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Mathematics is a powerful tool that helps
people achieve new goals as well as under-
stand what is impossible to do.

Mark Burgin

Summary. Gandy–Păun–Rozenberg machines are introduced as certain graph rewriting
systems. A representation of Gandy–Păun–Rozenberg machines by Gandy machines is
given. A construction of a Gandy–Păun–Rozenberg machine solving 3-SAT problem in a
polynomial time is shown.

1 Introduction

The paper [8] by Eric Steinhart contains a discussion of logical foundations of
computation theory including quantum computing which gives rise to the following
family of questions:
(?) what is it an X possible machine?
for X ∈ {set-theoretically, discrete topologically, continuous topologically, geomet-
rically, biologically inspired, physically, cognitive and intelligent}.

We point out here that Robin Gandy’s machines (cf. Gandy’s paper [1]) yield
some answer to (?) for X ≡ set-theoretically in discrete case. The physically possi-
ble machines are discussed in the papers about physical limitations of computing
devices by Scott Aaronson, Jacob Bekenstein, Charles H. Bennett, Rolf Landauer,
Stockmeyer and Meyer, among others.

The paper [9] by Jǐŕı Wiedermann inspired to formulate (?) for X ≡ cognitive
and intelligent.

An idea of a Gandy–Păun–Rozenberg machine, briefly G–P–R machine, intro-
duced in Section 2, is aimed to provide an answer to (?) for X ≡ set-theoretically,
X ≡ discrete topologically, and X ≡ biologically inspired.



190 A. ObtuÃlowicz

The G–P–R machines are the constructs which have common features with or
are related to:

— Gandy’s machines,
— P systems due to Gheorghe Păun (cf. [6]),
— parallel rewriting systems of graphs investigated by Grzegorz Rozenberg him-

self with scientists cooperating with him, among others, in preparation and
editing of many volume Handbook of graph grammars and computing by graph
transformation [2].

The core of a G–P–R machine is a finite set of rewriting rules for certain finite
directed labelled graphs, where these graphs are instantenous descriptions for the
computation process realized by the machine.

The conflictless parallel (simultaneous) application of the rewriting rules of a
G–P–R machine is realized in Gandy’s machine mode (according to Local Causality
Principle), where (local) maximality of “causal neighbourhoods” replaces (global)
maximality of, e.g. conflictless set of evolution rules applied simultaneously to a
membrane structure which appears during the evolution process generated by a
P system. Therefore one can construct a Gandy’s machine from a G–P–R machine
in an immediate way, see Section 2.

The NP complete problems can be solved by G–P–R machines in a polyno-
mial time (but with an exponential number of indecomposable processors), see
Section 3, where we construct a G–P–R machines solving SAT problem in a poly-
nomial time in a similar way to (families of) P systems solving this problem also
in a polynomial time (cf. the pioneering Păun’s paper [5]).

Randomized G–P–R machines for solving NP problems in a polynomial time
with subexponential number of indecomposable processors are forthcoming.

An extension of G–P–R machines to the case of cellular automata can be
done by adopting the idea of cellular hypergraph rewriting introduced by Peter
Hartmann in his paper [3].

2 Gandy-Păun-Rozenberg machines and Gandy machines

For all unexplained terms and notation of category theory and graph theory we
refer the reader to Appendix.

Definition. A G–P–R machine M is determined by the following data:

— a finite set ΣM of labels or symbols of M,
— a skeletal set SM of finite isomorphically perfect labelled directed graphs

over Σ, which are called instantenous descriptions of M,
— a function FM : SM → SM called the transition function of M,
— a function RM : PREMM → CONCLM from a finite skeletal set PREMM

of finite isomorphically perfect labelled directed graphs over ΣM onto a finite
skeletal set CONCLM of finite isomorphically perfect labelled directed graphs
over ΣM such that RM determines the set
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R̃M = {P ` C | P ∈ PREMM and C = RM(P )}
of rewriting rules of M which are identified with ordered pairs r = (Pr, Cr),
where the graph Pr ∈ PREMM is the premise of r and the graph Cr = RM(Pr)
is the conclusion of r,

— a subset IM of SM which is the set of initial instantaneous descriptions of M.

The above data are subject of the following conditions:

1) V (G) ⊆ V (FM(G)) for every G ∈ SM,
2) V (G) ⊆ V (RM(G)) for every G ∈ PREMM,
3) the rewriting rules of M are applicable to SM which means that for every
G ∈ SM the set

P`(G) =
{
h | h is an embedding of labelled graphs over Σ

with dom(h) ∈ PREMM and cod(h) = G
such that for every embedding h′ of labelled graphs over Σ

with dom(h′) ∈ PREMM and cod(h′) = G
if im(h) is a labelled subgraph of im(h′), then h = h′

}

of maximal applications h of the rules dom(h) ` RM(dom(h)) of M in places
im(h) is such that the following conditions hold:
(i) V (G) =

⋃
h∈P`(G)

V (im(h)), E(G) =
⋃

h∈P`(G)

