
The Membrane Systems Language Class

Artiom Alhazov1,2, Constantin Ciubotaru1, Yurii Rogozhin1, Sergiu Ivanov1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
{artiom,chebotar,rogozhin,sivanov}@math.md

2 IEC, Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima 739-8527 Japan

3 Technical University of Moldova, Faculty of Computers,
Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

Summary. The aim of this paper is to introduce the class of languages generated by
the transitional model of membrane systems without cooperation and without additional
ingredients. The fundamental nature of these basic systems makes it possible to also
define the corresponding class of languages it in terms of derivation trees of context-free
grammars. We also compare this class to the well-known language classes and discuss its
properties.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset
processing. It has been introduced by Gheorghe Păun in 1998, and remains an
active research area, see [6] for the comprehensive bibliography and [3],[4] for a
systematic survey.

The configurations of membrane systems (with symbol objects) consist of mul-
tisets over a finite alphabet, distributed across a tree structure. Therefore, even
such a simple structure as a word (i.e., a sequence of symbols) is not explicitly
present in the system. To speak of languages as sets of words, one first needs to
represent them in membrane systems, and there are a few ways to do it.

• Represent words by string objects. Rather many papers take this approach, see
Chapter 7 of [4], but only few consider parallel operations on words. Moreover,
a tuple of sets or multisets of words is already a quite complicated structure.
The third drawback is that it is very difficult to define an elegant way of
interactions between strings. Polarizations and splicing are examples of that;
however, these are difficult to use in applications. In this paper we focus on
symbol objects.

24 A. Alhazov et al.

• Represent a word by a single symbol object, or by a few objects of the form
(letter,position) as in, e.g., [1]. This only works for words of bounded length,
i.e., one can speak about at most finite languages.

• Represent positions of the letters in a word by nested membranes. The cor-
responding letters can be then encoded by objects in the associated regions,
membrane types or membrane labels. Working with such a representation, even
implementing a rule a → bc requires sophisticated types of rules, like creating
a membrane around existing membrane, as defined in [2].

• Consider letters as digits and then view words as numbers, or use some other
encoding of words into numbers or multisets. Clearly, the concept of words
ceases to be direct with such encoding. Moreover, implementing basic word
operations in this way requires a lot of number processing, not to speak of
parallel word operations.

• Do all the processing by multisets, and regard the order of sending the objects
in the environment as their order in the output word. In case of ejecting mul-
tiple symbols in the same step, the output word is formed from any of their
permutations. This paper is devoted to this way.

Informally, the class of languages we are interested in is the class generated
by systems with parallel applications of non-cooperative rules that rewrite objects
and/or send them between the regions. Surprisingly, this language class did not yet
receive enough attention of researchers. Almost all known characterizations and
even bounds for generative power of different variants of membrane systems with
various ingredients and different descriptional complexity bounds are expressed in
terms of REG, MAT , ET0L and RE, their length sets and Parikh sets (and much
less often in terms of FIN or other subregular classes, CF or CS). The membrane
systems language class presents interest since we show it lies between regular and
context-sensitive classes, being incomparable with well-studied intermediate ones.

2 Definitions

2.1 Formal language preliminaries

Consider a finite set V . The set of all words over V is denoted by V ∗, the con-
catenation operation is denoted by • and the empty word is denoted by λ. Any
set L ⊆ V ∗ is called a language. For a word w ∈ V ∗ and a symbol a ∈ V , the
number of occurrences of a in w is written as |w|a. The permutations of a word
w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a∀a ∈ V }. We denote the set of all
permutations of the words in L by Perm(L), and we extend this notation to classes
of languages. We use FIN , REG, LIN , CF , MAT , CS, RE to denote finite,
regular, linear, context-free, matrix, context-sensitive and recursively enumerable
families of languages, respectively. The family of languages generated by extended
(tabled) interactionless L systems is denoted by E(T)0L. For more formal language
preliminaries, we refer the reader to [5].

