
Networks of Cells and Petri Nets

Francesco Bernardini1, Marian Gheorghe2,
Maurice Margenstern3, Sergey Verlan4

1 Leiden Institute of Advanced Computer Science, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

2 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

3 Université Paul Verlaine - Metz, UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France
margens@univ-metz.fr

4 LACL, Département Informatique, Université Paris 12
61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. We introduce a new class of P systems, called networks of cells, with rules
allowing several cells to simultaneously interact with each other in order to produce
some new objects inside some other output cells. We define different types of behavior
for networks of cells by considering alternative strategies for the application of the rules:
sequential application, free parallelism, maximal parallelism, locally-maximal parallelism
and minimal parallelism. We devise a way for translating network of cells into place-
transition nets with localities (PTL-nets, for short) - a specific class of Petri nets. Then,
for such a construction, we show a behavioral equivalence between network of cells and
corresponding PTL-nets only in the case maximal parallelism, sequential execution, and
free parallelism, whereas we observe that, in the case of locally-maximal parallelism and
minimal parallelism, the corresponding PTL-nets are not always able to mimic the be-
havior of network of cells. Also, we address the reverse problem of finding a corresponding
network of cells for a given PTL-net by obtaining similar results concerning the relation-
ships between their semantics. Finally, we present network-of-cells-based models of two
classical synchronization problems: producer/consumer and dining philosophers.

1 Introduction

Membrane computing is an emerging branch of natural computing which deals
with distributed and parallel computing devices of a bio-inspired type, which are
called membrane systems or P systems (see [17], [18], and also [1] for a compre-
hensive bibliography). P systems, originally devised by Gh. Păun in [17], are in-
troduced as computing devices which abstract from the structure and functioning

34 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

of living cells - they are defined as a hierarchical arrangement of regions delim-
ited by membranes (membrane structure), with each region having associated a
multiset of objects and a finite set of rules. Rules typically encode mechanisms
for consuming/producing objects (evolution) and mechanisms for moving objects
across the membranes (communication). For consuming/producing objects, mul-
tiset rewriting (i.e., replacing a multiset with another one) is the most generally
used mechanism, whereas, for communication, various mechanisms with different
biological inspiration have been proposed such as: targets here, in, out [18], sym-
port/antiport [18], conditional uniport [25], boundary rules [4], and carriers [16].
In particular, symport/antiport, conditional uniport and boundary rules introduce
in P systems the concept of coupled transport: communication is achieved through
cooperation between two or more objects possibly placed in two distinct regions
- the inside and the outside of a membrane. The class of P systems was later ex-
tended to tissue P systems [15, 19] – a variant of P systems where the underlying
structure is defined as an arbitrary graph. Nodes in the graph represent cells which
are able to communicate objects alongside the edges of this graph. Specifically, for
this communication, the mechanisms of symport/antiport and conditional uniport
are transferred to tissue P systems [18, 25] so to have models where communica-
tion is achieved through interactions between two neighboring cells (i.e., two cells
which are directly connected by means of an edge in the underlying graph). More-
over, it is possible to have tissue P systems where a cell receives objects from a
neighboring cell non-deterministically chosen [3], or where a cell produces signals
which are replicated and simultaneously sent to all neighboring cells [15].

The work done in [7, 13, 12] then showed that the aforementioned features
of transformation and communication in P systems can be interpreted as transi-
tions in place-transition nets (PT-nets, for short) – a specific class of Petri nets
(e.g., see [21, 22, 8, 11]). This is done by mapping each rule into a transition with
places corresponding to the left-hand side of the rule as input, and with places
corresponding to the right-hand side of the rule as output; each place in fact
represent the occurrence of a certain object inside a certain membrane. Thus, pro-
duction/consumption of objects and movement of objects across the membranes
are both reflected into modifications on the distributions of tokens inside the places
of a PT-net. Specifically, this construction was initially applied in [7] to P systems
with boundary rules - which encompass symport/antiport and conditional uniport
too - and then re-used in [13, 12] for the basic model of P systems where communi-
cation is controlled by targets here, in, out. Moreover, contributions [13, 12] devise
a formal framework for describing the behavior of P systems in terms of causal-
ity/concurrency and for reasoning about reachability, conflicts and soundness of
these systems by starting from their translation into PT-nets; this is done by using
the PT-net representation of a membrane system is therefore to define the seman-
tics of these systems in terms of sequences of events which consume some resources
in order to produce some new ones (process semantics). This construction, which
is a standard asynchronous PT-net, is extended in [12, 13] to PT-nets operating
in a maximally parallel way and to PT-nets with localities operating in a locally-