E(im(h)),

(ii) for all h1, h2 ∈ P`(G) the equation `Gh1
(ḣ−1

1 (v)) = `Gh2
(ḣ−1

2 (v)) holds
for every v ∈ V (im(h1)) ∩ V (im(h2)), where `Gh1

, `Gh2
are the labelling

functions of Gh1 = RM(dom(h1)), Gh2 = RM(dom(h2)), respectively, and
ḣ−1

1 , ḣ−1
2 are the inverses of isomorphisms induced by the embeddings

h1, h2, respectively.
(iii) FM(G) is a colimit of a gluing diagram DG constructed in the following

way (the construction of DG is provided by (ii)):
• the set I of indexes of DG is such that I = P`(G) ∪ {∆}, where ∆ /∈

P`(G) is the center of DG ,
• the family Gi (i ∈ I) of labelled graphs of DG is such that Gh =

RM(dom(h)) for every h ∈ P`(G), and G∆ is such that V (G∆) = V (G),
E(G∆) = ∅, and the labelling function `G∆ is such that provided by
(ii)

`G∆
(v) = `Gh

(ḣ−1(v))

for every v ∈ V (im(h)) and every h ∈ P`(G), where ḣ−1 is the inverse
of the isomorphism ḣ induced by the embedding h,

• the gluing conditions glh (h ∈ P`(G)) of DG are defined by

glh =
{
(v, ḣ−1(v)) | v ∈ V (im(h))

}

for every h ∈ P`(G), where ḣ−1 is the inverse of the isomorphism ḣ
induced by embedding h,
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(iv) the following equations hold:

V (FM(G)) =
⋃

i∈I
V (im(qi))

and E(FM(G)) =
⋃

i∈I
E(im(qi))

for the canonical injections qi : Gi → FM(G) (i ∈ I) forming a colimiting
cocone of the diagram DG defined in (iii),

(v) the canonical injection q∆ : G∆ → FM(G) is an inclusion of labelled graphs,
where ∆ is the center of DG and q∆ is an element of the colimiting cocone
in (iv).

Thus FM(G) is the result of simultaneous application of the rules dom(h) `
RM(dom(h)) in the places im(h) for h ∈ P`(G), where one replaces simultaneously
im(h) by im(qh) in G for h ∈ P`(G), respectively.

A finite sequence
(F i

M(G)
)n

i=0
is called a finite computation ofM, the number n

is called the time of this computation, and Fn
M(G) is called the final instantaneous

description for this computation if

F0
M(G) = G ∈ IM, Fn−1

M (G) 6= Fn
M(G), and FM(Fn

M(G)) = Fn
M(G),

where F i
M(G) is defined inductively: F i

M(G) = FM
(F i−1

M (G)
)
. ut

We introduce the following auxiliary constructs which will be used to define
those Gandy machines which represent G–P–R machines. For all unexplained
terms concerning Gandy machines and hereditarily finite sets we refer the reader
to [1], [7].

If the set ΣM of labels of a G–P–R machine is an m-element set, we choose a
bijection ∇ : ΣM → {1, . . . , m} and an urelement u to code the labels σ ∈ ΣM by
hereditarily finite sets {u}∇(σ)+1, where one defines {u}1 = {u}, {u}k+1 =

{{u}k
}

for a natural number k > 0.
Then for a labelled directed graph G belonging to the set SM of instantaneous

descriptions of a G–P–R machine M, an injection α : V (G) → U into the set U of
urelements, and an urelement u = α(v) for some v one defines a hereditarily finite
set

H(α, u,G) =
{{

α(v1), {α(v2)}
} ∣∣∣ (v1, v2) ∈ E(G)

}

∪
{{

α(v), {{u}∇(`G(v))+1}}
∣∣∣ v ∈ V (G)

}
,

where `G is the labelling function of G.
Since SM is a skeletal set of isomorphically perfect graphs, the assignment

H(α, u,G) defined above is a bijection from

S+
M =

{
(α, u,G) | G ∈ SM, α : V (G) → U is an injection,

and u = α(v) for some v
}
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into
S∗M =

{
H(α, u,G) | (α, u,G) ∈ S+

M
}
,

where S∗M appears a structural set of hereditarily finite sets understood as in
Gandy’s paper [1]. We use this set S∗M as the set of state-descriptions of a Gandy
machine aimed to represent a G–P–R machine M.

Then we choose a mapping F+ : S+
M → S+

M such that

F+(α, u,G) = (α̂, u,FM(G))

for the transition function FM of a G–P–R machine M and for a chosen injection
α̂ : V (FM(G)) → U such that

α̂(v) = α(v) for every v ∈ V (G) ⊆ V (FM(G)).

Then we define a mapping F∗M : S∗M → S∗M such that

F∗M
(
H(α, u,G)

)
= H

(
F+(α, u,G)

)
.

This mapping F∗M appears a structural mapping understood as in Gandy’s pa-
per [1] and we use it as the transition function of a Gandy machine aimed to
represent a G–P–R machine M which is described in the following theorem.

