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Summary. This paper presents an approach for P system testing, that uses model-
checking for automatic test generation and P-Lingua as specification language. This
approach is based on a transformation of the transitional, non-deterministic, cell-like
P system into a Kripke structure, which is further used for test generation, by adding
convenient temporal logic specifications. This paper extends our previous work in this
field to multi-membrane, transitional P system, having cooperative rules, communica-
tion between membranes and membrane dissolution. A tool, which takes as input a P
system specified in P-Lingua and translates it into the language accepted by the model
checker NuSMV was developed and used for test case generation. Some hints regarding
the automatic test generation using NuSMV and P-Lingua are also given.

1 Introduction

Membrane computing is a branch of natural computing, which investigates parallel
computing models, inspired by the structure of the living cell, called P systems.
These computational models, were introduced by Gheorghe Păun in 1998, in its
seminal research report, further published as journal paper [19]. Membrane com-
puting has known a fast growth in the last years: many variants of P systems have
been proposed and results concerning their computational power and universality
have been obtained. A recent handbook summarizes the most important develop-
ments in this field [21]. For all these P system variants, different implementations
and simulators have been developed and consequently it appears the necessity of
testing these implementations.

A first approach on testing P systems focuses on cell-like models and proposes
some coverage criteria [12], which are empirically evaluated in [16]. Automatic test
generation for P systems using model-checking is proposed in [15].

Given a model of a system, model checking [6] is a formal verification tech-
nique that explores the entire state space and decides whether this model meets a
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given property, expressed in temporal logic. If the property does not hold, then a
counterexample is returned. This capability of model checkers to construct coun-
terexamples provides a way to build test sets. Fraser et al. present in a recent and
comprehensive survey [10] the results obtained over the last decade in software
testing using model checkers.

One of the approaches used to obtain a test suite using model checking follows
the steps [10]:

1. A test purpose is defined, describing the expected features of the test case,
for example: reaching a certain state s in the model, covering a transition t,
traversing a sequence of states, getting a certain value val of a variable x, etc.

2. These features are further specified as temporal logic properties and then
converted by negation into never-claim conditions, or trap properties, such
as: G !(state = s), expressing that the system will never reach state s, or
G !(x = val), expressing that the value val is never taken (x is always dif-
ferent from val).

3. The model checker will verify whether the never-claim or trap property holds.
If the property is false, it returns a counterexample that gives the exact path
in the model that reaches state s or sets the system variable x to val. The
counterexample will provide all the information needed to extract the test
case. If the property is true, then it is impossible to build a test case satisfying
the given purpose.

Regarding P system testing, one intuitive test criterion is rule coverage, that
specifies that the test set should contain test cases which cover every rule, i.e.
for each rule there exists a test case, describing a computation which involves
that rule. More powerful test sets can be computed by considering the context-
dependent rule coverage criterion. This considers coverage of rules in the context
defined by other rules.

An approach on building test cases for P systems using model checking was
proposed in [15]. It transforms the P system specification into a Kripke structure,
then properties regarding the coverage criteria are expressed in LTL (Linear Tem-
poral Logic) and added to the NuSMV specification. This paper extends the work
from [15] in the following aspects:

• It employs the P-Lingua framework [11], to specify the P system and verify its
syntactic correctness.

• It uses multi-membrane P systems, having cooperative and communication
rules between membranes (the approach presented in [15] treats only one-
membrane P systems, with cooperative rules).

• A transformation of P systems with membrane dissolution into the SMV (Sym-
bolic Model Verifier) language is proposed.

• Bounded model checking is used to obtain the shortest counterexamples. This
is useful in practice, to obtain a reduced test suite.

• The paper shows how other properties can be verified against the transformed
model, to find possible faults in the P system.
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2 Background

In the rest of the paper, we will use the following notations: V ∗ for the set of all
strings over the alphabet V = {a1, ..., ap} and λ to denote the empty string. For a
string u ∈ V ∗, |u|ai

denotes the number of ai occurrences in u. Each string u has
an associated vector of non-negative integers (|u|a1 , ..., |u|ap). This is denoted by
ΨV (u).

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. Each region has associated a finite
multiset of objects and a finite set of rules; both may be empty. A multiset is either
denoted by a string u ∈ V ∗, where the order is not considered, or by ΨV (u). The
following definition refers to one of the many variants of P systems, namely cell-
like P systems, which uses transformation and communication rules [20]. We will
call these processing rules. Since now onwards we will call this model P system.

Definition 1. A P system is a tuple Π = (V, µ, w1, ..., wn, R1, ..., Rn), where V
is a finite set, called alphabet; µ defines the membrane structure, which is a hi-
erarchical arrangement of n compartments called regions delimited by membranes
- these membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n,
represents the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set
of processing rules applied in region i.

