The sequence of steps when the output neuron sends spikes to the
environment is called the spike train of the computation.

In section 3.2 we propose a definition of (uniform) families of recognizer SN P
systems which should be still more elaborated in the future work. Then we use this
apparatus to study the computational power of deterministic (or, more generally,
confluent) SN P systems under the following conditions:

general regular expressions / single-star normal form,
polynomial / exponential number of activated neurons,
polynomial uniformity / non-uniformity by Turing machines,
cyclic / acyclic architecture.

Main theoretical tools we use to study these topics are logic circuits and RAM
computers which can simulate SN P systems in a convenient way.

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory, as
well as with basic membrane computing, e.g., from [22] and [26], respectively (we
also refer to [21] for an up-to-date information about membrane computing), so
that we introduce here only some notation used later in proofs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|.
For definitions of boolean circuits we refer the reader to [2]. Let

UCKT(C(n), D(n)), where C(n) ≥ n, denote the class of problems solvable by
logspace-uniform circuit families with unbounded fan-in where element correspond-
ing to n has size O(C(n)) and depth O(D(n)).

2.1 Regular expressions and normal forms

We recall the definition of regular expression mostly in order to fix the notation.

Definition 1. For a finite alphabet V : (i) λ and each a ∈ V are regular expres-
sions, (ii) if E1, E2 are regular expressions over V , then also (E1)∪(E2), (E1)(E2),
and (E1)∗ are regular expressions over V , and (iii) nothing else is a regular ex-
pression over V .

The catenation operator · and non-necessary parentheses may be omitted when
writing a regular expression. With each expression E we associate its language
L(E) defined in a usual way. We call two expressions E1 and E2 equivalent if
L(E1) = L(E2).
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Definition 2 ([1]). We say that a regular expression E = E1 ∪ . . . ∪ En (where
each Ei contains only · and ∗ operators) is in single-star normal form (SSNF) if
∀i ∈ {1, . . . , n}, Ei has at most one occurrence of ∗.

Lemma 1 ([1]). Every regular expression over one-letter alphabet can be trans-
formed into an equivalent single-star normal form.

This transformation, however, might require an exponential time and the size of
the resulting expression can be exponential with respect to the size of the original
expression.

2.2 Random Access Machines

RAM is a computing device with an infinite random access array of data registers
M1, M2, . . . , each of which can store an arbitrary integer, and with a set of labelled
instructions P = {P1, P2, . . .} each from the instruction set described below.

constant −→ Mres

Mop1 −→ Mres

∗Mop1 −→ Mres The contents of a register whose address is
stored in register Mop - indirect memory READ

Mop1 −→ ∗Mres The contents of a register Mop is written into
the register whose address is in register Mres -
indirect memory WRITE

Mop1 + Mop2 −→ Mres

Mop1 −Mop2 −→ Mres

GOTO label
GOTO label if Mop1@Mop2 @ ∈ {=, <}
HALT

Non-deterministic RAM is defined in the same manner as its deterministic
version except that more than one instruction can have the same label and their
choice is non-deterministic.

A parallel RAM (PRAM) has a sequence of RAM’s R1, R2, . . . operating syn-
chronously in parallel. They all have their own local registers and they can read
and write to common registers too. This can be done by indirect memory READ
or WRITE. In CRCW PRAM (concurrent-read, concurrent-write) if more than
one processor attempts to write into the same location in common memory at the
same time, the lowest numbered processor succeeds. All processors run the same
program.

In addition to the programs, another part of specification of a particular CRCW
PRAM is a function P (n) from positive integers to positive integers called the
processor bound. An input of size n consists of n binary words, each of length at
most n. A CRCW PRAM is given an input of size n by placing n words in the
first n locations of common memory, and the first P (n) processors R1, . . . , RP (n)
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are started. Each instruction takes one time unit. The computation halts when
R1, . . . , RP (n) have all halted. The machine operates in time T (n) if it halts within
T (n) steps on every input of size n. When the computation halts, the output can
be found in initial contiguous block of common memory of length at most n. The
model is essentially identical to the SIMDAG of Goldschlager [8] and similar to the
P-RAM of Fortune and Wyllie [7]. Note that [8] and [7] characterized the power
of these models when the number of processors grows exponentially in n.