Theorem 1 (Representation of G–P–R machines by Gandy machines).
Let M be a G–P–R machine. Then M determines a Gandy machine GM whose
set of state-descriptions is S∗M, the transition function of GM is F∗M, the sets
T1, T2 of stereotypes of GM and the structural functions G1, G2 of GM are such
that

T1 = T2 = PREM∗
M/ ∼= and G1 = G2 = R∗M,

where PREM∗
M is defined for PREMM in an analogous way as S∗M has been

defined for SM, PREM∗
M/ ∼= is the set of equivalence classes with respect to iso-

morphism relation ∼= of hereditarily finite sets defined in Gandy’s paper [1], and
R∗M is defined for RM in an analogous way as F∗M has been defined for FM.

Proof. The assumption that F(G) is a colimit of the gluing diagram DG and
Lemma 5 in the Appendix provide that the conditions (3)r of Principle IV in
Gandy’s paper [1] hold for GM. ut

The assignment H(α, u,G) and then the definition of S∗M were inspired by the
similar constructions in [7].

The examples of G–P–R machines are presented in the next section.

3 Gandy-Păun-Rozenberg machines and NP complete
problems

We show a construction of a G–P–R machine which solves NP complete 3-SAT
problem in a polynomial time. We begin with presentation of examples of those
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G–P–R machines which simulate the computations of Turing machines and the
computations of certain Boolean circuits, respectively, and which are used in the
construction.

For all unexplained terms of logic and computational complexity theory, in-
cluding Turing machines and the formulation of SAT and 3-SAT problems, we
refer the reader to [4].

We use the following two types of labelled directed graphs.

Definitions. We say that an ordered triple (k,m, n) of integers k, m, n is accept-
able if k > 0, m 6= 0, n > 1, and −k < m < n. We define

lin[k, n] =
{
(i, i + 1) | i is an integer such that − k ≤ i < −1 or 1 ≤ i ≤ n

}

∪ {(−1, 1)}

for k, n as above.
Then we say that a labelled directed graph G over Σ having more than one

label is induced by an acceptable ordered triple (k,m, n) if G is such that

— V (G) =
{
i | i is an integer such that − k ≤ i ≤ n

}
,

— E(G) = lin[k, n] ∪ {(0,m), (1, 1)},
— `G(0) /∈ {`G(k), `G(m)}.
For a natural number n > 0 a regular labelled binary tree of depth n over
{root, 0, 1} ×Σ is defined to be a labelled directed graph T over {root, 0, 1} ×Σ
such that

— V (T ) is the set of binary strings1 of length not greater than n including empty
string Λ,

— E(T ) =
{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (T ) and i ∈ {0, 1}}

∪ {
(Γ, Γ ) | Γ is a binary string of length n

}
,

— the labelling function `T : V (T ) → {root, 0, 1} ×Σ of T is such that `1T (Λ) =
root, `1T (Γi) = i for every binary string Γ and every i ∈ {0, 1} such that
Γi ∈ V (T ),

where `1T (x), `2T (x) denote the coordinates such that `T (x) = (`1T (x), `2T (x)) and
Γi denotes that binary string Θ whose last element is the digit i, and Γ is that
binary string which is the result of deleting the last element in Θ.

Lemma 1. The set of labelled directed graphs over Σ induced by acceptable ordered
triples of integers is a skeletal set of isomorphically perfect graphs for Σ having
more than one label.

Lemma 2. The set of all regular binary trees of arbitrary depth over
{root, 0, 1} ×Σ is a skeletal set of isomorphically perfect graphs.

1 A binary string is a sequence, maybe empty, of digits 0, 1.
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Example 1 (G–P–R machine simulating the computations of a Turing
machine). Let T be a Turing machine whose alphabet Σ (including blank symbol)
is disjoint with the set Q of states of T and let δ : Σ×Q → Σ×Q×{L, 0, R} be the
transition of T with cursor directions L for “left”, 0 for “stay”, and R for “right”.
We define a graphical instantaneous description of T to be a labelled directed
graph G over Σ0 = Σ ∪Q ∪ {%, §} with {%, §} ∩ (Σ ∪Q) = ∅ such that

— G is induced by some acceptable ordered triple of integers,
— if G is induced by an acceptable ordered triple (k, m, n) of integers, then

`G(−k) = %, `G(0) ∈ Q, `G(n) = § and `G(j) ∈ Σ for every j ∈ {
i ∈ V (G) |

−k < i < n and i 6= 0
}

(here m corresponds to cursor position on Turing
machine tape indicated by the edge (0,m)).

By Lemma 1 the set ST of all graphical instantaneous descriptions of T is a skeletal
set of isomorphically perfect labelled graphs. Thus we define a G–P–R machine
MT aimed to simulate the computations of T such that

— the set of instantaneous descriptions of MT is the set ST of graphical instan-
taneous descriptions of T,

— the transition function FT ofMT and the rewriting rules ofMT are determined
by the transition function δ of T such that if δ(a, q) = (a′, q′, R), then
(fR) if G ∈ ST and G is induced by (k, m, n) such that `G(m) = a, `G(0) = q,

then
(fR

1 ) if m < n − 1 then FT(G) is that G′ which is induced by (k, m̂, n) with
m̂ = m + 1 for m 6= −1 and m = 1 for m = −1 such that `G′(0) = q′,
`G′(m) = a′, and `G′(i) = `G(i) for every i ∈ V (G)− {0,m},