The membrane structure, µ, is denoted by a string of left and right brackets
([i, and ]i), each with the label of the membrane i, it points to; µ also describes
the position of each membrane in the hierarchy. The rules in each region have the
form u → (a1, t1)...(am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current region, u is replaced by the symbols ai with ti = here; symbols ai

with ti = out are sent to the outer region or outside the system when the current
region is the external compartment and symbols ai with ti = in are sent into one
of the regions contained in the current one, arbitrarily chosen. In the following
definitions and examples when the target indication is here, the pair (ai, here)
will be replaced by ai. The rules are applied in maximally parallel mode.

A configuration of the P system Π, is a tuple c = (u1, ..., un), where ui ∈ V ∗, is
the multiset associated with region i, 1 ≤ i ≤ n. A computation of a configuration
c2 from c1 using the maximal parallelism mode is denoted by c1 =⇒ c2. In the set
of all configurations we will distinguish terminal configurations; c = (u1, ..., un) is a
terminal configuration if there is no region i such that ui can be further developed.

We say that a rule is cooperative if it has at least two objects in its left hand
side, e.g. ab → (c, in)(d, out). Otherwise, the rule is non-cooperative, e.g. a →
(c, in)(d, out). The rules can also have the form u → vδ, where δ denotes the
action of membrane dissolution: if the rule is applied, then the corresponding
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membrane disappears and its contents, object and membranes alike, are left free
in the surrounding membrane; the rules of the dissolved membrane disappear with
the membrane. The skin membrane is never dissolved. For further details regarding
membrane computing, please refer to [20].

2.2 P-Lingua

P-Lingua is a programming language for membrane computing [8], developed by
members of the Research Group on Natural Computing, at the University of
Seville. It is developed as a free software framework for cell-like P systems and
can be downloaded from http://www.p-lingua.org. Its main component is a Java
library, pLinguaCore, that accepts as input text files (either in XML or in P-Lingua
format) describing the P system model [11].

The library includes several built-in simulators for each supported model. P-
Lingua 2.0 was designed for cell-like P systems and contains simulators for the
following types of P systems: active membrane with division/creations rules, tran-
sition, symport/antiport, stochastic and probabilistic P systems. P-Lingua 2.1
(actual version) was extended for tissue P systems with symport/antiport rules
and cell division [17].

The P-Lingua software package contains the pLinguaCore library and a user
interface called pLinguaPlugin. It was used in several research papers, e.g. to
solve a SAT problem using a family of P systems [8], to describe and simulate
ecosystems by means of P systems [11].

A specification in P-Lingua of the P system Π = (V, µ,w1, w2, R1, R2), V =
{s, a, b, c}, µ = [1[2]2]1, w1 = s, w2 = λ, R1 = {r1 : s → sa(b, in); r2 : s → ab; r3 :
b → a; r4 : a → c}, R2 = {r5 : b → bc, r6 : b → c} is given in Fig. 1 and can be
saved in a specific file, with the .pli extension.

2.3 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S,H, I, L), where S is a finite set of states; I ⊆ S is a set of initial
states; H ⊆ S × S is a transition relation that must be left-total, that is, for every
state s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H; L : S −→ 2AP is an
interpretation function, that labels each state with the set of atomic propositions
true in that state.

Usually, the Kripke structure representation of a system results by giving values
to every variable in each configuration of the system. Suppose var1, . . . , varn are
the system variables, V ali denotes the set of values for vari and vali is a value from
V ali, 1 ≤ i ≤ n. Then the states of the system are S = {(val1, . . . , valn) | val1 ∈
V al1, . . . , valn ∈ V aln}, and the set of atomic predicates are AP = {(vari = vali) |
1 ≤ i ≤ n, vali ∈ V ali}. Naturally, L will map each state (given by the values of
variables) onto the corresponding set of atomic propositions. For convenience, in
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@model<transition>

def main()

{

/* Initial configuration */

@mu = [[]’2]’1;

/* Initial multisets */

@ms(1) = s;

@ms(2) = #;

/* Rules */

[s []’2]’1 --> [s,a [b]’2]’1;

[s --> a,b]’1;

[b --> a]’1;

[a --> c]’1;

[b --> b,c]’2;

[b --> c]’2;

}

Fig. 1. P-Lingua specification file for a P system with two membranes

the sequel the expressions of AP and L will not be explicitly given, the implication
being that they are defined as above.

Additionally, a halt (sink) state is needed when H is not left-total and an extra
atomic proposition, that indicates that the system has reached this state, is added
to AP .

Definition 3. An (infinite) path in a Kripke structure M = (S,H, I, L) from a
state s ∈ S is an infinite sequence of states π = s0s1 . . . , such that s0 = s and
(si, si+1) ∈ H for every i ≥ 0. A finite path π is a finite prefix of an infinite path.

