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Summary. Bistability, or more generally multistability, is an important recurring theme
in biological systems. In particular, the discovery of bistability in signal pathways of ge-
netic networks, prompts strong interest in understanding both the design and function of
these networks. Therefore, modelling these systems is crucial to understand their behav-
iors, and also to analyze and identify characteristics that would otherwise be difficult to
realize. Although different classes of models have been used to study bistable dynamics,
there is a lag in the development of models for bistable systems starting from experi-
mental data. This is due to the lack of detailed knowledge of biochemical reactions and
kinetic rates.
In this work, we propose a procedure to develop, starting from observed dynamics,
Metabolic P models for multistable processes. As a case study, a mathematical model
of the Schlögel’s dynamics, which represents an example of a chemical reaction system
that exhibits bistability, is inferred starting from observed stochastic bistable dynamics.
Since, recent experiments indicate that noise plays an important role in the switching of
bistable systems, the success of this work suggests that this approach is a very promising
one for studying dynamics and role of noise in biological systems, such as, for example,
genetic regulatory networks.

1 Introduction

Bistability is an important recurring theme in cell signaling and has been studied
extensively through experiments, theoretical analysis, and numerical simulations
[8, 10, 3, 22]. A bistable system has two distinct steady states and any initial
state will eventually bring the system into one of them. Bistability is a key to
understand basic cellular phenomena, such as decision-making processes in cell
cycle progression, cell differentiation and apoptosis [2]. It is also involved in the
loss of cellular homeostasis associated with early events in cancer onset [12] and
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in prior diseases [11]. In [23], different bistable phenomena in bacteria and the
importance of bistability for the origin of new species are studied.

Recently, interest grew in the investigation of the bistable dynamics regula-
tions through differential and stochastic modelling [8, 10]. Usually, differential and
stochastic models are developed based on detailed knowledge of biochemical re-
actions, molecule amounts and kinetic. Kinetic rates are estimated by using the
mass action law, while stochastic parameters are derived from these rates.

However, there are several limitations for a reliable application of these classes
of models. First, the determination of kinetic and stochastic constants depends on
the chemo-physical details of the reactions, and moreover, even if carefully estab-
lished in rigorous experimental settings, they may be completely different when
many reactions are put together in real complex systems. Second, data availability
and regulatory information usually can not provide a comprehensive picture of
biological regulations. Lastly, in the processes with only a few molecules, classic
mass action kinetics are no longer valid for describing the reaction dynamics. For
these reasons, the modelling of observed dynamics is not a trivial work and in
some cases it still remains an open problem.

Recognizing the importance of bistability in biochemical systems, some tech-
niques to obtain mathematical models of bistable (multistable) systems starting
from observed dynamics or experimental data are needed.

In this work, we propose a procedure, rooted in Metabolic P Systems [17,
15], shortly MP Systems, to infer models of an observed, also stochastic, bistable
(multistable) dynamics.

As a case study, a mathematical model of the Schlögel’s reaction [21], which rep-
resents an example of chemical reaction system that exhibits bistability, is inferred
starting from observed stochastic dynamics. Since recent experiments indicate that
noise and stochasticity play important roles in the switching of bistable systems,
this work suggests that this approach is very promising for studying the dynam-
ics and role of noise in biological systems, like, for example, genetic regulatory
networks.

2 Metabolic P Systems and Log-Gain theory: a brief
introduction

MP systems have been introduced as mono-membrane multiset rewriting gram-
mars, whose rules are regulated by specific functions [15]. The aim is to control
the matter transformation in a reactor by means of rules whose fluxes dynamically
depend on the state of the system. This strategy of rules application is different
to that of P Systems [20] and it has been successfully applied to several biological
processes [1, 18, 19].

Specifically, an MP system is completely specified (the reader can find the
formal definition in [17]) by: i) n substances and their initial values, ii) m reactions,
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with3 m > n, iii) m corresponding flux regulation functions, iv) k parameters4,
and their initial values, which are arguments, beside substances, of flux regulation
functions, and v) k parameter evolution functions.