Networks of Cells and Petri Nets 35

maximal parallel way. PT-nets with localities are a class of PT-nets introduced
in [13] where each transition belongs to certain location, in a way that resembles
the distribution of the rules over the various regions of a membrane system. This
makes possible to distinguish between the globally and locally synchronous behav-
ior (maximal parallelism), globally asynchronous but locally synchronous behavior
(locally-maximal parallelism), and asynchronous behavior.

In this paper, we introduce a new class of P systems which we call networks
of cells. Network of cells are characterized by rules which allow several cells to
simultaneously interact with each other in order to produce some new objects
inside some other output cells. They are motivated by the observation made in [24]
that basic forms of coupled transport like symport/antiport can be expressed in
terms of two cells synchronizing on certain inputs in order to produce some outputs.
In this respect, networks of cells are not limited to have only two synchronizing cells
on their left-hand side and two output cells on their right-hand side. Then, similarly
to what was done [13, 12], we define different types of behavior for networks of
cells by considering different strategies for the application of the rules: sequential
application, free parallelism, maximal parallelism and locally-maximal parallelism
plus minimal parallelism [6]. Next, we extend to networks of cells the construction
devised in [7, 13, 12] for translating membrane systems into PT-nets with localities
(PTL-net, for short) by showing that interaction rules of networks of cells can still
be represented as transitions of PTL-nets. However, we are able to establish a
behavioral equivalence between network of cells and corresponding PTL-nets only
in the case maximal parallelism, sequential execution, and free parallelism (i.e.,
only for globally and locally synchronous behavior, and asynchronous behavior) as
we observe that, in the case of locally-maximal parallelism and minimal parallelism,
the corresponding PTL-net is not always able to mimic the behavior of the original
network of cells. This allows us to point out differences between the concept of
cells used in our model and that of locality introduced in [13] for PT-nets. Also,
we address the reverse problem of finding a corresponding network of cells for a
given PTL-net by obtaining similar results concerning the relationships between
their semantics. Finally we present network-of-cells-based models of two classical
synchronization problems: producer/consumer and dining philosophers. These are
devised by starting from existing PT-net solutions with the aim of illustrating
differences in the two modeling approaches.

2 Preliminaries

We recall some basic notions concerning strings and multisets (e.g., see [23, 18] for
further details).

An alphabet is any finite and non-empty set. The elements of an alphabet
are called symbols. Let V be an alphabet. A string over V is any finite sequence
consisting of zero or more symbols from V ; the same symbol may occur repeated
several times inside the same string. The sequence containing no symbols is called

36 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

empty string and it is denoted by λ. The set of all strings (respectively of all
non-empty strings) over V is denoted by V ∗ (respectively V +). If x, y ∈ V ∗, then
their catenation is xy ∈ V ∗ (the catenation of two strings is the string obtained
by the juxtaposition of the two strings, that is, by writing one string after the
other one). Catenation is an associative operation and the empty string λ acts as
an identity: xλ = λx = x, for all x ∈ V ∗. Moreover, for any i ≥ 1, we denote by xi

the catenation of i copies of the string x; we set x0 = λ by definition. The length
of a string x ∈ V ∗, denoted by |x|, is the number of all occurrences in x of symbols
from V ; the number of occurrences in x of a symbol a ∈ V is denoted by |x|a. Yet
again, by definition, we set |λ| = 0 and |λ|a = 0, for all a ∈ V . The set of symbols
from V occurring in a string x is denoted by ℵ(x). We also use V to denote the
set of strings from V ∗ of length equal to 1.