The set of all (infinite) paths from initial states is denoted by Path(M). The
set of all finite paths from initial states is denoted by FPath(M).

2.4 Linear Temporal Logic (LTL)

The most widely used temporal specification languages in model checking are
Linear Temporal Logic (LTL) [22, 23] and the branching time logic CTL (Com-
putation Tree Logic) [5]. The superset of these logics is CTL* [9], which combines
both linear-time and branching-time operators. A state formula in CTL* may be
obtained from a path formula by prefixing it with a path quantifier, either an A
(for every path) or an E (there exists a path).

In LTL the only path quantifier allowed is A, i.e. we can describe only one
path properties per formula and the only state subformulas permitted are atomic
propositions. More precisely, LTL formulas satisfy the following rules [6]:

• If p ∈ AP , then p is a path formula
• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , fUg and

fRg are path formulas, where:
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– The X operator (”neXt time”, also written ©) requires that a property
holds in the next state of the path.

– The F operator (”eventually” or ”in the future”, also written ♦) is used to
assert that a property will hold at some state on the path.

– G (”always” or ”globally”, also written ¤) specifies that a property holds
at every state on the path.

– The U operator (”until”) holds if there is a state on the path where g holds,
and at every preceding state on the path, f holds.

– R (”release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds.

2.5 NuSMV

NuSMV is a symbolic model checker [3], developed as part of a joint project
between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientifica
e Tecnologica (IRST). NuSMV is the result of the reengineering, reimplementation,
and, to a limited extent, extension of the SMV model checker [18], developed by
CMU. It is publicly available at http://nusmv.irst.itc.it/. NuSMV [3] can process
files written in SMV (Symbolic Model Verifier) language [18] (the NuSMV language
is mostly source compatible with the original version of SMV) and supports LTL
and CTL as temporal specification logics.
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Fig. 2. Non-deterministic finite state machine

The input language of NuSMV was designed to allow descriptions of Finite
State Machines (FSMs), more precisely to describe the transition relation of the
FSM. This relation defines the valid evolutions of the FSM. For example, given
the FSM from Fig. 2, the corresponding SMV code is:

MODULE main
VAR

state : {running, halt, crash};
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ASSIGN
init(state) := running;
next(state) := case
state = running : {running, halt, crash};
state = halt : halt;
state = crash : crash;

esac;

The transition relation of the FSM can be expressed also using the TRANS key-
word. For more details refer to [3].

MODULE main
VAR

state : {running, halt, crash};
ASSIGN

init(state) := running;
TRANS

state = running & next(state) = running |
state = running & next(state) = halt |
state = running & next(state) = crash |
state = halt & next(state) = halt |
state = crash & next(state) = crash

Having the model described in NuSMV, one can add LTL or CTL spec-
ifications to be verified by the model checker. For example, the specification
LTLSPEC G !( F state = halt) is false and the counterexample obtained is the
path: running → halt → halt → . . . (the system will eventually remain in the
halt state). On the other hand, the specification LTLSPEC G !(state =
halt & X state = running) is true (there is no transition from the halt state,
having the next state running).

3 Coverage criteria for P systems

A set of coverage criteria for P system rules, inspired from grammar testing, is
presented in [12]. Test sets should be further designed to satisfy each coverage cri-
terion. In the following we summarize the main coverage criteria, but for simplicity,
we will provide the definitions only for one membrane P systems, Π = (V, µ,w, R),
µ = [1]1.

Definition 4. A multiset denoted by u ∈ V ∗, covers a rule r : a → v ∈ R, if
there is a computation w =⇒∗ xay =⇒ x′vy′ =⇒∗ u; x, y, x′, y′, v, u ∈ V ∗, a ∈ V ,
w ∈ V ∗ is the initial multiset. If there is no further computation from u, then this
is called a terminal coverage.
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Definition 5. A set T ⊆ V ∗, is called a test set that satisfies the rule coverage
(RC) criterion if for each rule r ∈ R there is u ∈ T which covers r. If every
u ∈ T provides a terminal coverage then T is called a test set that satisfies the rule
terminal coverage (RTC) criterion.

Definition 6. A rule r ∈ R, r : a → ubv, u, v ∈ V ∗, a, b ∈ V , is called a direct
occurrence of b. For every symbol b ∈ V , we denote by Occs(Π, b), the set of all
direct occurrences of b.

Definition 7. A multiset z ∈ V ∗ covers the rule r : b → y ∈ R for the direct
occurrence of b, a → ubv ∈ R, if there is a computation w =⇒∗ u1av1 =⇒ u′1ubvv′1
=⇒ u′′1u′yv′v′′1 =⇒∗ z; u, v, u′, v′, u1, v1, u

′
1, v

′
1, u

′′
1 , v′′1 , y ∈ V ∗, a, b ∈ V. A set Tr

is said to cover r : b → y for all direct occurrences of b if for any occurrence
o ∈ Occs(Π, b) there is t ∈ Tr such that t covers r for o.