Denote by CRCW(P (n), T (n)) the class of problems solvable on CRCW
PRAM in O(T (n)) time with O(P (n)) processors. It is known that
CRCW(poly(n), poly(n)) = P while CRCW(exp(n), poly(n)) = PSPACE.

Lemma 2 ([28]). CRCW(P (n), T (n)) ⊆ UCKT(poly(P (n), T (n), n), T (n))

The above result was presented first in [28] where also its detailed proof to-
gether with constructions of logical circuits implementing PRAM can be found.
The formulation in Lemma 2 is inspired by [14].

3 Spiking Neural P Systems

A spiking neural membrane system (abbreviated as SN P system), of degree m ≥ 1,
is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. in, out ∈ {1, 2, . . . ,m} indicates the input neuron (resp., output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (as usual in membrane computing, a global
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clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately, if
d = 1, then the spike is emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes again open, so that it can receive spikes (which can be used starting
with the step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in
each neuron, but neurons function in parallel with each other.

The system is called deterministic if for every neuron that occurs in the system,
any two rules E1/ac1 → a; d1 and E2/ac2 → a; d2 in the neuron have L(E1) ∩
L(E2) = ∅.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron. During a computation, the “state”
of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used. With any computation (halting or not) we associate
a spike train, the sequence of zeros and ones describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

3.1 Descriptional complexity of SN P systems

The size of description of a SN P system is an important measure when one wants to
study families of SN P systems. The first detailed specification of descriptional size
of a SN P system Π is given in [16]. It is based on the number of bits necessary to
fully describe the system Π. Let m be the number of neurons, N be the maximum
natural number that appears in the definition of Π, R the maximum number of
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rules which occur in its neurons, and S the maximum size required by the regular
expressions that occur in Π (this will be discussed later). Then the total size of
description of Π is polynomial with respect to m, R, S and log N.

Some authors introducing space complexity measures for P systems as [25]
suggested that an n-tuple of identical objects should occupy a space n. In SN P
systems, however, the spikes are not physical objects but an electric potential.
Furthermore, if we decided for unary representation of spikes, then it would be
also fair to assume unary representation of regular expressions in neurons which,
however, could restrict their power significantly.

Finally, observe that classical models of P systems and their uniform families
(see the next section for definition of families) actually use binary representation of
data. A member of the family processing inputs of size n can use poly(n) different
objects and code its input by their (non)presence in the input membrane.

Therefore, to represent n spikes, just the number log n of bits is taken as
the size of its description, both in neurons and regular expressions. This succinct
representation is used also in [16] and other papers. Note, however, that many of
the results presented here remain valid even if the unary representation of spikes
were adopted.

3.2 Families of SN P systems solving decision problems

Standard SN P systems were shown to be universal already in the introductory
paper [12]. However, as demonstrated in [20], no standard spiking neural P system
with a constant number of neurons can simulate Turing machines with less than
exponential time and space overheads. Therefore, for application of SN P systems
to solve intractable problems, many authors have (implicitly) used families of SN
P systems such that each member of a family solves only a finite set of instances of
a given size. In this section we propose a formal specification for families of SN P
systems. A first step towards such a specification was taken already in [15] for the
case of non-deterministic (and non-confluent) SN P systems. Most of definitions
in this section is motivated by [23].

Let us call decision problem a pair X = (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

It was suggested by some authors that a SN P systems solving an instance
w ∈ IX would halt if and only if θX(w) = 1. However, this is incompatible with
definitions of basic complexity classes (which do not allow non-halting compu-
tations) and also with standard construction of families of recognizer P systems
[23] which is extensively used. Hence we suggest the convention used implicitly
by many authors ([9, 16] and others) when describing “neural” solutions to Sub-
set Sum, 3-SAT and similar problems: the system always halts and the result
is determined by the fact whether the output neuron emits a spike during the
computation. Other convention are possible, such as the existence of two output
neurons signalling true or false.
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Definition 3. A recognizer SN P system is a SN P system which has all compu-
tations halting, and whose output neuron spikes no more than once during each
computation. Its computation is called accepting if the output neuron spikes exactly
once, otherwise it is rejecting.

This definition is also compatible with the variant when the system is asked to
spike at least once in the case of accepting computation. Any such SN P system
can be added another neuron connected to the original output, with two initial
spikes and the rules a → λ and a3 → a; 0 which emits only the first spike of those
it receives.