The Membrane Systems Language Class 25

Throughout this paper we use string notation to denote the multisets. When
speaking about membrane systems, keep in mind that the order in which symbols
are written is irrelevant.

2.2 Transitional P systems

A membrane system is defined by a tuple

Π = (O,µ, w1, · · · , wm, R1, · · · , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively labeled by 1, · · · ,m,

the interior of each membrane defines a region;
the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

The rules of a membrane systems have the form u → v, where u ∈ O+, v ∈
(O × Tar)∗. The target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m}
are written as a subscript, and target here is typically omitted. In case of non-
cooperative rules, u ∈ O.

The rules are applied in maximally parallel way: no further rule should be
applicable to the idle objects. In case of non-cooperative systems, the concept of
maximal parallelism is the same as evolution in L systems: all objects evolve by
the associated rules in the corresponding regions (except objects a in regions i
such that Ri does not contain any rule a → u, but these objects do not contribute
to the result). The choice of rules is non-deterministic.

A sequence of transitions is called a computation. The computation halts when
such a configuration is reached that no rules are applicable. The result of a (halting)
computation is the sequence of objects sent to the environment (all the permuta-
tions of the symbols sent out in the same time are considered). The language L(Π)
generated by a P system Π is the union of the results of all computations. The
class of languages generated by non-cooperative transitional P systems with at
most m membranes is denoted by LOPm(ncoo, tar). If the number of membranes
is not bounded, m is replaced by ∗ or omitted. If the target indications of the form
inj are not used, tar is replaced by out.

Example 1. To illustrate the concept of generating languages, consider the follow-
ing P system:

Π = ({a, b, c}, [
1

]
1
, a2, {a → λ, a → a boutc

2
out}, 0).

Each of the two symbols a has a non-deterministic choice whether to be erased
or to reproduce itself while sending a copy of b and two copies of c into the

26 A. Alhazov et al.

environment. Therefore, the contents of region 1 can remain a2 for an arbitrary
number m ≥ 0 of steps, and after that at least one copy of a is erased. The other
copy of a can reproduce itself for another n ≥ 0 steps before being erased. Each
of the first m steps, two copies of b and four copies of c are sent out, while in each
of the next n steps, only one copy of b and two copies of c are ejected. Therefore,
L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗.

3 Context-free grammars and time-yield

Consider a non-terminal A in a grammar G = (N,T, S, P). We denote by GA the
grammar (N, T, A, P) obtained by considering A as axiom in G.

A derivation tree in a context-free grammar is always a rooted tree with leaves
labeled by terminals and all other nodes labeled by non-terminals. Rules of the
form A → λ cause a problem, which can be solved by allowing to also label leaves
by λ, or by transformation of the corresponding grammar. Note: throughout this
paper by derivation trees we only mean finite ones. Consider a derivation tree τ .

The n-th level yield yieldn of τ can be defined as follows:

We define yield0(τ) = a if τ has a single node labeled by a ∈ T , and
yield0(τ) = λ otherwise.
Let k be the number of children nodes of the root of τ , and τ1, · · · , τk be
the subtrees of τ with these children as roots. We define yieldn+1(τ) =
yieldn(τ1) • yieldn(τ2) • · · · • yieldn(τk).

We now define the time yield Lt of a context-free grammar derivation tree τ ,
as the usual yield except the order of terminals is vertical from root instead of left-
to-right, and the order of terminals at the same distance from root is arbitrary.
We use

∏
to denote concatenation in the following formal definition:

Lt(τ) =
height(τ)∏

n=0

(Perm(yieldn(τ))).

The time yield Lt(G) of a grammar G is the union of time yields of all its derivation
trees. The corresponding class of languages is

Lt(CF) = {Lt(G) | G is a context-free grammar}.

Example 2. Consider a grammar G1 = ({S, A, B, C}, {a, b, c}, S, P), where

P = {S → SABC,S → ABC, A → A,B → B, C → C, A → a,B → b, C → c}.