Definition 8. A set T is said to achieve context-dependent rule coverage (CDRC)
for Π if it covers all r ∈ R for all their direct occurrences. If every z ∈ T provides
a terminal coverage then T is called a test set that satisfies the context-dependent
rule terminal coverage (CDRTC) criterion.

To illustrate these concepts, we consider the P system Π = (V, µ, w,R) where:
V = {a, b, c}, µ = [1]1, w = a, R = {r1 : a → bc; r2 : b → bc; r3 : b → c}. It can
be verified that the set T = {c3} covers all the rules, because the computation
a =⇒ bc =⇒ bc2 =⇒ c3 applies the rules r1, r2, r3. Note that c3 is a terminal
configuration and, consequently, T = {c3} satisfies the RTC criterion. The test set
T ′ = {bc2, c2} achieves the CDRC criterion, because it covers the rules r2, r3, each
one in the context defined by r1. A test set satisfying the CDRTC is T ′′ = {c2, c3}.

4 Transforming a one-membrane P system into a Kripke
structure

In a previous paper [15], a transformation of a one-membrane P system into a
Kripke structure was proposed and several theoretical aspects were analysed. To
simplify the presentation, we will consider one-membrane P system and show in
next section how this approach can be extended to an arbitrary system.

Consider the one-membrane P system Π = (V, µ, w, R), where R = {r1, . . . ,
rm}; each rule ri, 1 ≤ i ≤ m, is of the form ui −→ vi, where ui and vi are
multisets over the alphabet V . In the sequel, we treat the multisets as vectors of
non-negative integers, that is each multiset u is replaced by ΨV (u) ∈ Nk, where k
denotes the number of symbols in V ; so, we will write u ∈ Nk.

In order to define the Kripke structure associated to Π we use two predi-
cates MaxPar and Apply (similar to [7]): MaxPar(u, u1, v1, n1, . . . , um, vm, nm),
u ∈ Nk, n1, . . . , nm ∈ N signifies that a computation from the configuration u in
maximally parallel mode is obtained by applying rules r1 : u1 −→ v1, . . . , rm :
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um −→ vm, n1, . . . , nm times, respectively (in particular, MaxPar(u, u1, v1,
0, . . . , um, vm, 0) signifies that no rule can be applied and so u is a terminal con-
figuration); Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u, v ∈ Nk, n1, . . . , nm ∈ N, de-
notes that v is obtained from u by applying rules r1, . . . , rm, n1, . . . , nm times,
respectively.

In order to keep the number of configurations finite, for each configuration
u = (u(1), ..., u(k)) we will assume that each component, u(i), 1 ≤ i ≤ k cannot
exceed an established upper bound, denoted Max, and each rule can only be
applied for at most a given number of times, denoted Sup.

We denote u ≤ Max if u(i) ≤ Max for every 1 ≤ i ≤ k and (n1, . . . , nm) ≤ Sup
if ni ≤ Sup for every 1 ≤ i ≤ m; Nk

Max = {u ∈ Nk | u ≤ Max},
Nm

Sup = {(n1, . . . , nm) ∈ Nm | (n1, . . . , nm) ≤ Sup}. Analogously to [7], the
system is assumed to crash whenever u ≤ Max or (n1, . . . , nm) ≤ Sup does not
hold (this is different from the normal termination, which occurs when u ≤ Max,
(n1, . . . , nm) ≤ Sup and no rule can be applied). Under these conditions, the one-
membrane P system Π can be described by a Kripke structure M = (S, H, I, L)
with S = Nk

Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk
Max, Halt 6= Crash;

I = w and H defined by:

• (u, v) ∈ H, u, v ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm

Sup \ {(0, . . . , 0)} ·
MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

• (u,Halt) ∈ H, u ∈ Nk
Max, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

• (u,Crash) ∈ H, u ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm, v ∈ Nk ·

¬((n1, . . . , nm) ≤ Sup∧ v ≤ Max) ∧ MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

• (Halt, Halt) ∈ H;
• (Crash, Crash) ∈ H.

It can be observed that the relation H is left-total.
The main result of [15] can be summarized by the following theorem:

Theorem 1. Given an one-membrane P system Π = (V, [1]1, w1, R), (terminal)
test suites satisfying the rule coverage and context dependent rule coverage criteria
are generated based on LTL specifications.

This means that having the transformation into a Kripke structure, what we
need is to verify the following LTL specifications:

• G¬((ni ≥ 1) ∧ (state = other)), for each rule ri ∈ R, in order to achieve rule
coverage (RC).

• G¬((ni ≥ 1)∧ (state = other)∧F (state = halt)), for each rule ri ∈ R, in order
to obtain rule terminal coverage (RTC).