Let V be an alphabet. A (finite) multiset (over V) is a mapping M : V −→ N,
where N denotes the set of natural numbers (0 included); for every a ∈ V , M(a) is
called the multiplicity of a (in M). A multiset over V is usually given in the form
of a string over V ; each string x ∈ V ∗ in fact identifies a multiset M such that,
for every a ∈ V , M(a) = |x|a. On the other hand, every multiset M over V is
representable by means of any string x ∈ V ∗ such that, for every a ∈ V , |x|a = a
– the order of the symbols in such a string is not important. Therefore, from this
moment on, we will use strings to represent multisets and, given x ∈ V ∗, we will
use the expression “multiset x” to refer to a multiset representable by means of
string x. Thus, for x ∈ V ∗, for a ∈ V , the multiplicity of a in x is |x|a, and the
size of multiset x (i.e., the sum of all multiplicities) is the value |x|. Moreover, for
x, y ∈ V ∗, we say that multiset x and multiset y are equal, and we write x = y,
if, for all a ∈ V , |x|a = |y|a. We say that multiset x includes multiset y, and we
write x w y, if, for all a ∈ V , we have |x|a ≥ |y|a. If that is the case, we also say
that y is included in x, and we write y v x. The union of multiset x and multiset
y, denoted by x t y, is a multiset w such that, for all a ∈ V , |w|a = |x|a + |y|a.

The notion of a rewriting rule between strings can be naturally transferred to
multisets. A multiset rewriting rule is a pair (u, v), with u, v two multisets, which
is written in the form u → v. Given a multiset w and a rewriting rule u → v, if
u v w, then the rule u → v is applicable to the multiset w; if that is the case, the
result of the application of the rule u → v to the multiset w is the multiset w′

such that, for all a ∈ V , |w′|a = |w|a − |u|a + |v|a. If that is case, then we also say
that the multiset w can evolve by means of the multiset rewriting rule u → v.

3 Networks of Cells

Here we introduce a general model of membrane systems which allows us to capture
the essential features of most variants of cell-like P systems and tissue P systems.

Definition 1 (network of cells). A network of cells of degree n ≥ 1 (an NC of
degree n ≥ 1, for short) is a construct:

Π = (V, w1, w2, . . . , wn, R),

Networks of Cells and Petri Nets 37

where:

1. V is an alphabet;
2. wi ∈ O∗, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
3. R is a finite set of interaction rules of the form

(u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh)

where (a) 1 ≤ k, h ≤ n, (b) for all 1 ≤ l, l′ ≤ k, ul ∈ V +, (c) 1 ≤ il ≤ n and
l 6= l′ implies il 6= il′ , (d) for all 1 ≤ r, r′ ≤ h, vr ∈ V ∗, 1 ≤ jr ≤ n, and r 6= r′

implies jr 6= jr′ .

A network of cells consists of n cells numbered from 1 to n with each one of them
containing a multiset of objects over V (initially cell i contains multiset wi). Cells
can interact with each other by means of the rules in R. An interaction rule of
the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh) specifies that, whenever, at the
same time, for all 1 ≤ l ≤ k, cell il contains at least one occurrence of multiset
ul, an occurrence of the multiset ul is consumed inside cell il, for all 1 ≤ l ≤ k,
and a multiset vr is produced inside cell jr, for all 1 ≤ r ≤ h. In other words,
an interaction rule simultaneously rewrites some multisets inside cells i1, . . . , ik in
order to produce some new multisets inside cells j1, . . . , jh. Notice also that, for
an interaction rule (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh), for all 1 ≤ l, l′ ≤ k, we
have ul ∈ V + (i.e., a multiset on the left-hand side of the rule cannot be empty)
and l 6= l′ implies il 6= il′ (i.e., the left-hand side of the rule must involve a set
of distinct cells), and, for all 1 ≤ r, r′ ≤ h, we have vr ∈ V ∗ (i.e., a multiset on
the right-hand side of the rule can be empty) and r 6= r′ implies jr 6= jr′ (i.e., the
right-hand side of the rule must involve a set of distinct cells).