A state q is an Rn+k vector, reporting the current amounts of substances and
parameters, while each rule rj (with j = 1, . . . ,m) having some of the n sub-
stances as substrates and some as products, is associated with a couple of vectors
(r−j , r

+
j ) ∈ Nn×Nn(one of which possibly null), reporting the substance quantities

respectively occurring in the premise and in the consequence of rj .
As an example, we can consider a system M with three substances {a, b, c},

two parameters {v, w} which values evolve, for t ∈ N, according with their own
function fv(t) and fw(t), respectively, and four reactions:

r1 : ab→ aa

r2 : bcc→ a (1)
r3 : ac→ λ

r4 : abc→ bb.

The reactions (1) correspond to the following vectors, respectively :

(r−1 , r
+
1 ) = ((1, 1, 0), (2, 0, 0)), (r−2 , r

+
2 ) = ((0, 1, 2), (1, 0, 0)),

(r−3 , r
+
3 ) = ((1, 0, 1), (0, 0, 0)), (r−4 , r

+
4 ) = ((1, 1, 1), (0, 2, 0)).

Four flux regulation functions, one for each rule, are defined from R5 to R, and
they produce at each step fluxes u1, u2, u3, u4, associated with the corresponding
reaction.

We call stoichiometric matrix, the (n × m)-dimensional matrix A formed by
the vectors r+i − r

−
i , for every rule ri, disposed according to a prefixed order. For

example, in the system above, we have

A =

 1 1 −1 −1
−1 −1 0 1

0 −2 −1 −1

 . (2)

The stoichiometric matrix is assumed to have maximal rank. Should we have
one row linearly dependent on the others, we could delete it (together with the
corresponding substance in the system, as studying its dynamics would not add
any useful information on the system), and analyse only the remaining substances
(we newly say n) and the corresponding n ×m stoichiometric matrix which now
has full rank.
3 We assume m > n, as it realistically happens in biochemical systems. A few examples

are given by the following protein-protein interaction networks: yeast has 8868 known
interactions among 3280 proteins [9], Drosophila has 4780 known interactions among
4679 proteins, and C. elegans has 5534 known interactions among 3024 proteins [7].

4 Parameters are internal or external controlling variables which somehow affect the
system’s functioning.
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Let U [t] = (ur[t] | r ∈ R) be, for t = 0, 1, . . ., the (m)-dimensional column
vector of fluxes and X[t] be the (n)-dimensional column vector of substances.
Then, the dynamics of an MP system, given by both the evolution of parameters,
according to their laws, and by the evolution of the substances, are computed
by the Equational Metabolic Algorithm[15, 14], which is the following recurrent
n-equations system:

X[t+ 1] = A× U [t] +X[t] (3)

where × denotes the ordinary matrix product and t the discrete instant of time.
This way to observe the evolution rules of a system reproducing a biological

reaction has been proposed in [1] and constitutes a new perspective. In fact, by
using MP systems, one assumes an a priori choice of the time interval τ , between
consecutive evolution steps, that depends on the macroscopic level at which con-
sidering the dynamics of the system. Then, the flux values, depending on the state
of the system, are computed according to the chosen observation granularity.

Therefore, the approach of modelling by MP systems considers the rules as
macroscopic matter transformation reactions rather than microscopic molecular
interactions. Then, the search of fluxes is aimed at designing a model of the ob-
served macroscopic reality with respect to the abstract transformations one has
assumed, and it is different from the rate estimation typically studied in systems
biology.

This inverse dynamical problem is the starting point of the Log-Gain theory
[16]. The goal of this theory is to deduce the time-series of fluxes, reproducing an
observed dynamics and biologically meaningful, starting from some consecutive (at
a time interval τ) time-series of the state of a system. When such time-series are
known, the discovery of flux regulation functions is a problem of approximation
which can be solved with mathematical regression techniques.

According to the simplest formulation of this theory, given a number of obser-
vations of the system’s states, for which the stoichiometry is known, the relative
variations of any reaction flux of the rule rj : αj → βj is the sum of the rela-
tive variations of its reactants, plus some error pj , called reaction offset, which is
introduced as a variable of the system:

(uj [t+ 1]− uj [t])/(uj [t]) =
∑
x∈αj

((x[t+ 1]− x[t])/x[t]) + pj .