• G¬((ni ≥ 1) ∧X((nj ≥ 1) ∧ (state = other))), for each pair of rules (ri, rj) ∈
R × R, where rj can be applied the context of ri, in order to achieve context
dependent rule coverage (CDRC).
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• G¬((ni ≥ 1) ∧X((nj ≥ 1) ∧ (state = other)) ∧ F (state = halt)), for each pair
of rules (ri, rj) ∈ R×R, where rj can be applied the context of ri, in order to
obtain context dependent rule terminal coverage (CDRTC).

5 Generating the test suits

5.1 The test generation tool

Following the test generation strategy presented previously, a tool was developed,
which functions as described by Fig. 3. A graphical interface allows editing and ver-
ification of PLI files, representing the specification of P systems in P-Lingua. The
tool communicates with the P-Lingua framework, using its parser to syntactically
verify the specification. Once the specification contains no syntactically errors,
the corresponding objects from the library pLinguaCore are created. For a given
Psystem object, an SMV file is created, containing the associated SMV model (cor-
responding to the Kripke structure). The user has the possibility to choose which
of the following coverage criteria should be employed: RC, RTC, CDRC, CDRTC.
For each coverage criteria LTL specifications, representing never-claim formulas,
are added to the SMV file. Finally, the NuSMV model checker is run against the
model specified in SMV, the counterexamples are decoded and transformed into
test cases.

Psystem 
Java object from 
pLinguaCore 

package 

SMV file 
Specification + 
temporal logic 
properties, e.g. 

never-claim 
formulas 

PLI file 
P-lingua 

specification 

Edit and verify until 
the specification is 
syntactically correct 

Test cases 
Computation + 
applied rules 

Parse the PLI file 

Associate the P system to  
a Kripke structure, used to 
generate test cases 

Run NuSMV model 
checker and decode 
each counterexample 

Fig. 3. Tool overview
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Having a P system specified in P-Lingua, the tool automatically transforms
it into a SMV model. This model depends on the type of P system and in the
following subsections we will present the transformation strategies proposed for
different types of P systems. After the transformations the LTL specifications are
automatically generated and appended to the SMV file.

5.2 Transforming one-membrane P systems into SMV

For an one-membrane P system Π = (V, µ,w, R), with V = {a1, . . . , ak} and R =
{r1, . . . rm} (each rule ri has the form ui −→ vi), its associated Kripke structure
is M = (S,H, I, L). The state space of M is implemented by using a 3-valued
”state” variable (with values ”Halt”, ”Crash” and ”Running”) and appropriate
variables to hold the current configuration and the number of applications of each
rule. Therefore, the NuSMV model will contain:

• k variables, labelled exactly like the objects from the alphabet V , each one
showing the number of occurrences of each object, ai ∈ V , 1 ≤ i ≤ k;

• m variables ni, 1 ≤ i ≤ m, each one showing the number of applications of
ri ∈ R, 1 ≤ i ≤ m;

• one variable state showing the current state of the model, state ∈ {Running,
Halt, Crash};

• two constants, Max corresponding to the upper bound for the number of oc-
currences expressed by each ai ∈ V, 1 ≤ i ≤ k and Sup which shows that each
rule ri, 1 ≤ i ≤ m, can be applied at most Sup times (see Section 4).

With these notations we are prepared to construct a NuSMV specification as
a FSM where the states and transitions are defined below and also abstracted in
Fig. 2.

If the current state is Running then this is characterised by the values provided
by a1 ≥ 0, . . . , ak ≥ 0; the maximal parallelism condition will be written as a
conjunction c1 ∧ · · · ∧ cm, where each condition ci, 1 ≤ i ≤ m, corresponds to
rule ri and is a disjunction ci = ci1 ∨ · · · ∨ cip , given the left hand side of ri is
a

ti1
i1

. . . a
tip

ip
. The condition cij , 1 ≤ j ≤ p, is 0 ≤ aij − n1h1 − · · · − nmhm < tij ,

where n1, . . . , nm represent the values provided by MaxPar and hq ≥ 0 represents
the number of occurrences of symbol aij on the left hand side of rq. This condition
simply states that, after applying all rules in a maximal parallel way, the number
of occurrences of symbol aij left is less than the number of occurrences of aij

appearing on the left hand side of ri, i.e., this rule can no longer be applied for
this step. When the number of occurrences of the symbol aij in the left side of a
rule rq is equal to 1, then the above inequality 0 ≤ aij − n1h1 − · · · − nmhm < tij

becomes 0 = aij − n1h1 − · · · − nmhm (because tij = 1).
The values a1 ≥ 0, . . . , ak ≥ 0 that characterise the next state are computed

as follows. Using the above notations and denoting by next(a) the new value, we
have next(aij ) = aij − n1h1 − · · · − nmhm + n1h

′
1 + · · · + nmh′m, where h′q ≥ 0

represents the number of occurrences of symbol aij on the right hand side of rq.
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Some additional conditions are added to the above ones in order to distinguish
the destination state. These are obvious and derive from the upper bound condi-
tions introduced. The example below illustrates the approach. We notice that all
these conditions and the entire NuSMV specification, including the LTL expres-
sions, are automatically derived from a P system using the tool developed by the
authors of this paper.