We now show that Lt(G1) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c > 0} = L.
Indeed, all derivations of A are of the form A ⇒∗ A ⇒ a. Likewise, symbols B, C
are also trivially rewritten an arbitrary number of times and then changes into a
corresponding terminal. Hence, Lt(G1A) = {a}, Lt(G1B) = {b}, Lt(G1C) = {c}.

The Membrane Systems Language Class 27

For inclusion Lt(G) ⊆ L it suffices to note that S always generates the same
number of symbols A, B,C.

The converse inclusion follows from the following simulation: given a word
w ∈ L, generate |w|/3 copies of A,B,C, and then apply their trivial rewriting in
such way that the timing when the terminal symbols appear corresponds to their
order in w.

Corollary 1. Lt(CF) 6⊆ CF .

4 Membrane class via CF derivation trees

We first show that for every membrane system without cooperation, there is a
system from the same class with one membrane, generating the same language.

Lemma 1. LOP (ncoo, tar) = LOP1(ncoo, out).

Proof. Consider an arbitrary transitional membrane system Π (without coopera-
tion and without additional ingredients). The known technique of flattening the
structure consists of transforming Π in the following way. Object a in region asso-
ciated to membrane i is transformed into object (a, i) in the region associated to
the single membrane. The alphabet, initial configuration and rules are transformed
accordingly. Clearly, the configurations of the old system and the new system are
isomorphic, and the output in the environment is the same.

Theorem 1. Lt(CF) = LOP (ncoo, tar).

Proof. By Lemma 1, the statement is equivalent to Lt(CF) = LOP1(ncoo, out).
Consider a P system Π = (O, [1]1, w, R, 0). We construct a context-free grammar
G = (O′ ∪ {S}, O, S, P ∪ {S → w}), where S is a new symbol, ′ is a morphism
from O into new symbols and

P = {a′ → u′v | (a → u vout) ∈ R, a ∈ O, u, v ∈ O∗}
∪ {a′ → λ | ¬∃(a → u vout) ∈ R}.

Here vout are those symbols on the right side of the rule in R which are sent out
into the environment, and u are the remaining right-side symbols.

The computations of Π are identical to parallel derivations in G, except the
following:

• Unlike G, Π does not keep track of the left-to-right order of symbols. This
does not otherwise influence the derivation (since rules are context-free) or the
result (since the order of non-terminals produced in the same step is arbitrary,
and the timing is preserved).

• The initial configuration of Π is produced from the axiom of G in one additional
step.

28 A. Alhazov et al.

• The objects of Π that cannot evolve are erased in G, since they do not con-
tribute to the result.

It follows that Lt(CF) ⊇ LOP (ncoo, tar). To prove the converse inclusion, con-
sider an arbitrary context-free grammar G = (N,T, S, P). We construct a P system
Π = (N ∪ T, [1]1, S, R, 0), where R = {a → h(u) | (a → u) ∈ R}, where h is a
morphism defined by h(a) = a, a ∈ N and h(a) = aout, a ∈ T . The computations
in Π correspond to parallel derivations in G, and the order of producing terminal
symbols in G corresponds to the order of sending them to the environment by Π,
hence the theorem statement holds.

We now present a few normal forms for the context-free grammars.

Lemma 2. (First normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the axiom does not appear in the right side of any rule, and
• if the left side is not the axiom, then the right side is not empty.

Proof. The technique is essentially the same as removing λ-productions in classical
theory of context-free grammars. Let G = (N,T, S, P). First, introduce the new
axiom S′ and add a rule S′ → S. Compute the set E ⊆ N of non-terminals that
can derive λ by closure of

(A → λ) −→ (A ∈ E),
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ E) −→ (A ∈ E).