We denote with P [t] the m-dimensional vector of pj variables, j = 1, . . . ,m,
that is, of the errors introduced with the log-gain approximations of fluxes at
step t. Furthermore, we denote with Lg(U [t]) the m-dimensional vector of relative
fluctuations, that is ((uj [t + 1] − uj [t])/uj [t] | j = 1, . . . ,m), for any t ∈ N.
Analogously, Lg(X[t]) is the vector of relative variations of substances. Therefore,
in formal terms, the m+n equations system we want to solve (in order to find the
vector U[t+1]) is {

Lg(U [t]) = B× Lg(X[t]) + C · P [t+ 1]
A× U [t+ 1] = X[t+ 2]−X[t+ 1] (4)
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where B is a (m×n)-dimensional boolean matrix selecting, by matrix product, the
reactants for each reaction, and C is an m-dimensional boolean vector selecting, by
Schur product, only n of the m reaction offsets (hence that are n other unknowns
in the system, besides the m fluxes). As proposed in [4], vector C selects a set
of n linear independent reactions, called covering set, in order to infer the flux
time-series. However, a way to choose the best covering set among the linearly
independent ones still remains to be found.

3 A flowchart to infer bistable MP systems

In order to model bistable (stochastic) phenomena starting from experimental
data, we propose the flowchart represented in Figure 1. In our method, first a set
of intermediate MP systems having dynamics in accordance with several observed
dynamics is created, by using Log-Gain theory, least-square theory and correlation
analysis. In the case of stochastic phenomena, this phase in particularly important
because it allows us to obtain dynamics having behaviours, in particular those
related to the reaction fluxes, not affected by observed noise. Namely, first i)
we apply the Log-Gain theory to infer the numeric values of the reaction fluxes,
then ii) a correlation analysis is used to suggest relationships between flux and
substance/parameter time-series, and finally iii) least-squares theory is used to
approximate the flux regulation functions.

Once we obtained good approximations of the different observed dynamics, we
apply again the least-squares theory to infer an unique MP system modelling the
bistability of the input phenomenon.

This last phase represents the major challenge because it needs a mathematical
analysis to identify the appropriate forms of the final flux regulation functions. As
result of this flowchart, we will obtain an MP systemM modelling the bistability
of the studied phenomenon.

In the following section we will apply this flowchart to a chemical reaction
system which exhibits a stochastic bistable dynamics.

4 A case study: the stochastic Schlögel’s reaction

An interesting example of bistable process is provided by the Schlögel’s model
[21], which is an autocatalytic, trimolecular reaction schema composed of the set
of coupled chemical reactions reported in Table 1.

What makes the Schlögel’s reaction especially interesting is that, despite its
simplicity (it is composed of four reactions involving three species, two of which
are buffered) it provides a very rich dynamics. If we fix the stochastic parameters
(and hence the reaction rates which can be computed from them), according to
certain ranges of values, as well as the initial amounts of the two buffered species
a and b, depending on the initial amount of x, the stochastic simulation of the
system provides a bistable behaviour.
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Bistable phenomenon

Different time-series

Time-series 2 Time-series n

MP model 1 MP model 2 MP model n

Time-series 1

Dynamics 1 Dynamics 2 Dynamics n

Least-squares theory

Bistable MP model

Log-Gain theory
Least-squares theory
Correlation analysis

Regulation functions

Soundness functions Improving functions

Yes

No

Fig. 1. Flowchart for the estimation of an MP system describing the dynamics of a
bistable (stochastic) phenomenon. Experimental data are analysed and used to infer
intermediated MP models which characterize the different observed dynamics. Then,
these models are used to generate reaction flux and substance dynamics in accordance
with the observed ones. Finally, these dynamics represent the input of a least-squares
analysis, where, by using also some hypothesis about the logic governing the studied
phenomenon, the final MP system is inferred.