We illustrate the approach by using the following one-membrane P systems:
Π1 = (V1, µ, w1, R1), having V1 = {s, a, b, c}, µ = [1]1, w1 = s, R1 = {r1 :
s → ab; r2 : a → c; r3 : b → bc; r4 : b → c} and Π2 = (V2, µ, w2, R2), having
V2 = {s, a, b, c, d, x}, µ = [1]1, w2 = s, R2 = {r1 : s → abc; r2 : ab → d2; r3 : c →
ab; r4 : abd2 → x}.

The transition from the state Running to itself, for the P system Π1, which
has non-cooperative rules, can be written as the following NuSMV specification,
where the second row shows that all the objects have been consumed and no rule
can be further applied (maximal parallelism):

state = running & next(state) = running &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &

next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4) > Sup)

The maximal parallelism condition for Π2, a P system with cooperative rules,
becomes a conjunction of disjunctions c1 ∧ · · · ∧ cm, each ci corresponding to a
rule:

(s-next(n1)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0) &

(c-next(n3)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0 |

(0<=d-2*next(n4) & d-2*next(n4)<2))

When one specification is false, a counterexample is given, i.e. a trace of the
FSM that falsifies the property. Based on the counterexample received for the spec-
ification G !((n1 > 0 & X n2 > 0) & F state = halt) of Π1, a test sequence
checking that r2 appears in the context of r1 on a terminal computation starting
with w is obtained. This is given by s =⇒ ab =⇒ c2 and the rules applied are r1

first and r2, r4 at the second step.
In the following we will present an excerpt of a counterexample received from

NuSMV, for the P system Π1, edited for brevity:

-- specification G !((n3 > 0 & X n3 > 0) & F state = halt) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample
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-> State: 8.1 <-

s = 1

a = 0

b = 0

c = 0

n1 = 0

n2 = 0

n3 = 0

n4 = 0

state = running

-> State: 8.2 <-

s = 0

a = 1

b = 1

n1 = 1

-> State: 8.3 <-

a = 0

c = 2

n1 = 0

n2 = 1

n3 = 1

-> State: 8.4 <-

c = 3

n2 = 0

-> State: 8.5 <-

b = 0

c = 4

n3 = 0

n4 = 1

-- Loop starts here

-> State: 8.6 <-

n4 = 0

state = halt

The values of all variables are listed only once, for the first configuration
of the counterexample. Then, at the following steps, only the modified vari-
ables are printed. Based on the counterexample received for the specification
G !((n3 > 0 & X n3 > 0) & F state = halt), the tool computes the entire
configuration at each step and the applied rules. The test case corresponding to
the use of rule r3 in the context of r3, is represented by the P system derivation:
s =⇒ ab =⇒ bc2 =⇒ bc3 =⇒ c4. The rules used were: first r1, then r2, r3, for
the third transition r3 and finally r4, as it can be seen from the following table,
corresponding to the counterexample above:

State s a b c n1 n2 n3 n4 state
8.1 1 0 0 0 0 0 0 0 running
8.2 0 1 1 0 1 0 0 0 running
8.3 0 0 1 2 0 1 1 0 running
8.4 0 0 1 3 0 0 1 0 running
8.5 0 0 0 4 0 0 0 1 running
8.6 0 0 0 4 0 0 0 0 halt

5.3 Transforming multi-membrane P systems into SMV

The transformation of multi-membrane P systems into SMV is similar to the one
for one-membrane P systems. The differences are the following:

• If the P system contains p > 1 membranes, the SMV model will contain k × p
variables for the occurrences of the objects in each membrane; labelled like the
symbols from the alphabet V , |V | = k, with an additional index, representing
the membrane.

• The variables ni, 1 ≤ i ≤ |R1| + . . . + |Rm| will be used to represent the
number of applications of each rule ri, (we have considered that the rules from
all membranes are labelled r1, . . . , r|R1|+...+|Rm|).

We will illustrate these differences, compared to the one-membrane P system,
by specifying in NuSMV the P system Π3 = (V, µ, w1, w2, R1, R2), V = {s, a, b, c},
µ = [1[2]2]1, w1 = s, w2 = λ, R1 = {r1 : s → sa(b, in); r2 : s → ab; r3 : b → a; r4 :
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a → c}, R2 = {r5 : b → bc, r6 : b → c}, whose P-Lingua specification is given in
Fig. 1.