Then replace productions A → u by A → h(u), where h(a) = {a, λ} if a ∈ E and
h(a) = a if a ∈ N ∪ T \ E. Finally, remove λ-productions for all non-terminals
except the axiom. Note that this transformation preserves not only the generated
terminals, but also the order in which they are generated.

The First normal form shows that erasing can be limited to the axiom.

Lemma 3. (Binary normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the First normal form holds,
• the right side of any production is at most 2.

Proof. The only concern in splitting the longer productions of G = (N,T, S, P)
in shorter ones is to preserve the order in which non-terminals are produced. The
number

n = dlog2

(
max(A→u)∈P |u|

)e
is the number of steps sufficient to implement all productions of G by at most
binary productions. Each production p : A → A1 · · ·Ak, k ≤ 2n, is replaced by

The Membrane Systems Language Class 29

A → p0,0,

pi,j → pi+1,2jpi+1,2j+1 for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1,

pn,i−1 → Ai for 1 ≤ i ≤ k,

pn,i → λ for k ≤ i ≤ 2n.

these productions implement a full binary tree of depth n, rooted in A with new
symbols in intermediate nodes, and leaves labeled A1, · · · , Ak, all remaining leaves
labeled λ (the first and last chain productions are given for the simplicity of the
presentation). It only remains to convert the grammar obtained to the First normal
form. Indeed, the derivations in the obtained grammar correspond to the derivation
of the original one, with the slowdown factor of n + 2, and the order of producing
terminal symbols is preserved. Obviously, converting into the First normal form
does not increase the size of the right side of productions.

The Binary normal form shows that productions with right side longer than two
are not necessary.

Lemma 4. (Third normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′.

• the Binary normal form holds,
• G′ = (N,T, S, P ′) and every A ∈ N is reachable,
• either G′ = ({S}, T, S, {S → S}), or G′ = (N,T, S, P ′) and for every A ∈ N ,

Lt(G′A) 6= ∅.
Proof. Consider a context-free grammar in the Binary normal form. First, compute
the set D ⊆ N of productive non-terminals as closure of

(A → u), (u ∈ T ∗) −→ (A ∈ D)
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ D) −→ (A ∈ D).

Remove all non-terminals that are not productive from N , and all productions
containing them. If the axiom was also removed, then Lt(G) = ∅, hence we can
take G′ = ({S}, T, S, {S → S}). Otherwise, compute the set R ⊆ N of reachable
non-terminals as closure of

(S ∈ R),
(A ∈ R), (A → A1 · · ·Ak) −→ (A1, · · · , Ak ∈ R).

Remove all non-terminals that are not reachable from N , and all productions
containing them. Note that all transformations preserve the generated terminals
and the order in which they are produced, as well as the Binary normal form.

The Third normal form shows that never ending derivations are only needed to
generate the empty language.

30 A. Alhazov et al.

5 Comparison with known classes

Theorem 2. LOP (ncoo, tar) ⊇ REG.

Proof. Consider an arbitrary regular language. Then there exists a complete finite
automaton M = (Q,Σ, q0, F, δ) accepting it. We construct a context-free grammar
G = (Q,Σ, q0, P), where P = δ ∪ {q → λ | q ∈ F}. The order of symbols accepted
by M corresponds to the order of symbols generated by G, and the derivation can
only finish when the final state is reached. Hence, Lt(G) = L(M), and the theorem
statement follows.

Theorem 3. LOP (ncoo, tar) ⊆ CS.

Proof. Consider a context-free grammar G = (N,T, S, P) in the First normal form.
We construct a grammar G′ = (N ∪ {#1, L, R, F,#2}, T, S′, P ′), where

P ′ = {S′ → #1LS#2, L#2 → R#2,#1R → #1L, #1R → F, F#2 → λ}
∪ {LA → uL | (A → u) ∈ P} ∪ {La → aL, Fa → aF | a ∈ T}
∪ {aR → Ra | a ∈ N ∪ T}.