For an interaction rule ρ of the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh),
cells i1, . . . , ik are called input cells, the set {i1, . . . , ik} is denoted by Input(ρ)
and k is called the input radius of ρ; cells j1, . . . , jh are called output cells, the
set {j1, . . . , jh} is denoted by Output(ρ) and h is called the output radius of
ρ; the cooperation degree of ρ is the value max{|ui| | 1 ≤ i ≤ k}; the left-
hand side (u1, i1) . . . (uk, ik) is denoted by lhs(ρ) whereas the right-hand side
(v1, j1) . . . (vh, jh) is denoted by rhs(ρ). Also, for such a rule ρ, for all 1 ≤ i ≤ n,
we use lhsi(ρ) to denote the multiset u if (u, i) ∈ lhs(ρ), or λ if i /∈ Input(ρ); we
use rhsi(ρ) to denote the multiset v if (v, i) ∈ rhs(ρ), or λ if i /∈ Output(ρ).

Notice that the structure of an NC corresponds neither to a tree as in cell-like
P systems nor to a graph as in tissue P systems (e.g., see [18] for definitions of cell-
like P systems and tissue P systems), though some models of cell-like P systems
and tissue P systems can be seen as special variants of NC’s. The possibility
of representing existing variants of P systems as NC’s is illustrated through the
following examples.

Example 1. A basic P system [18] is defined as a hierarchical arrangement of mem-
branes; each membrane delimits a region which contains a multiset of objects and
finite set of evolution rules. If V is the alphabet of the system, then an evolution

38 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

rule has the form u → (u1, t1)(u2, t2) . . . (uq, tq) with u ∈ V ∗, for all 1 ≤ r ≤ q,
ur ∈ V ∗ and tr ∈ {here, out, inj}. If such a rule is associated to a region i, then
multiset u can be replaced by multisets u1, u2, . . . , uq and each multiset ur is moved
across the membranes depending on the target tr: ur remains inside membrane i
when tr = here, ur is moved outside membrane i when tr = out, ur is moved into
region j when tr = inj with j a membrane directly contained into region i.

A basic P system can be represented as an NC which has as many cells as
the membranes in the P system and which contains, for every region i of the P
systems, for every evolution rule u → (u1, t1)(u2, t2) . . . (uq, tq) associated to region
i, an interaction rule (u, i) → (u1, j1)(u2, j2) . . . (uq, jq), with distinct j1, j2, . . . , jq,
such that, for all 1 ≤ r ≤ q, if tr = here, then jr = i; if tr = inj , then jr = j; if
tr = out, then jr is equal to the index of the directly upper region.

Example 2. P systems with boundary rules [4] extend basic P systems with rules
which allow direct interactions between the inside and the outside of a region. In
their most general form (e.g., see [5]), boundary rules are of the form u [i v → u′ [i v′

with i the index of a membrane in the system and u, v, u′, v′ ∈ V ∗, for V the
alphabet of the system.

These rules can be represented in NC’s as interactions of the form (u, j)(v, i) →
(u′, j)(v′, i) with j the membrane which directly contains membrane i. In this way,
we can for instance capture the features of symport/antiport rules [18]:

• an antiport rule (x, in; y, out) associated to membrane i is no more than an
interaction rule (x, j)(y, i) → (y, j)(x, i) with j the membrane which directly
contains membrane i;

• a symport rule (x, out) associated to membrane i is no more than an interaction
rule (x, i) → (x, j) with j the membrane which directly contains membrane i;

• a symport rule (x, in) associated to membrane i is no more than an interaction
rule (x, j) → (x, i) with j the membrane which directly contains membrane i.

Example 3. An evolution-communication model of tissue P systems is proposed in
[3] that is based on graphs of cells where each cell contains a multiset of objects
and a finite set of rules of the forms x → y (transformation rules) and (x; y, in)
(communication rules) with x, y two multisets over a given alphabet. A transfor-
mation rule x → y associated to a cell i specifies that a multiset x placed inside cell
i can be replaced by a multiset y which remains inside cell i. A communication rule
(x; y, in) associated to a cell i instead specifies that, in presence of a multiset x,
a multiset y can be moved from a neighboring cell j non-deterministically chosen
into cell i.