Let #X[t] = (#x1[t],#x2[t], . . . ,#xn[t]) be the vector representing the state
of the system (i.e. the number of molecules of every species xi in the system
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Reactions Stochastic parameters

r1 : a+ 2x→ 3x+ a c1 = 3 · 10−7

r2 : 3x→ 2x c2 = 1 · 10−4

r3 : b→ x+ b c3 = 1 · 10−3

r4 : x→ λ c4 = 3.5

Table 1. Schlögel’s reactions and a set of stochastic parameters [13].

evaluated at time t, for i = 1, ..., n). In our simulations, we used the set of stochastic
parameters given in Table 1 and we performed, by using the Stochastic Simulation
Algorithm [5, 6], shortly SSA, up to 40 independent simulations from t = 0 starting
from the following initial configurations:

#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 0)
#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 238) (5)
#X[0] = (#a[0],#b[0],#x[0]) = (1 · 105, 2 · 105, 800).

The average behaviours (i.e. simulations were sampled with constant rate and
an average concentration of species x over the up to 40 different stochastic simula-
tions starting from the same initial state was computed) of the species x, according
to different initial states, are reported in Figures 2 and 3. The left-hand part of
Figure 2 shows that if we simulate the Schlögel’s model starting from the initial
state (1 · 105, 2 · 105, 0) then the number of molecules of species x goes up until it
reaches a stable ‘on’ state. Alike, the right-hand part of the same Figure shows that
if we simulate it starting from the initial state (1 ·105, 2 ·105, 800) then the number
of molecules of species x decreases and stabilizes at stable ‘off’ state. Moreover, if
we start the simulations from the initial state (1 · 105, 2 · 105, 238), the number of
molecules of x randomly stabilizes at one of the two possible distinct stable states.
These behaviours are depicted in Figure 3.

Fig. 2. Average time-evolution of species x in the Schlögel model obtained by using the
SSA and considering the initial states (1 · 105, 2 · 105, 0) (leftmost image) and (1 · 105, 2 ·
105, 800) (rightmost image).



212 R. Pagliarini et al.

Fig. 3. Average time-evolution of species x in the Schlögel by using the SSA with initial
state (1 · 105, 2 · 105, 238). The two different behaviours are the result of the bimodal
probability distribution of the set of reactions.

4.1 Results of the flowchart

In this subsection we will see the result obtained by applying our method to infer
an MP system modelling the stochastic bistability of the Schlögel model.

Obtaining data.

The Schlögel’s reaction has been simulated by considering the three different initial
states (5) to generate the time series of species x. Then, we clustered the data of
the different behaviours in four sets and we calculated the average number of
molecules during all the steps of the time evolution. In particular, these were
sampled at regular time intervals to mimic experimental measurements.

Inferring intermediate MP models.

First, we computed reaction fluxes by applying the Log-Gain theory with different
plausible covering sets [4], concluding that r3 has a constant flux. This result is in
accordance with the nature of this reaction, which has a buffered reactant. After
that, considering the four behaviours, we applied the least-squares theory to infer
four sets of flux regulation functions, that is, to obtain four MP grammars. In
particular, according to a correlation analysis, and given that a and b are buffered
species, we assumed that each functions ϕj(q), j = 1, 2, . . . , 4, can be seen as:

ϕj(q) =
{
αj + βjx if j = 1, 2, 4
αj if j = 3. (6)

In this way, we obtained four MP systems, reported in Tables 2, 3, 4 and 5,
which characterize the different behaviours showed in Figures 2 and 3.
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Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 3.4710 · 10−3 + 4.1533 · 10−1x
r2 : 3x→ 2x ϕ2 = 4.7307 · 10−1 + 4.0487 · 10−1x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 1.2542 · 10−4 + 1.5008 · 10−2x

Table 2. Flux regulation functions approximating the behaviour of Schlögel’s reaction
computing by the SSA, starting from the initial state #X[0] = (1 · 105, 2 · 105, 0), that is,
the behaviour of the species x showed in the left part of Figure 2.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −2.1926 · 10−13 + 2.5331 · 10−4x
r2 : 3x→ 2x ϕ2 = 7.1050 · 10−1 − 2.9884 · 10−4x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 2.5415 · 10−13 + 8.4015 · 10−4x

Table 3. Flux regulation functions approximating the behaviour of Schlögel’s reaction
computing by the SSA, considering the initial state #X[0] = (1 · 105, 2 · 105, 800), that
is, the behaviour of the species x showed in the right part of Figure 2.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −1.2646 · 10−15 + 8.5151 · 10−4x
r2 : 3x→ 2x ϕ2 = 8.5511 · 10−1 − 1.7333 · 10−3x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 5.7823 · 10−15 + 2.8242 · 10−3x

Table 4. Flux regulation functions approximating the behaviour of Schlögel’s reaction
dynamics depicted in the left part of Figure 3.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = −1.6164 · 10−13 + 1.7453 · 10−3x
r2 : 3x→ 2x ϕ2 = 8.1220 · 10−1 + 1.7921 · 10−3x
r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = −7.8644 · 10−16 + 6.3066 · 10−5x

Table 5. Flux regulations functions approximating the behaviour of Schlögel’s reaction
dynamics depicted in the right part of Figure 3.