We distinguish recognizer SN P systems with input or without input. In the
first case the input (i.e., an instance w ∈ IX) is sent in the form of binary spike
train bin(w) to the input neuron, where bin(w) is an arbitrary binary encoding
of w. There are reasons for choosing binary encoding: it is known that standard
SN P systems can simulate logic gates with unbounded fan-in in a unit time [9].
Hence, their computational potential is at least as high as that of logic circuits.
The unary input/output convention, however, would decrease their computational
power exponentially in many cases, on one hand. On the other hand, to transform
the input value into the number of spikes in a neuron, the extended rules or
maximal parallelism would be necessary [17].

In the case of SN P systems without input, instances of a problem are encoded
within the structure of SN P system.

Definition 4. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) : n ∈
N}) of recognizer SN P without input (resp., with input) is polynomially uniform
by Turing machines if there exists a deterministic Turing machine working in
polynomial time which constructs the system Π(w) (resp., Π(n)) from the instance
w ∈ IX (resp., from n ∈ N).

In the sequel we will for short denote such a family just as uniform. Necessary
conditions must be met by families of recognizer SN P systems to solve algorith-
mically a given decision problem. Conditions of soundness and completeness of
Π with respect to X are defined in [23]. Conjunction of these two conditions for
SN P systems without input (resp., with input) ensures that for every w ∈ IX ,
if θX(w) = 1, then every computation of the SN P systems solving w is accept-
ing, and if θX(w) = 0, then every such computation is rejecting. Note that this
SN P system can be generally nondeterministic, i.e, it may have different possible
computations, but with the same result. Such a P system is also called confluent.

Definition 5. Let f : N → N be a constructible function. A decision problem X
is solvable in time bounded by f by a family Π = {Π(w) : w ∈ IX} of recognizer
SN P systems of type R without input, denoted by X ∈ SN∗

R(f), if the following
holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is f time-bounded; that is, for each instance w ∈ IX , every

computation of Π(w) performs at most f(|w|) steps.
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• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X.
In this case, for each instance of X we have a special P system. Specifically, we
denote by

PSN∗
R =

⋃
f polynomial

SN∗
R(f)

the class of problems to which uniform families of SN P systems of type R without
input provide semi-uniform solution in polynomial time. Analogously we define
families which provide uniform solutions solutions to decision problems.

Definition 6. Let f : N → N be a constructible function. A decision problem X is
solvable in time bounded by f by a family Π = {Π(n) : n ∈ N} of recognizer SN P
systems of type R with input, denoted by X ∈ SNR(f), if the following holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is f time-bounded; that is, for each instance w ∈ IX , every

computation of the member of Π solving w performs at most f(|w|) steps.
• The family Π is sound and complete with respect to X.

The family Π is said to provide a uniform solution to the problem X. Again,
we denote by

PSNR =
⋃

f polynomial

SNR(f)

the class of problems to which uniform families of SN P systems of type R with
input provide uniform solution in polynomial time. Obviously, for any constructible
function f and a class of SN P systems R, SNR(f) ⊆ SN∗

R(f), and PSNR ⊆
PSN∗

R.
We use the following notation to describe a specific type R of SN P systems:

−reg for systems with regular expressions of the form an, n ≥ 1, −del for systems
without delays, and ssnf for systems with regular expressions in the single-star
normal form.

4 Simulation of SN P systems with RAM

Theorem 1. For each confluent (respectively, non-confluent) SN P system Π with
all regular expressions in single-star normal form (SSNF) and with description
of size s, there is a deterministic (resp., non-deterministic) RAM constructed in
polynomial time with unit costs of operations which simulates t steps of Π in time
O(t(s + t)).

Proof. All information about the topology of the SN P system and rules in neurons
can be contained within the simulating RAM program. The configuration of each
neuron of a SN P systems will be represented in RAM by three registers counting
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(i) the number of spikes in the neuron, (ii) current delay period of the neuron (i.e.,
the remaining number of steps during which the neuron will be closed), and (iii)
the number of spikes prepared to be emitted (0 or 1, but in case of extended SN
P systems it can be more). Simulation of single step of a SN P system with RAM
consists of the following phases:

1. For each neuron:
• If the delay period is 0, check whether the number of spikes in neuron is

covered by a regular expression in some of its rules. If more than one rule
matches, choose one randomly. If a rule E/ac → a; d or ac → λ can be
applied, then
a) decrease the number of spikes in neuron by c,
b) set the delay period to d in the case of firing rule,
c) set the number of spikes to be emitted to 1 for firing rule or to 0 for

erasing rule.
• Else decrement the delay period by 1.