Such a tissue P system can be represented as an NC with the same number
of cells which contains an interaction rule (x, i) → (y, i), for every transformation
rule x → y associated to cell i of the tissue P system, and a set of interaction
rules {(x, i)(y, j) → (xy, j) | {i, j} is an edge of the graph underlying the tissue P
system}, for every communication rule (x; y, in) in the tissue P system associated
to cell i.

Networks of Cells and Petri Nets 39

We now pass to precisely define the execution semantics of networks of cells
by identifying different strategies for the application of the rules. To this aim, we
first give the following definitions.

Definition 2 (configuration). Let Π = (V,w1, w2, . . . , wn, R) be a network of
cells. A configuration of Π is any tuple (w′1, . . . , w

′
n) with wi ∈ O∗, for all 1 ≤ i ≤

m. The initial configuration of Π is the tuple (w1, . . . , wn).

Definition 3 (multiset of applicable rules). Let Π = (V, w1, w2, . . . , wn, R)
be a network of cells and let C = (w′1, . . . , w

′
n) be a configuration of Π. A multiset

of applicable rules (w.r.t. Π and C) is any function ΓC : R → N such that, for all
1 ≤ i ≤ n, (

⊔
r∈R(lhsi(r))ΓC(r)) v w′i.

Free parallelism

Free parallelism means that, in each step, any multiset of applicable rules can be
used to make an NC transit from a configuration to another one by applying all
the selected rules in parallel at the same time. In membrane computing literature,
this semantics is also called asynchronous behavior (e.g., see [9]).

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a freely-parallel
way, and we write C ⇒free C ′, if there is a multiset of applicable rules ΓC such
that, for all 1 ≤ i ≤ n, w′′i = (w′i \ (

⊔
r∈R(lhsi(r))ΓC(r))) ∪ (

⊔
r∈R(rhsi(r))ΓC(r)).

Thus, in a freely-parallel step, an arbitrary multiset of applicable rules is se-
lected and these rules are applied in parallel by consuming all the multisets on
their left-hand sides and producing all the multisets on their right-hand sides in
the respective places.

Sequential execution

Sequential execution means that, in each step, only one rule is applied to make an
NC transit from a configuration to another one.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a sequential
way, and we write C ⇒seq C ′, if C ⇒free C ′ for some multiset of applicable rules
ΓC with |ΓC | = 1.

Thus, a sequential step is a freely-parallel step where the number of rules used
is equal to 1.

Maximal parallelism

Maximal parallelism means that, in each step, any maximal multiset of applicable
rules can be used to make an NC transit from a configuration to another one by

40 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

applying all the selected rules in parallel at the same time; a maximal multiset
of applicable rules is any multiset of applicable rules to which no other rules can
be added so to obtain another multiset of applicable rules. Maximal parallelism is
the type of behavior which was associated to membrane systems in their original
definition [17], and it is the semantics most commonly adopted in the area of
membrane computing (e.g., see [1], [18]).

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a maximally-
parallel way, and we write C ⇒max C ′, if C ⇒free C ′ for some multiset of appli-
cable rules ΓC such that, for all r ∈ R, there is 1 ≤ i ≤ n with lhs(r)i 6= λ and
lhsi(r) 6v (w′i \ (

⊔
r∈R(lhsi(r))ΓC(r))).

Thus, a maximally-parallel step is a freely-parallel step where rules are applied
in parallel in an exhaustive way: once the multisets on the left-hand side of these
rules are consumed, no other rule has to be applicable to the objects left inside
the cells.