(fR
2 ) if m = n− 1 then FT(G) is that G′ which is induced by (k, m + 1, n + 1)

such that `G′(0) = q′, `G′(m) = a′, `G′(n) is blank symbol, and `G′(i) =
`G(i) for every i ∈ V (G′)− {0,m, n},

(rR) the rewriting rules are given by the following two schemes Gp ` Gc such
that

(rR
1 ) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2] ∪
{(0, 1)}, `Gp(−1) ∈ Σ ∪ {%}, `Gp(0) = q, `Gp(1) = a, `Gp(2) ∈ Σ,
the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = lin[1, 2]∪{(0, 2)},
`Gc(−1) = `Gp(−1), `Gc(0) = q′, `Gc(1) = a′, and `Gc(2) = `Gp(2).

(rR
2 ) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2] ∪
{(0, 1)}, `Gp(−1) ∈ Σ ∪ {%}, `Gp(0) = q, `Gp(1) = a, `Gp(2) = §,
the conclusion Gc is such that V (Gc) = {−1, 0, 1, 2, 3}, E(Gc) = lin[1, 3]∪
{(0, 2)}, `Gc(−1) = `Gp(−1), `Gc(0) = q′, `Gc(1) = a′, `Gc(2) is blank
symbol, and `Gc(3) = §.

For the cases of equations δ(a, q) = (a′, q′, 0) and δ(a, q) = (a′, q′, L) the values
FT(G) and the rewriting rules are defined in a similar way, where, e.g., the coun-
terpart of (fR

2 ) for δ(a, q) = (a′, q′, L) is:

(fL
2 ) if 1 = m = k or −k+1 = m 6= 0, then FT(G) is that G′ which is induced

by (k + 1,−k, n) such that `G′(−k − 1) = %, `G′(−k) is blank symbol,
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`G′(0) = q′, `G′(m) = a′, and `G′(i) = `G(i) for all i ∈ V (G′) − {−k −
1,−k, 0,m}.

The versions of the above rules Gp ` Gc for both Gp and Gc completed by the
loop (i, i) for a unique i ∈ V (Gp) with `Gp(i) /∈ {%, §} ∪Q are also necessary. The
identity rules G ` G are also necessary, where G is of the following two forms:

(id1) V (G) = {0, 1}, E(G) = {(0, 1)}, {`G(0), `G(1)} ⊂ Σ0 −Q,
(id2) V (G) = {0}, E(G) = {(0, 0)}, `G(0) ∈ Σ.

There is no other rewriting rule of MT than that described by the above
schemes.

Since the graphical instantaneous descriptions of a Turing machine T coincide
with the usual instantaneous descriptions of T or configurations of T as in [4], the
G–P–R machine MT simulates the computations of T due to definition of FT.
Example 2 (G–P–R machine simulating the computations of certain
Boolean circuits). We define a disjunctive circuit G–P–R machine Mcirc

which is aimed to simulate computations of certain tree like Boolean circuits such
that

— the set Scirc of instantaneous descriptions of Mcirc is the set of those regular
labelled binary trees T of depth greater than 3 over the set {root, 0, 1} ×
{⊥, 0, 1} of labels which satisfy the following condition

(circ0) for every binary string Γ ∈ V (T ) of length equal to the depth of T the
number of elements of the set

{
i | i is a natural number with 0 < i ≤ n such that `2T (Γ ¹ i) 6= ⊥}

is not greater than 1 (thus this set may be empty), where n is the depth
of T and if Γ is (kj)n

j=1 then Γ ¹ i denotes the string (kj)i
j=1 which is Γ

itself for i = n and for i < n (kj)i
j=1 is a shortening of Γ by cancellation of

the elements kn, kn−1, . . . , ki+1.
— the transition function Fcirc of Mcirc is such that Fcirc(T ) is the result of

simultaneous application to T in G–P–R machine mode the rewriting rules
of Mcirc which do not introduce new vertices and which are given by the
following three schemes Tp ` Tc such that

(circ1) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01},
E(Tp) =

{
(Λ, 0), (0, 00), (0, 01), (00, 00), (01, 01)

}
,

`2Tp
(Λ) = `2Tp

(0) = ⊥, {`1Tp
(Λ), `1Tp

(0)} ⊆ {0, 1},
`1Tp

(00) = 0, `1Tp
(01) = 1, {`2Tp

(00), `2Tp
(01)} ⊆ {0, 1},

the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp), `Tc(Λ) =
`Tp(Λ), `Tc(0) =

(
`1Tp

(0), max{`2Tp
(00), `2Tp

(01)}),
`Tc(00) = (0,⊥), `Tc(01) = (1,⊥),

(circ2) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01, 000, 001, 010, 011},
E(Tp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}},

`2Tp
(Γ ) = ⊥ for all Γ ∈ V (Tp)− {00, 01},
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{`2Tp
(00), `2Tp

(01)} ⊆ {0, 1}, {`1Tp
(Λ), `1Tp

(0)} ⊆ {0, 1},
`1Tp

(Γi) = i for all Γ ∈ {0, 00, 01} and i ∈ {0, 1},
the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp), `Tc(Γ ) =
`Tp