2. For each neuron with delay period 0 and the number of spikes to be emitted
¿0: reset the number of spikes to be emitted and increase by 1 the number of
spikes in all neurons connected to the output of the processed neuron.

3. If all neurons have delay period 0, none rule was applied and none spike was
emitted, halt the computation.

It is easy to verify that almost each elementary operation described above for
a single neuron or a synapse can be implemented on RAM in O(1) time, hence the
total number of necessary RAM operations for all neurons is O(s).

The only exception is the evaluation whether the number of spikes in a neuron
is covered by regular expressions. Consider a regular expression E = E1 ∪ . . .∪En

in SSNF. Each Ei, 1 ≤ i ≤ n, can be easily rewritten to the form aq(ar)∗, for
q, r ≥ 0. The evaluation whether Ei covers a number k of spikes present in the
neuron consist of checking the divisibility of k−q by r. This operation is performed
in time proportional to the number of bits of k. Total number of bits to describe all
spikes in all neurons after t steps of computation is O(s+log t) for standard SN P
systems, or O(s+ t) in the case of maximal parallelism or exhaustive rules. Hence,
the total number of RAM operations necessary to simulate t steps is O(t(s + t)).

The situation is more complicated when we deal with general regular expres-
sions in neurons. Let us prove the following lemma first.

Lemma 3. Matching of a regular expression E of size s in succinct form over a
singleton alphabet with a string ak can be done on a RAM or a Turing machine
in non-deterministic polynomial time with respect to s log k.

Proof. Assume that we have the syntactic tree of the expression E at our disposal
(its parsing can be done in deterministic polynomial time). We treat the sub-
expressions of the form an as constants and assign them a leaf node of the tree
with the value n. The matching algorithm works as follows:
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• Produce non-deterministically a random element of L(E) in succinct form by
a depth-first search traversal of its syntactic tree. Start with the value 0 and
evaluate recursively each node depending on its type as follows:
– leaf node containing a constant: return the value of the node;
– catenation: evaluate both subtrees of this node and add the results;
– union: choose non-deterministically one of the subtrees of this node and

evaluate it;
– star: draw a random number of iterations x within the range 〈0, k〉, evaluate

the subtree starting in this node and multiply the result by x.
• Compare the drawn element of L(E) with ak whether they are equal.

Whenever during the evaluation the computed value exceeds k, the algorithm
halts immediately and reports that ak does not match L(E). This guarantees that
the number of bits processed in each operation is always O(log k).

Each of the elementary operations described above can be performed in con-
stant time on RAM with unit instruction price, except the multiplication which re-
quires O(log k) time. Total number of tree-traversal steps is O(s). If we implement
the algorithm on Turing machine, the resulting time increases only polynomially.

Theorem 2. Any confluent or non-confluent SN P system Π of size s with gen-
eral regular expressions which performs t steps can be simulated on a RAM in
polynomial space with respect to t and s.

Proof. Consider the confluent case first. The construction of RAM used in the
proof of Theorem 1 can remain in this proof unchanged except the problem of
matching a number of spikes in a neuron with a general regular expression E over
one letter alphabet. Lemma 3 states that this problem can be solved in a non-
deterministic polynomial time on a RAM. Therefore, it might seem that the whole
simulation of a SN P systems might belong to the class NP. However, it is not
the case (unless NP=co-NP). The problem is that we cannot iterate the non-
deterministic solutions guessing whether certain neuron spikes, since the overall
result of computation might depend of the fact whether some neurons do spike
and others do not spike.

Therefore, since NP ⊆ PSPACE, we can only guarantee that the whole sim-
ulation can be done in deterministic polynomial space. Indeed, if one replaces the
random selection in the proof of Lemma 3 by dept-first-search of all possible vari-
ants, one gets a deterministic algorithm performing matching in polynomial time
and exponential space.