The SMV model has the variables: s1, a1, b1, c1, s2, a2, b2, c2, state, the con-
stants Max, Sup and the differences from the previous model will be given by
the communications between membranes. For example, the number of objects b
in the inner membrane, labelled with b2, will take into account: the number of b
objects consumed in membrane 2 by applying rules r5, r6, the number of objects b
produces by the rules r5 in membrane 2 and r1 in membrane 1. An excerpt, repre-
senting the self loop from the state running is the following (edited for brevity):

state = running & next(state) = running &

s1 - next(n1) - next(n2) = 0 & b1 - next(n3) = 0 & a1 - next(n4) = 0 &

b2 - next(n5) - next(n6) = 0 &

next(s1) = s1 - next(n1) - next(n2) + next(n1) &

next(a1) = a1 - next(n4) + next(n1) + next(n2) + next(n3) &

next(b1) = b1 - next(n3) + next(n2) &

next(c1) = c1 + next(n4) &

next(s2) = s2 &

next(a2) = a2 &

next(b2) = b2 - next(n5) - next(n6) + next(n1) + next(n5)&

next(c2) = c2 + next(n5) + next(n6) &

! (next(n1) = 0 & ... & next(n6) = 0 ) &

! (next(s1) > Max | ... | next(c1) > Max |

next(s2) > Max | ... | next(c2) > Max |

next(n1) > Sup | ... | next(n6) > Sup )

5.4 Transforming P systems with dissolving rules into SMV

Similarly to the previous section, this P system model, which has p > 1 mem-
branes, will have k×p variables to represent the occurrences of the objects in each
membrane, a number of variables ni equal to the total number of rules and some
special variables, to mark the membranes affected by dissolving rules.

For each membrane that can be dissolved we will consider a variable disi ∈
{0, 1}, showing whether the membrane is dissolved (1) or it is still alive (0). When
the membrane is dissolved its objects are assimilated by the outer membrane.
In the SMV transformation we have used the variables disi as flags, to correctly
update the values of the variables counting the occurrences of objects in each
membrane.

Consider the P system Π4 = (V, µ, w1, w2, R1, R2), V = {a, b, c}, µ = [1[2]2]1,
w1 = b, w2 = abc, R1 = {r1 : b → c; r2 : c → a}, R2 = {r3 : b → ab; r4 : b →
bδ, r5 : c → cc}. The inner membrane, labelled 2, can be dissolved when the rule
r4 is applied. In the SMV model the variable dis2 is updated by the instruction:

next(dis2) := case

dis2 = 1 : 1; -- if membrane is dissolved, it remains dissolved

next(n4) >= 1 : 1; -- if rule r4 is applied, membrane 2 dissolves

1 : 0; -- otherwise, the membrane remains alive (0)
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esac;

If the membrane is dissolved (dis2=1), then it remains dissolved. When rule r4

is applied (next(n4)>=1) the membrane will dissolve (next value is 1). Otherwise
(1 means true in this case and shows the default option), the membrane will remain
alive, the next value is 0 (not dissolved).

An excerpt from the SMV file, showing the transition from the running state to
itself is given below. To ensure that, only when a membrane is dissolved its content
is moved to the outer membrane, the rules for updating the quantities in the
outer membrane, e.g. next(a1), have added an extra term, e.g. a2*next(dis2),
representing the same type of objects from the inner membrane, multiplied with
the next value dis2, because this term is null when the membrane is alive and it
is exactly a2 when the membrane dissolves. On the other hand, the values from
the inner membrane will be multiplied with the opposed value, (1-next(dis2).
When membrane 2 dissolves, the number of objects in membrane 2 will become 0
because the factor (1-next(dis2) is 0. Otherwise, the factor is 1 and the value
is computed as usual (subtracting the consumed objects and adding the produced
ones).

state = running & next(state) = running &

b1 - next(n1) = 0 & c1 - next(n2) = 0 &

b2 - next(n3) - next(n4) = 0 & c2 - next(n5) = 0 &

next(a1) = a1 + next(n2) + a2*next(dis2) &

next(b1) = b1 - next(n1) + b2*next(dis2) &

next(c1) = c1 - next(n2) + next(n1) + c2*next(dis2) &

next(a2) = (a2 + next(n3))*(1-next(dis2)) &

next(b2) = (b2-next(n3)-next(n4)+next(n3)+next(n4))*(1-next(dis2)) &

next(c2) = (c2 - next(n5) + 2*next(n5))*(1-next(dis2)) &

! (next(n1) = 0 & ... & next(n5) = 0)&

! (next(a1) > Max | ... | next(c2) > Max |

next(n1) > Sup | ... | next(n5) > Sup )|

5.5 Using the transformed model to verify different properties

The transformation of a P systems into a model accepted by a specific model-
checker, NuSMV, was used to generate test cases. For this, LTL specifications
were written, such as G !(n_2 > 0 & F(state = halt)), having the purpose
of obtaining a terminal coverage for rule r2. If the LTL specification is false, the
counterexample obtained is decoded: it represents a path in the SMV model, which
corresponds to a (possible partial) computation in the P system. The union of all
test cases will form the test suite.