(Γ ) for every Γ ∈ V (Tc)− {0, 00, 01},
`Tc(0) =

(
`Tp(0),max{`2Tp

(00), `2Tp
(01)}),

`Tc
(Γ ) = (`1Tp

(Γ ),⊥)
for every Γ ∈ {00, 11},

(circ3) the premise Tp is such that V (Tp) = {Λ, 0, 1, 00, 01, 10, 11},
E(Tp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}},

`1Tp
(Γi) = i for all Γ ∈ {Λ, 0, 1} and i ∈ {0, 1},

`2Tp
(Γ ) = ⊥ for every Γ ∈ V (Tp)− {0, 1},

`1Tp
(Λ) = root, {`2Tp

(0), `2Tp
(1)} ⊆ {0, 1},

the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp),
`2Tc

(Γ ) = `2Tp
(Γ ) for every Γ ∈ V (Tc)− {Λ, 0, 1},

`Tc
(Γ ) = (`1Tp

,⊥) for every Γ ∈ {0, 1},
and `Tc

(Λ) =
(
root, max{`Tp

(0), `Tp
(1)}).

The identity rules T ` T are also necessary which are defined in a similar way as
in Example 1.

There is no other rewriting rule of Mcirc than that described by the above
schemes.

The following lemma characterizes the computations of G–P–R machineMcirc.

Lemma 3. Let T ∈ Scirc be a regular labelled binary tree such that the following
conditions hold

(a) for every binary string Γ of length equal to the depth of T there exists a natural
number i with i > 0 such that `2T (Γ ¹ i) 6= ⊥,

(b) for every Γ ∈ V (T ) and j ∈ {0, 1} if Γj ∈ V (T ) and `2T (Γj) 6= ⊥, then
`2T (Γ¬(j)) 6= ⊥, where ¬(0) = 1 and ¬(1) = 0.

Then for

n = max
{
i | i is the length of some binary string Γ ∈ V (T ) with `2T (Γ ) 6= ⊥}

the value Fn
circ(T ) is that regular labelled tree T ′ which is such that V (T ′) = V (T ),

E(T ′) = E(T ), `2T ′(Γ ) = ⊥ for all Γ ∈ V (T ′) − {Λ} and `2T ′(Λ) = max
{
`2T (Γ ) |

Γ ∈ V (T ′) and `2T (Γ ) 6= ⊥}
, where Fn

circ(T ) is defined inductively by F1
circ(T ) =

Fcirc(T ) and Fn
circ(T ) = Fcirc(Fn−1

circ (T )).

Example 3 (A G–P–R machine solving 3-SAT problem in a polynomial
time). We use a Turing machine Ṫ such that for every formula ϕ in a disjunctive
normal form as in 3-SAT problem and every truth assignment T for variables of ϕ
the machine decides in the time ≤ nk0 whether ϕ is valid for T , where the ordered
pair (ϕ, T ) is an input for Ṫ from which the machine begins the computation, k0 is
some constant natural number, and n is the number of variables occurring in ϕ.
We claim for Ṫ that:
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(A) if n is the number of variables occurring in ϕ, then any truth assignment T
for variables of ϕ is represented by that binary string Γ of length n in the
machine tape which is such that if the value “True” is assigned to the i-th
variable of ϕ, then 1 is the i-th element of Γ , otherwise the i-th element of Γ
is 0,

(B) for the G–P–R machine MṪ simulating the computations of Ṫ if we have
that
(b1) Gϕ,Γ is that instantaneous description of MṪ which coincides with the

initial instantaneous description or initial configuration for input (ϕ, T )
with T represented by the binary string Γ in the machine tape as in (A),

(b2) G = Fq

Ṫ(Gϕ,Γ ) is the final instantaneous description of MṪ for the case of
the final or halting state “stop” reached by Ṫ after q steps of computation
starting with input (ϕ, T ) with T related to Γ as in (A),

then G is a labelled graph induced by some acceptable triple (k, m, n) of
integers with (−k, m) ∈ E(G) such that `G(0) is the final state “stop” and
`G(m) = 1 if ϕ is valid for the truth assignment represented by Γ , otherwise
`G(m) = 0, where FṪ is the transition function of MṪ and Fq

Ṫ(Gϕ,Γ ) is
inductively defined: F1

Ṫ(Gϕ,Γ ) = FṪ(Gϕ,Γ ) and Fq

Ṫ(Gϕ,Γ ) = FṪ(Fq−1

Ṫ (Gϕ,Γ )).

The shape of formulas in a disjunctive normal form in 3-SAT problem (it suf-
fices to consider formulas of n > 3 variables which are disjunctions of 23 · (n

3

)
nonrepetitive clauses, each conjunction of three literals containing different vari-
ables) provides that the claimed Turing machine Ṫ can be constructed from some
simpler three-string or three-tape Turing machine 3-T according to the general
construction in the proof of Theorem 2.1, p. 30 of [4]. The first tape of 3-T is an
input tape containing some presentation of a formula, the second tape is also an
input tape containing some presentation of a truth assignment, and the third tape
is an output tape. The machine 3-T reads only its input tapes and does not move
its head or cursor on output tape printing or erasing the digits 0, 1. The machine
3-T reaches the final state in the time not greater than 23 · n5 steps for a formula
of n variables, hence by Theorem 2.1, p. 30 of [4] the machine Ṫ reaches the final
state in the time not greater than 26 · n10 steps for a formula of n variables.