Finally, the same argument can be applied for the case of non-deterministic
and non-confluent SN P systems. In this case the simulating machine (RAM)
must further keep trace of non-deterministic choices of rules in each step and try
systematically all the possibilities. This requires obviously a polynomial space with
respect to s and t.
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5 Relation to standard complexity classes

For the first result we recall the NP-complete problem Subset Sum:

Problem 1. NAME: Subset Sum

INSTANCE: a (multi)set V = {v1, v2, . . . , vn} of positive integers, and a positive
integer S.

QUESTION: is there a sub(multi)set B ⊆ V such that
∑

b∈B = S?

The usual agreed instance size of Subset Sum is Θ(n log K), where K =
max{v1, . . . , vn, S}.

Theorem 3. The problem Subset Sum is solvable in semi-uniform way by a
uniform family of deterministic recognizer SN P systems in constant time, where
each member of the family solving an instance of size n log K has a single-neuron
and a description of size O(n log K).

Proof. Consider the SN P system described in [16], Proposition 1 at p. 242–243.
Given an instance of the Subset Sum problem defined ibidem, the construction
of the SN P system is clearly polynomially uniform by Turing machine, the size
of the description of the system is O(n log K) (i.e., equivalent to the size of the
instance), the system is deterministic and it solves the given instance in a single
step.

Note: The above theorem remains valid only in the case of succinct represen-
tation of spikes and regular expressions. Otherwise the size of the SN P system
would be nK, i.e., exponentially greater than the size of the instance.

The following lemma is due to [9] where detailed constructions of acyclic “neu-
ral” modules simulating gates with unbounded fan-in can be found.

Lemma 4. SN P systems with regular expressions of the form an, n ≥ 1 and
without delays can simulate logic gates AND, OR, XOR with unbounded fan-in
and fan-out in constant time and space.

Theorem 4. For an arbitrary polynomial T, CRCW(poly(n), T (n)) ⊆
SN−reg,−del(T (n))

Proof. By Lemma 4, UCKT(poly(n), T (n)) ⊆ SN−reg,−del(T (n)) since a
polynomially-sized circuit can be simulated in linear time a SN P system which
can clearly be constructed in polynomial time by a Turing machine, and hence
is a member of a uniform family. Then by Lemma 2, CRCW(poly(n), T (n)) ⊆
UCKT(poly(n), T (n)) for a polynomial T and, furthermore, the family of cir-
cuit is logspace-uniform, hence also polynomial time uniform by Turing machines.
The whole construction of the simulating SN P system is therefore polynomially
uniform and the statement of the theorem follows.
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Note that the above result would hold for acyclic SN P systems as well since
the neural modules referred to in Lemma 4 are acyclic. Since SN P systems allow
for cyclic architectures, one might ask whether this fact could not improve the
above result. Unlike acyclic circuits, SN P systems could simulate many steps of
a CRCW PRAM program by the same computing modules. However, the size
of the resulting SN P system would still increase with P (n) and T (n) as the
number of bits processed by each RAM unit is bounded by O(T (n)) and the size
of the SN P system increases accordingly. Hence in is interesting to observe that
the computational power of uniform families of cyclic and acyclic SN P systems
differs only polynomially. Solving the same problem, cyclic systems would have
their size bounded by a polynomial of a lower degree.

The statement of the above theorem was partially foretold already in [10] where
“neural” circuits of SN P systems performing arithmetics are presented. In that
paper, however, these operations are performed sequentially, bit-by-bit, unlike in
standard binary computers where all bits are processed in parallel.

Corollary 1. P = PSNssnf = PSN∗
ssnf

Proof. Observe that CRCW(poly(n), poly(n)) = P, then the statement follows
by Theorem 4 and 1.

Theorem 5. NP ⊆ PSN∗ ⊆ PSPACE

Proof. Follows by Theorems 2 and 3. Note that, thanks to the power of general
regular expressions, there is no difference between constant and polynomial time.

We do not know whether for families of recognizer SN P systems also uniform
solutions to NP-complete problems would be possible, allowed by some kind of
“universal regular expression” for a given size of instances.