Inferring a bistable MP system.

In this phase we used the four intermediate MP models as starting points to obtain
an MP system M describing the bistable behaviours of the Schlögel’s model. In
particular, we followed these steps: i) we computed the dynamics of the four MP
systems to obtain four time-series of x and u1, u2, u3 and u4, respectively, ii) we
approximated the flux regulation functions, starting from the time-series obtained
in the previous step, by using the least square theory, iii) we analyzed the inferred
functions, and iii) finally we obtained the final MP grammar of M.
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The Schlögel’s model has four reactions, each of which is equipped with a
function describing how that reaction contributes to the change of the number of
molecules of x: ϕ1(q), ϕ2(q), ϕ3(q), and ϕ4(q), respectively.

Since the Schlögel’s model is a one-variable system, an MP system modelling
it can be expressed, considering the stoichiometry of each reaction, as the sum of
the four fluxes:

x[i+ 1]− x[i] =
4∑
i=1

(r+i − r
−
i )ϕi(q) = f(q). (7)

To describe a bistable behaviour, equation (7) needs an unstable steady state
to separate the attractor regions of two stable steady states [24], so we need a
function f(q), called the global flux function of x, having at least three steady
states to realize an MP system describing the bistability of the studied process.

The simplest function f(q) with three zeros is the cubic polynomial. Therefore,
since the fluxes of reaction r3 are constant, we assumed the following forms for the
flux regulation functions of M:

ϕj(q) =
{
αj + βjx+ γjx

2 + ηjx
3 if j = 1, 2, 4

αj if j = 3 (8)

and we applied the least square theory to learn the coefficients of each function,
obtaining the MP grammar reported in Table 6, which models the bistable be-
haviour of the Schlögel’s model. To prove this, if we consider such flux regulation
functions, f(q) can be reduced as follow:

f(q) = c1x
2 + c2x

3 + c3 + c4x (9)

where:

c1 =
4∑
j=1

γj = 1.0480 · 10−6 c2 =
4∑
j=1

ηj = −1.1130 · 10−9 (10)

c3 =
4∑
j=1

αj = 1.9370 · 10−2 c4 =
4∑
j=1

βj = −2.6800 · 10−4.

The set of parameters {cj | j = 1, 2, . . . , 4} is associated with a bistable dy-
namics, that is, two stable steady states separated by an unstable state. By using
the discriminant analysis, we can analyze the nature of the roots of a polynomial.
The discriminant of (9) is given by:

∆ = c21c
2
4 − 4c2c34 − 4c31c3 − 27c22c

2
3 + 18

4∏
j=1

cj . (11)

For a cubic polynomial we have the following cases: i) if ∆ > 0 then the
polynomial has 3 distinct real roots, ii) if ∆ < 0 then the polynomial has 1 real root
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and 2 complex conjugate roots, and iii) if ∆ = 0 then at least 2 polynomial’s roots
coincide, and they are all real. The cubic polynomial in (9) has ∆ = 4.5012 ·10−22,
so such function has three different roots. Moreover, to realize a stable ’on’ state the
sign of the cubic term needs to be a minus. For three different non-negative steady
states a positive quadratic and a negative linear term are needed. In addition if a
positive constant is adjoint, then the one-variable system:

x[i+ 1]− x[i] = −k1x
3 + k2x

2 − k3x+ k4, ki > 0, i = 1, 2, 3, 4. (12)

has two positive stable steady states [25].
It is simple to see that equation (9), considering the constants (10), is in accor-

dance with (12). Then the MP grammar of Table 6 models the bistable dynamics
of the Schlögel’s reaction, which has two positive stable steady states.