We outline a construction of a G–P–R machine M3-SAT aimed to solve 3-SAT
problem in a polynomial time. The initial instantaneous descriptions of M3-SAT

are labelled directed graphs G0
ϕ determined by formulas ϕ in disjunctive normal

forms as in 3-SAT problem in the following way:

(IV ) V (G0
ϕ) =

{
(j, Γ ) | j ∈ V (Gϕ,Γ ) and Γ ∈ 2n

} ∪ {
(Θ, Λ) | Θ ∈ V (T⊥)

}
,

where Gϕ,Γ is that initial instantaneous description which was introduced in
(b1), n is the number of variables occurring in ϕ, 2n is the set of binary strings
of length n, and T⊥ is the regular labelled binary tree of depth n− 1 such that
`2T⊥(Θ) = ⊥ for every Θ ∈ V (T⊥),

(IE) E(G0
ϕ) =

{(
(j, Γ ), (j′, Γ )

) | (j, j′) ∈ E(Gϕ,Γ ) and Γ ∈ 2n
}

∪{(
(Θ, Λ), (Θ′, Λ)

) | (Θ,Θ′) ∈ E(T⊥)
}
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∪{(
(Θ, Λ), (jΘi, Θi)

) | Θi ∈ 2n, i ∈ {0, 1}, and Θ ∈ 2n−1
}
,

where jΘi is that unique vertex of Gϕ,Θi for which `Gϕ,Θi
(jΘi) = %,

(I`) the labelling function `G0
ϕ

is defined in the following way:
– `G0

ϕ
((j, Γ )) = `Gϕ,Γ

(j) for all Γ ∈ 2n and j ∈ V (Gϕ,Γ ) except jΓ for which
`Gϕ,Γ

(jΓ ) = %,
– `G0

ϕ
((jΓ , Γ )) = (i, %) if Γ is Θi for i ∈ {0, 1}, where jΓ is such that

`Gϕ,Γ
(jΓ ) = %,

– `G0
ϕ
((Θ, Λ)) = `T⊥(Θ) for every Θ ∈ V (T⊥).

Then we define inductively the labelled graphs Gk
ϕ for a natural number k > 0

and a formula ϕ in a disjunctive normal form as in 3-SAT problem such that
the sets V (Gk

ϕ) and E(Gk
ϕ) are defined in an analogous way as V (G0

ϕ) and E(G0
ϕ)

were defined in (IV ) and (IE), respectively, except the graphs Gϕ,Γ are replaced by
Fk
Ṫ (Gϕ,Γ ) (see the definition of Fq

Ṫ(Gϕ,Γ ) in (B)). The labelling function `Gk
ϕ

of Gk
ϕ

is determined by the labelling function of Gk−1
ϕ by imposing that Gk

ϕ is the result of
simultaneous application to Gk−1

ϕ in G–P–R machine mode the rules of the G–P–R
machines MṪ and Mcirc with the label % replaced by (i,%) for i ∈ {0, 1}, and
the following new rules given by the scheme Gp ` Gc, where the premise Gp is such
that

V (Gp) = {Λ, 0, 00, 01, 001, 011, 0010, 0011, 0110, 0111},
E(Gp) =

{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Gp)− {0010, 0110} and i ∈ {0, 1}}
∪ {(0010, 001), (0110, 011), (0, 0)},

`2Gp
(Λ) = `2Gp

(0) = ⊥ 2, {`1Gp
(Λ), `1Gp

(0)} ⊆ {0, 1},
`Gp(00) = (0,%), `Gp(01) = (1, %), {`Gp(001), `Gp(011)} ⊆ {0, 1},
`Gp(0010) = `Gp(0110) = “stop” ∈ Q, {`Gp(0011), `Gp(0111)} ⊆ Σ,

the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = E(Gp),
`Gc(v) = `Gp(v) for every v ∈ V (Gp) except `Gc(001) = `Gc(011) = ⊥,
and `2Gc

(0) = max{`Gp(001), `Gp(011)}, `1Gc
(0) = `1Gp

(0).
Thus we define the set S3-SAT of instantaneous descriptions of G–P–R machine

M3-SAT by

S3-SAT =
{Gk

ϕ | k is a natural number and ϕ is a formula

in a disjunctive normal form as in 3-SAT problem
}
.

The transition function F3-SAT of G–P–R machine M3-SAT is given by

F3-SAT(Gk
ϕ) = Gk+1

ϕ for every k ≥ 0 and every ϕ.

The rewriting rules of M3-SAT are the rewriting rules of the G–P–R machines
MṪ, Mcirc with the label % replaced by (i, %) for i ∈ {0, 1}, and the new rules
introduced above.