The symbols #1, #2 mark the edges, the role of symbol L is to apply productions
P to all non-terminals, left-to-right, while skipping the terminals. While reaching
the end marker, symbol L changes into R and returns to the beginning marker,
where it either changes back to L to iterate the process, or to F to check whether
the derivation is finished.

Hence, L(G′) = Lt(G). Note that the length of sentential forms in any deriva-
tion (of some word with n symbols in G′) is at most n + 3, because the only
shortening productions are the ones removing #1,#2 and F , and each should be
applied just once. Therefore, Lt(G) ∈ CS, and the theorem is proved.

We now proceed to showing that the membrane systems language class does
not contain the class of linear languages. To show this, we first define the notions
of unbounded yield and unbounded time of a non-terminal.

Definition 1. Consider a grammar G = (N,T, S, P). We say that A ∈ N has an
unbounded yield if Lt(GA) is an infinite language, i.e., there is no upper bound on
the length of words generated from A.

It is easy to see that Lt(GA) is infinite if and only if L(GA) is infinite; decidability
of this property is well-known from the theory of context-free grammars.

Definition 2. Consider a grammar G = (N, T, S, P). We say that A ∈ N has
unbounded time if the set of all derivation trees (for terminated derivations) in
GA is infinite, i.e., there is no upper bound on the number of parallel steps of
terminated derivations in GA.

It is easy to see that A has unbounded time if L(GA) 6= ∅ and A ⇒+ A, so decid-
ability of this property is well-known from the theory of context-free grammars.

The Membrane Systems Language Class 31

Lemma 5. Let G = (N,T, P, S) be a context-free grammar in the Third normal
form. If for every rule (A → BC) ∈ P , symbol B does not have unbounded time,
than Lt(G) ∈ REG.

Proof. Assume the premise of the lemma holds. Let F be the set of the first
symbols in the right sides of all binary productions. Then there exists a maximum
m of time bounds for the symbols in F . For every such symbol B ∈ F there also
exists a finite set t(B) of derivation trees in GB . Let t = {∅} ∪⋃

B∈F t(B) be the
set of all such derivation trees, also including the empty tree. We recall that t is
finite.

We perform the following transformation of the grammar: we introduce non-
terminals of the form A[τ1, · · · , τm−1], A ∈ N ∪ ∅, τi ∈ t, 1 ≤ i ≤ m− 1. The new
axiom is S[∅, · · · , ∅]. Every binary production A → BC is replaced by productions

A[τ1, · · · , τm−1] → yield0(τ)yield1(τ1) · · · yieldm−1(τm−1)
C[τ, τ1, · · · , τm−2] for all τ ∈ t(B).

Accordingly, productions A → C, C ∈ N are replaced by productions

A[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)C[∅, τ1, · · · , τm−2],

and productions A → a, a ∈ T are replaced by productions

A[τ1, · · · , τm−1] → a yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

Finally, ∅[∅, · · · , ∅] → λ and

∅[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

In simple words, if the effect of one symbol is limited to m steps, then the choice
of the corresponding derivation tree is memorized as an index in the other symbol,
and needed terminals are produced in the right time. In total, m indexes suffice.
It is easy to see that underlying grammar is regular, since only one non-terminal
symbol is present.

Lemma 6. L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N,T, S, P) in the Third
normal form such that Lt(G) = L. Clearly, there must be a rule A → BC or
A → CB ∈ P such that both B and C have unbounded time (by Lemma 5, since
L /∈ REG) and C has unbounded yield (since L /∈ FIN).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in L.
Thus, Lt(GB), Lt(GC) ⊆ {aibj | i, j ≥ 0}. It is not difficult to see that GC must
produce both symbols a and b. Indeed, since the language generated from C is
infinite, substituting derivation trees for C with different numbers of one letter
must preserve the balance of two letters. We now consider two cases, depending
on whether Lt(GB) ⊆ a∗.