However, we saw that, starting from some initial states, we obtained negative
fluxes. Therefore, we applied the last phase of our flowchart to obtain a final “good”
set of functions.

Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 47.133− 3.5489 · 10−1x+ 7.8941 · 10−4x2 − 5.4356 · 10−7x3

r2 : 3x→ 2x ϕ2 = 46.103− 3.4186 · 10−1x+ 7.6346 · 10−4x2 − 5.2949 · 10−7x3

r3 : b→ x+ b ϕ3 = 0.87437
r4 : x→ λ ϕ4 = 1.885− 1.2762 · 10−2x+ 2.4902 · 10−5x2 − 1.2957 · 10−8x3

Table 6. Bistable MP grammar modelling the Schlögel’s reaction.

Improving flux regulation functions

First, by considering equation (12), we assumed that, since ci > 0, i = 1, 3 then the
monomials c1x2 and the constant c3, are associated with reactions producing x.
Since r3 has b as reactant, which is a buffered species, and u3[t] is constant for t =
0, 1, . . ., then ϕ3(q) = c3. This implies that ϕ1(q) = c1x

2, which is in accordance to
the fact that r1 is a double-molecular reaction. Similarly, ci < 0, i = 2, 4, therefore
c2x

3 and c4x can be seen as functions regulating the fluxes of reactions consuming
x. Since, r2 and r4 are tri-molecular and an one-molecular reaction respectively,
we assumed that ϕ2(q) = c2x

3 and ϕ4(q) = c4x. In this way, we obtained the MP
grammar reported in Table 7, which computes the same dynamics of the grammar
of Table 7, but having flux time-series positive for each initial states.

5 Conclusion and ongoing work

Schlögel’s model is an example of chemical reaction system which exhibits bistabil-
ity. Bistable behaviour can be found in many biological networks, including heart
models, visual perception and gene networks.
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Reaction Maps

r1 : a+ 2x→ 3x+ a ϕ1 = 1.0480 · 10−6x2

r2 : 3x→ 2x ϕ2 = 1.1130 · 10−9x3

r3 : b→ x+ b ϕ3 = 1.9370 · 10−2

r4 : x→ λ ϕ4 = 2.6800 · 10−4x

Table 7. Bistable MP grammar modelling the Schlögel’s reaction.

Owing to the ubiquity and importance of switching behaviours, it is important
to have comprehensive mathematical models of bistable chemical reaction systems.
In particular, there is a lag in the development of models for bistable systems
starting from experimental data. This is due to the lack of detailed knowledge of
biochemical reactions and kinetic rates.

In this work, we used the Schlögel’s model as an example to study the applica-
bility of the MP Systems to infer mathematical models describing observed bistable
(multistable) dynamics. The theoretical background of this approach comes from
the Log-Gain theory for MP systems, which links observed time-series to the MP
systems for simulating and analyzing dynamics of phenomena in living cells. Com-
pared with approaches based on stochastic models and mass action law, our ap-
proach allows to obtain some insights into the logic governing a bistable phe-
nomenon starting from observations of such a phenomenon.

Starting from stochastic dynamics of the Schlögel’s model, we saw the possi-
bility to obtain an MP system describing the bistability of such dynamics. Since,
different studies indicates that noise plays an important roles in the switching of
bistable systems, the results of this work suggests that the proposed approach is a
very promising one for inferring and studying bistable and multistable dynamics of
biological systems, also when kinds of noise are present. Moreover, this approach
could be very useful in the cases of complex reaction networks, for which data
availability and regulatory information can not provide a comprehensive picture
of the role of the diverse reactions in the toggle switch transition.

Ongoing research is focused on the application of the proposed approach to
infer bistable systems inspired from biology and chemistry and analyze the logic
governing these systems. In particular, since bistable switches are common motifs
in genetic regulatory networks, we have a mind to apply our procedure for mod-
elling a naturally occurring switch from relatively few experimental data points,
yielding a model suited: i) to dynamical simulation, ii) to give predictions of un-
measured proteins and genes of the analyzed network, iii) to analyze the effects
of noise and perturbations which can afflict the network, iv) and to develop ro-
bust mathematical models which could represent prototypes of synthetic biological
systems.
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