6 Beyond P and NP

Our first focus in this section is devoted to non-uniform families of SN P systems.
This means that an unlimited number of resources and even a super-Turing com-
puting devices can be used to construct members of the family. Clearly, without
any further limitations, such families could solve any decision problem including
undecidable ones. Therefore certain limitations are imposed especially on the size
of members of the family. It is known that, to characterize the computing power
of such families, the Turing machine with advice function is a useful tool. Infor-
mally, an advice is a binary string which is given to the Turing machine solving a
decision problem in addition to its input. The advice is the same for all inputs of
identical size, hence it depends only on the size of the input. It contains (possibly
non-computable) correct information which can help to adopt a decision about the
input.
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Definition 7. Let f : N → N . An f(n)-advice sequence is a sequence of binary
strings A = (a1, a2, . . .), where |an| ≤ f(n). For a language B ⊆ {0, 1, #}∗ let
B@A = {x| x#a|x| ∈ B}. Let P/f(n) = {B@A : B ∈ P and A is an f(n)-advice
sequence}. Let P/poly =

⋃
k P/nk.

Theorem 6. Non-uniform families of deterministic recognizer SN P systems of
polynomial size with regular expressions in single-star normal form can compute
in polynomial time exactly the class of problems P/poly.

Proof. By Theorem 1, any polynomial-time restricted computations of a SN P
system of a polynomial size with regular expressions in single-star normal form
can be simulated by RAM (and hence also by Turing machine) in polynomial time.
Furthermore, by Theorem 4 in [24], each computation of such a Turing machine
can be simulated by a polynomial size circuit. Finally, by Theorem 2.2 in [2], each
problem with polynomial circuit complexity is in P/poly.

The converse inclusion follows by Lemma 4 which shows that each circuit of
polynomial size can be simulated by a SN P system of an equivalent size with
simple regular expressions.

Note that uniform solutions are necessary because they form a part of the
standard definition of sets recognized by circuits [2]. If we thought about semi-
uniform solutions, then for each instance we could have a special SN P system,
and since their family is non-uniform, it could solve in constant time any problem,
even non-decidable, by pre-computing the result.

Note also that, even if the sets recognized by the mentioned families of SN P
systems are also recognized by a Turing machine in polynomial time, this does
not imply that these sets are in P since these machines were derived from SN P
systems constructed in a non-uniform way and hence they can contain an advice
of polynomial size.

Finally we briefly mention SN P systems with pre-computed resources. The
basic idea is that we start with an exponentially large number of inactive neurons,
which will be subsequently activated and used during the computation. These
neurons are arranged into a simple regular structure in the sense that a prototype
neuron and the interconnection pattern is computed in polynomial time and then
simply replicated [9]. It has been shown [13] that such SN P systems can solve in
linear time PSPACE-complete problems QSAT and Q3SAT.

Conjecture 1. If a deterministic SN P system can activate an exponential number
of neurons in a polynomial time, the resulting machine is equivalent to the parallel
RAM, a standard Second Machine Class model, whose polynomial time-bounded
computations characterize PSPACE.

Proof. (Sketch) The statement follows by Theorem 1, Theorem 4 and by the con-
struction of CRCW PRAM as described, e.g., in [28].

Similar arguments indicate that, if a non-deterministic SN P system can ac-
tivate an exponential number of neurons in a polynomial time, the resulting
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machine may prove equivalent to the P-RAM [7], a computing model whose
non-deterministic polynomial time-bounded computations characterize the class
NEXPTIME. These open problems are the next to be addressed in the future
research.

7 Conclusion

In this contribution we tried to generalize results concerning complexity issues
of SN P systems published previously in a sequence of papers. We have defined
(uniform) families of recognizer SN P systems which should still be more elaborated
in future work. Main results can be summarized as follows:

1. Polynomially uniform families of recognizer SN P systems with regular ex-
pressions in single-star normal form characterize by their polynomial time-
bounded computations the class P.

2. Polynomially uniform families of recognizer SN P systems with general regular
expressions can in polynomial time solve a class of problems bounded between
NP and PSPACE.

3. If a confluent or deterministic SN P system can activate an exponential number
of neurons in a polynomial time, it is probably computationally equivalent to
parallel RAM, a standard Second Machine Class model whose computations
in polynomial time characterize PSPACE.

4. Non-uniform families of SN P systems of polynomial size with regular expres-
sions in single-star normal form characterize by their uniform solutions in
polynomial time the class P/poly.

Rather surprisingly, it turned out that there is no substantial difference in
power of uniform families cyclic and acyclic SN P systems. The use of single-star
normal form for regular expressions to demonstrate the borderline between SN P
systems able to solve tractable and intractable problems is also interesting.
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