Theorem 2. The G–P–R machine M3-SAT solves 3-SAT problem in a polynomial
time.
2 We assume that ⊥ /∈ Σ ∪Q ∪ {%, §}.
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Proof. Since the upper bound of the time of computation of Ṫ does not depend on
the binary sequences Γ representing truth assignments but only on their length
and is polynomial with respect to this length, the upper bound of the time of
computation of G–P–R machine MṪ also does not depend on binary sequences
Γ representing truth assignments and is polynomial with respect to the length of
these sequences Γ . Hence by Lemma 3 we get the theorem.

Less formally, for a given formula ϕ of n variables with n > 3 the machine
M3-SAT simultaneously simulates without any delay the computations of 2n copies
of the Turing machine Ṫ, where 2n possible truth assignments for ϕ are the in-
puts together with ϕ itself for these 2n copies of Ṫ, respectively. Here each truth
assignment T is associated to that copy of Ṫ which is aimed to decide whether ϕ
is valid for T .

Then Boolean circuit part of M3-SAT simulates the computation of tree-like
Boolean circuit C of 2n input gates, where the underlying graph of C is a tree
of depth n and all non-input gates of C are OR gates. The 2n input gates of C
receive those inputs which are the output results of the computations of the above
2n copies of Ṫ, respectively. Here each input gate g is associated with that copy
Ṫg of Ṫ for which g is connected with that unique vertex i of the final graphical
instantaneous description of Ṫg for which (0, i) is an edge of this final graphical
instantaneous description and i is labelled by the output result of Ṫg with 0 labelled
by the final or halting state of Ṫg. The inputs of C are simultaneously processed
by C to give the output result in the root of the underlying graph of C. The output
result contained in the root yields an answer to a question whether there exists a
truth assignment for ϕ such that ϕ is valid for this assignment. Therefore M3-SAT

solves 3-SAT problem in a polynomial time. ut

Corollary. There exists a Gandy machine which solves 3-SAT problem in a poly-
nomial time but with the exponential number of urelement processors.

Proof. The corollary is a consequence of Theorems 1 and 2. ut

4 Concluding remarks

One could adopt G–P–R machines and Gandy machines as the underlying ab-
stract computing devices of computational complexity theory because these ma-
chines propose a wide scope of possible computational parallelism, even up to
unreliable parallelism of G–P–R machine M3-SAT and representing it Gandy ma-
chine which prove that polynomial computational time does not imply polynomial
computational space understood as the size of hardware measured by the number
of urelement (indecomposable) processors of a machine. We will show in a forth-
coming paper about randomized G–P–R machines those G–P–R machines which
are capable to construct in polynomial time the initial instantaneous descriptions
of the machine M3-SAT from simpler labelled graphs of size, i.e., the number of
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vertices, depending linearly on the size of input data of a formula and a truth
assignment, where some versions of division rules of membrane computing [6] are
used.

Appendix. Graph-theoretical and category-theoretical
preliminaries

A [finite] labelled directed graph over a set Σ of labels is defined to be an ordered
triple G = (V (G), E(G), `G), where V (G) is a [finite] set of vertices of G, E(G) is a
subset of V (G)×V (G) called the set of edges of G, and `G is a function from V (G)
into Σ called the labelling function of G. We drop the adjective ‘directed’ if there
is no risk of confusion.

A homomorphism of a labelled directed graph G over Σ into a labelled directed
graph G′ over Σ is an ordered triple (G, h : V (G) → V (G′),G′) such that h is a
function from V (G) into V (G′) which satisfies the following conditions:

(H1) (v, v′) ∈ E(G) implies (h(v),h(v′)) ∈ E(G′) for all v, v′ ∈ V (G),
(H2) `G′(h(v)) = `G(v) for every v ∈ V (G).

If a triple h = (G, h : V (G) → V (G′),G′) is a homomorphism of a labelled directed
graph G over Σ into a labelled directed graph G′ over Σ, we denote this triple by
h : G → G′, we write dom(h) and cod(h) for G and G′, respectively, according to
category theory convention, and we write h(v) for the value h(v).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an embedding
of G into G′, denoted by h : G ½ G′, if the following condition holds:

(E)h(v) = h(v′) implies v = v′ for all v, v′ ∈ V (G).

An embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ is an
inclusion of G into G′, denoted by h : G ↪→ G′, if the following holds:

(I) h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is a labelled subgraph of a
labelled directed graph G′ over Σ if there exists an inclusion h : G ↪→ G′ of labelled
directed graphs G,G′ over Σ.

For an embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ we define
the image of h, denoted by im(h), to be a labelled directed graph Ĝ over Σ such
that V (Ĝ) =

{
h(v) | v ∈ V (G)

}
, E(Ĝ) =

{
(h(v), h(v′)) | (v, v′) ∈ E(G)

}
, and the

labelling function `Ĝ of Ĝ is the restriction of the labelling function `G′ of V (G′)
to the set V (Ĝ), i.e., `Ĝ(v) = `G′(v) for every v ∈ V (Ĝ).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an iso-
morphism of G into G′ if there exists a homomorphism h−1 : G′ → G of labelled
directed graphs over Σ, called the inverse of h, such that the following conditons
hold:

(Iz1) h−1(h(v)) = v for every v ∈ V (G),
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(Iz2) h(h−1(v)) = v for every v ∈ V (G′).
We say that a labelled directed graph G over Σ is isomorphic to a labelled

directed graph G′ over Σ if there exists an isomorphism h : G → G′ of labelled
graphs G,G′ over Σ.