32 A. Alhazov et al.

If B only produces symbols a, then consider the shortest derivation tree τ
in GC . Since B has unbounded time, some symbol a can be generated after the
first letter b appears in τ , so Lt(G) generates some word not in L, which is a
contradiction.

Now consider the case when B can produce a symbol b in some derivation tree
τ in GB . On one hand, a bounded number of letters a can be generated from B
and C before the first letter b appears in τ ; on the other hand, C has unbounded
yield. Therefore, varying derivations under C we obtain a subset of Lt(G) which is
infinite, but the number of leading symbols a is bounded, so Lt(G) contains words
not in L, which is a contradiction.

Corollary 2. LIN 6⊆ LOP (ncoo, tar).

Lemma 7. The class LOP (ncoo, tar) is closed under permutations.

Proof. For a given grammar G = (N, T, S, P), consider a transformation where the
terminal symbols a are replaced by non-terminals aN throughout the description
of G, and then the rules aN → aN , aN → a, a ∈ T are added to P . In a way similar
to the first example, the order in which terminals are generated is arbitrary.

Corollary 3. Perm(REG) ⊆ LOP (ncoo, tar).

Proof. Follows from regularity theorem 2 and permutation closure lemma 7.

The results of comparison of the membrane system class with the well-known
language classes can be summarized as follows:

Theorem 4. LOP (ncoo, tar) strictly contains REG and Perm(REG), is strictly
contained in CS, and is incomparable with LIN and CF .

Proof. All inclusions and incomparabilities have been shown in or directly follow
from Theorem 2, Corollary 3, Theorem 3, Corollary 2 and Corollary 1 with The-
orem 1. The strictness of the first inclusions follows from the fact that REG and
Perm(REG) are incomparable, while the strictness of the latter inclusion holds
since LOP (ncoo, tar) only contains semilinear languages.

The lower bound can be strengthened as follows:

Theorem 5. LOP (ncoo, tar) ⊇ REG • Perm(REG).

Proof. Indeed, consider the construction from the regularity theorem. Instead of
erasing the symbol corresponding to the final state, rewrite it into the axiom of
the grammar generating the second regular language, to which the permutation
technique is applied.

Example 3. LOP (ncoo, tar) 3 L2 =
⋃

m,n≥1(abc)mPerm((def)n).

The Membrane Systems Language Class 33

6 Closure properties

It has been shown above that the class of languages generated by basic mem-
brane systems is closed under permutations. We now present a few other closure
properties.

Lemma 8. The class LOP (ncoo, tar) is closed under erasing/renaming mor-
phisms.

Proof. Without restricting generality, we assume that the domain and range of
a morphism h are disjoint. For a given grammar G = (N, T, S, P), consider a
transformation where the terminal symbols become non-terminals and the rules
a → h(a), a ∈ T are added to P . It is easy to see that the new grammar generates
exactly h(Lt(G)).

Corollary 4. {anbncn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Assuming the contrary and applying morphism defined by h(a) = a′, h(b) =
b′, h(c) = λ, and then a morphism removing primes, we obtain a contradiction
with L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar) from Lemma 6.

Corollary 5. LOP (ncoo, tar) is not closed under intersection with regular lan-
guages.

Proof. By Example 2, L = {w ∈ T ∗ | |w|a = |w|b = |w|c > 0} belongs to the
membrane systems language class. However, L ∩ a∗b∗c∗ = {anbncn | n ≥ 1} does
not, by Corollary 4.

Theorem 6. LOP (ncoo, tar) is closed under union and not closed under inter-
section or complement.

Proof. The closure under union follows from adding a new axiom and productions
of non-deterministic choice between multiple axioms. The class is not closed under
intersection because it contains all regular languages (Theorem 2) and is not closed
under intersection with them (Corollary 5). It follows that this class is not closed
under complement, since intersection is the complement of union of complements.