If an LTL specification like G !(n2 > 0 & F(state = halt)) is true this
means that: (1) rule r2 is never applied or (2) rule r2 is applied, but the com-
putation does not finish, i.e. the system does not reach the halt state. Verifying
the simpler specification G !(n2 > 0) and receiving from the model checker the
response ’specification is true’ reveals the fact that this rule is never applied. This
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is normally a fault in the model and could be obtained in situations like the fol-
lowing:

@mu = [ ]’1; @mu = [ ]’1;
@ms(1) = s; @ms(1) = s;
[s --> a,b]’1; [s --> a,b ]’1;
[a --> c]’1; [x --> c]’1;
[b --> b,c]’1; [b --> b,c]’1;
[b --> c]’1; [b --> c]’1;

In the left column is given a correct specification in P-Lingua of a certain P
system; on the right side the second rule has a typo (x instead of a). Both fragments
are syntactically correct, so the parser will accept them both. On the other hand
the second P system has different computations and rule r2 is never applied, fact
revealed by the specification G !(n2 > 0).

The automatic transformation to NuSMV allows verifications of different LTL
or CTL specifications, that might be useful at designing a P system, that mod-
els a certain process. Even simple propositions like G !(a > 100) let us know if
there exist or not a computation in which the number of objects a can reach a
certain level. And this answer is obtained quickly, without simulating hundreds of
computations to see if this ever happens.

5.6 Test generation using bounded model checking

Model checking tools face a combinatorial blow up of the state-space, known as
the state explosion problem. This can occur if the system being verified has many
components which can make transitions in parallel [5]. As P systems work in
parallel and have a non-deterministic nature, the number of global system states
may grow exponentially. One approach to alleviate this problem is based on using
Binary Decision Diagrams (BDD) [18], this being the case of NuSMV, which
implements BDD model checking.

Another approach to face the state explosion problem is to use Bounded Model
Checking (BMC) algorithms. NuSMV provides also a BMC mode: it tries to find a
counterexample of increasing length, and stops when it succeeds, declaring that the
formula is false. The maximum number of iterations can be specified, the default
value is 10. For testing it is preferable to obtain shorter test cases, so the BMC
option can be very useful at test generation.

It should be emphasized that: if the maximum number of iterations is reached
and no counterexample is found, the truth of the formula is not decided. In this case
we cannot conclude that the formula is true, but only that any counter-example
should be longer than the maximum length.

As a final conclusion, for test generation the BMC option of NuSMV is very
useful. For verifying other properties of the P system NuSMV should be used in
the default mode.
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6 Related work

Only a few approaches on model checking P systems have been proposed until
now. Among them, decidability of model checking problems for P systems was
analysed and a discussion regarding the use of SPIN model checker provided [7],
for P systems without priority rules and membrane dissolving rules. An operational
semantics using rewriting logics and model checking based on Maude was given in
[1]. Regarding probabilistic model checking of P systems Romero-Campero et al.
proposed in [24] a transformation into a probabilistic and symbolic model checker
called PRISM.

Several testing strategies for P systems have been presented, that use: coverage
criteria inspired from grammar testing [12], finite state based testing [13] and
stream X-machine models [14]. An approach to automate the test generation for
P systems using model checking is presented in [15] and further extended in this
work.

7 Conclusions

This paper extends our previous work on model-checking based P system testing
[15]. It integrates this approach with P-Lingua, a software framework for cell-like
P systems [11]. Compared to the previous work, the current tool offers support
for multi-membrane P systems. Also, we propose an approach for transforming P
systems with dissolving rules into NuSMV. The transformed model can be used
not only for test generation, but also for verifying system properties. A reduction
in test case size can be obtained if bounded model checking is used.

Future work will focus on other types of P systems, employed in modelling
ecosystems [2], for which automatic test generation and model checking would be
very useful. We will study testing and verification of probabilistic and stochastic
P systems, integration with P-Lingua and possible use of a probabilistic model
checker, e.g. PRISM, as suggested in [24].

Another research topic concerns the study of other model checkers and im-
provements made to the strategies presented, to face the state explosion problem,
which appears when more complex models are verified.
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In Păun et al., editors. Membrane Computing, 10th International Workshop, WMC
2009, Revised Selected and Invited Papers, volume 5957 of Lecture Notes in Computer
Science. Springer, pages 182–195, 2010.

3. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.
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