For an embedding h : G ½ G′ of labelled directed graphs G,G′ over Σ we
define a homomorphism ḣ : G → im(h) by ḣ(v) = h(v) for every v ∈ V (G).
This homomorphism ḣ is an isomorphism of G into im(h), called an isomorphism
deduced by h.

For a labelled directed graph G over Σ, the identity homomorphism (or simply,
identity of G), denoted by idG , is the homomorphism h : G → G such that h(v) = v
for every v ∈ V (G).

We say that a labelled directed graph G over Σ is an isomorphically perfect
labelled directed graph over Σ if the identity homomorphism idG is a unique
isomorphism of labelled directed graph G into G.

Lemma 4. Let G be an isomorphically perfect labelled directed graph over Σ and
let h : G → G′, h′ : G → G′ be two isomorphisms of labelled graphs G,G′ over Σ.
Then h = h′.

We say that a set or a class A of labelled directed graphs over Σ is skeletal if
for all labelled directed graphs G,G′ in A if they are isomorphic, then G = G′.

A gluing diagram D of labelled directed graphs over Σ is defined by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center of D,
— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family gli (i ∈ I − {∆}) gluing conditions which are sets of ordered pairs

such that
(i) gli ⊆ V (G∆)× V (Gi) for every i ∈ I − {∆},
(ii) (v, v′) ∈ gli implies `G∆

(v) = `Gi(v) for all v ∈ V (G∆), v′ ∈ V (Gi), and for
every i ∈ I − {∆},

(iii) for every i ∈ I − {∆} if gli is non-empty, then there exists a bijection

bi : L(gli) → R(gli)

for L(gli) = {v | (v, v′) ∈ gli for some v′} and R(gli) = {v′ | (v, v′) ∈ gli for
some v} such that

{
(v, bi(v)) | v ∈ L(gli)

}
= gli.

For a gluing diagram D of labelled directed graphs over Σ we define a cocone
of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of labelled directed
graphs over Σ (here cod(hi) = G for every i ∈ I) such that

lG(h∆(v)) = lG(hi(v′))

for every pair (v, v′) ∈ gli and every i ∈ I − {∆}.
A cocone qi : Gi → G̃ (i ∈ I) of D is called a colimiting cocone of D if for

every cocone hi : Gi → G (i ∈ I) of D there exists a unique homomorphism
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h : G̃ → G of labelled directed graphs G̃,G over Σ such that h(qi(v)) = hi(v) for
every v ∈ V (Gi) and for every i ∈ I. The labelled directed graph G̃ is called a
colimit of D, the homomorphisms qi (i ∈ I) are called canonical injections and
the unique homomorphism h is called the mediating morphism for hi : Gi → G
(i ∈ I).

For a gluing diagram D one constructs its colimit G̃ in the following way:

— V (G̃) =
⋃

i∈I
(Vi × {i}), where

V∆ = V (G∆) for the center ∆ of D,
Vi = V (Gi)−R(gli) for every i ∈ I − {∆},

— E(G̃) =
⋃

i∈I
Ei, where

E∆ =
{(

(v, ∆), (v′, ∆)
) | (v, v′) ∈ E(G∆)

}
for the center ∆ of D,

Ei =
{(

(v, i), (v′, i)
) | (v, v′) ∈ E(Gi) and {v, v′} ⊆ Vi

}

∪ {(
(v,∆), (v′,∆)

) | (v, v′′) ∈ gli, (v′, v′′′) ∈ gli,

and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′
}

∪ {(
(v,∆), (v′, i)

) | v′ ∈ Vi, (v, v′′) ∈ gli and (v′′, v′) ∈ E(Gi) for some v′′
}

∪ {(
(v, i), (v′,∆)

) | v ∈ Vi, (v, v′′) ∈ gli and (v, v′′) ∈ E(Gi) for some v′′
}

for every i ∈ I − {∆},
— the labelling function `G̃ is defined by `G̃((v, i)) = `Gi(v) for every (v, i) ∈ V (G̃).

The definition of a colimiting cocone of a gluing diagram D provides that any
other colimit of D is isomorphic to the colimit of D constructed above. Hence one
proves the following lemma.

Lemma 5. Let D be a gluing diagram of labelled graphs over Σ. Then for every
colimiting cocone qi : Gi → G (i ∈ I) of D if i′ 6= i′′, then

(
V (im(qi′))− V (im(q∆))

) ∩ (
V (im(qi′′))− V (im(q∆))

)
= ∅

for all i′, i′′ ∈ I − {∆}, where ∆ is the center of D and the elements of nonempty
V (im(qi)) − V (im(q∆)) with i 6= ∆ are ‘new’ elements and the elements of
V (im(q∆)) are ‘old’ elements.
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