Lemma 9. L =
⋃

m,n≥1 Perm((ab)m)cn /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N,T, S, P) in the Third
normal form such that Lt(G) = L. Clearly, there must be a rule A → BC or
A → CB ∈ P such that both B and C have unbounded time (by Lemma 5,
since L /∈ REG) and C has unbounded yield (since L /∈ FIN). By choosing as
A → BC or A → CB the rule satisfying above requirements which is first applied
in some derivation of G, we make sure that all three letters a, b, c appear in words
of Lt(GA).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in

34 A. Alhazov et al.

L. Thus, Lt(GB), Lt(GC) ⊆ {a, b}∗c∗. We now consider two cases, depending on
whether Lt(GB) ⊆ {a, b}∗.

If B only produces symbols a, b, then consider the shortest derivation tree τ
in GC . Since B has unbounded time, some symbol a or b can be generated after
the first letter c appears in τ , so Lt(G) generates some word not in L, which is a
contradiction.

Now consider the case when B can produce a symbol c in some derivation tree
τ in GB . On one hand, a bounded number of letters a, b can be generated from B
and C before the first letter c appears in τ ; on the other hand, C has unbounded
yield. Therefore, varying derivations under C we obtain a subset of Lt(G) which
is infinite, but the number of leading symbols a, b is bounded, so Lt(G) contains
words not in L, which is a contradiction.

Corollary 6. LOP (ncoo, tar) is not closed under concatenation or taking the mir-
ror image.

Proof. Since
⋃

m≥1 Perm((ab)m) ∈ Perm(REG) ⊆ LOP (ncoo, tar) by Corollary 3
and c+ ∈ REG ⊆ LOP (ncoo, tar) by Theorem 2, the first part of the state-
ment follows from Lemma 9. Since

⋃
m,n≥1 cnPerm((ab)m) ∈ REG•Perm(REG) ⊆

LOP (ncoo, tar) by Theorem 5, the second part of the statement also follows from
Lemma 9.

7 Conclusions

In this paper we have reconsidered the class of languages generated by transitional
P systems without cooperation and without additional control. It was shown that
one membrane is enough, and a characterization of this class was given via deriva-
tion trees of context-free grammars. Next, three normal forms were given for the
corresponding grammars. It was than shown that the membrane systems language
class lies between regular and context-sensitive classes of languages, and it is in-
comparable with linear and with context-free languages. Then, the lower bound
was strengthened to REG • Perm(REG).

The membrane systems language class was shown to be closed under union,
permutations, erasing/renaming morphisms. It is not closed under intersection, in-
tersection with regular languages, complement, concatenation or taking the mirror
image.

The following are examples of questions that are still not answered.

• Clearly, LOP (ncoo, tar) 6⊇ MAT . What about LOP (ncoo, tar) ⊆ MAT?
• Is LOP (ncoo, tar) closed under arbitrary morphisms? The difficulty is to han-

dle h(a) = bc if many symbols a can be produced in the same step.
• Look for sharper lower and upper bounds.

The Membrane Systems Language Class 35

Acknowledgments

Artiom Alhazov gratefully acknowleges the support of the Japan Society for
the Promotion of Science and the Grant-in-Aid for Scientific Research, project
20·08364. All authors acknowledge the support by the Science and Technology
Center in Ukraine, project 4032.

References

1. A. Alhazov, D. Sburlan: Static Sorting P Systems. Applications of Membrane Com-
puting (G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, Eds.), Natural Computing Series,
Springer-Verlag, 2005, 215–252.

2. F. Bernardini, M. Gheorghe: Language Generating by means of P Systems with
Active Membranes. Brainstorming Week on Membrane Computing, Technical Report
26, Rovira i Virgili University, Tarragona, 2003, 46–60.

3. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
4. Gh. Păun, G. Rozenberg, A. Salomaa, Eds.: Handbook of Membrane Computing.

Oxford University Press, 2009.
5. G. Rozenberg, A. Salomaa: Handbook of Formal Languages, vol. 1-3, Springer, 1997.
6. P systems webpage. http://ppage.psystems.eu/.