Locally-maximal parallelism

Locally-maximal parallelism, which was introduced in [13], specifies that, in each
step, if a cell is involved in the application of (at least) one rule, then a maximal
number of objects are consumed in this cell by applying in parallel as many rules
that involve this cell as possible.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a locally-
maximally-parallel way, and we write C ⇒lmax C ′, if C ⇒free C ′ for some multiset
of applicable rules ΓC such that, for all 1 ≤ i ≤ n, if there is r′ ∈ R with ΣC(r′) > 0
and lhsi(r′) 6= λ, then, for all r ∈ R with lhs(r)i 6= λ, there is 1 ≤ j ≤ n with
lhs(r)j 6= λ and lhsj(r) 6v (w′j \ (

⊔
r∈R(lhsj(r))ΓC(r))).

Thus, a locally-maximally parallel step is a freely-parallel step where if a cell is
involved in the application of one rule, then a maximal number of rules involving
this cell is applied in parallel at the same time. In other words, in a locally-
maximally parallel step, every cell that gets involved tries to participate in as
many interactions as possible depending on the objects currently available inside
the cell and on the presence of other cells competing for the same objects.

Minimal parallelism

Minimal parallelism, which was introduced in [6], means that, in each step, ev-
ery cell that can participate in at least one interaction must get involved in the
application of at least one rule.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Networks of Cells and Petri Nets 41

Π transits in one step from configuration C to configuration C ′ in a minimally-
parallel way, and we write C ⇒min C ′, if C ⇒free C ′ for some multiset of appli-
cable rules ΓC such that, for all 1 ≤ i ≤ n, if there is no r′ ∈ R with ΓC(r′) > 0
and lhsi(r′) 6= λ, then, for all r ∈ R with lhs(r)i 6= λ, there is 1 ≤ j ≤ n with
lhs(r)j 6= λ and lhsj(r) 6v (w′j \ (

⊔
r∈R(lhsj(r))ΓC(r))).

Thus, a minimally-parallel step is a freely-parallel step where a maximal num-
ber of cells, which are selected depending on the current distribution of objects
inside the cells, evolve in parallel at the same time; each one of the selected cells
has to participate in at least one interaction, and no other rule has to be applicable
in parallel at the same time that involve any cell different from the selected ones.

Example 4. Let UNO = (V, aa, aa, bb, c, R) be an NC where R contains the
following interaction rules:

1. (a, 1) → (a, 1)(a, 2),
2. (a, 1) → (a, 1)(b, 3),
3. (c, 4)(a, 2)(b, 3) → (b, 2)(a, 3),
4. (b, 2) → (b, 2)(c, 4),
5. (c, 4)(b, 3) → (cc, 4)(b, 3),
6. (c, 4)(b, 2) → (bb, 3),
7. (c, 4)(a, 1) → (a, 4)(a, 2)(a, 3).

This NC has rules with input radius at most 2 and cooperation degree 1. The
initial configuration is given by the tuple C0 = (aa, aa, bb, c). To the initial config-
uration, we can apply rule 1 with multiplicity at most 2, rule 2 with multiplicity at
most 2, rule 3 with multiplicity at most 1, rule 5 with multiplicity at most 1, and
rule 7 with multiplicity at most 1. However, with respect to C0, it is not possible
to apply all these rules in parallel (e.g., only one rule between rules 3, 5 and 7 can
be applied because cell 4 contains only one object c).

Thus, in the case of free-parallelism, for any configuration C ′ obtained by ap-
plying any combination of the aforementioned rules that is a multiset of applicable
rules, we have C0 ⇒free C ′. For instance, if rule 1 is applied with multiplicity 2
and rule 3 is applied with multiplicity 1, we have C0 ⇒ (aa, aaab, ab, λ).

In the case of sequential execution, only one of the aforementioned rules is
going to be applied with multiplicity 1 to the initial configuration. This gives us
five possible transitions: C0 ⇒seq (aa, aaa, bb, c) when rule 1 is applied, C0 ⇒seq

(aa, aa, bbb, c) when rule 2 is applied, C0 ⇒seq (aa, ab, ab, λ) when rule 3 is applied,
C0 ⇒seq (aa, aa, bb, cc) when rule 5 is applied and C0 ⇒seq (a, aaa, abb, a) when
rule 7 is applied.

If maximal parallelism is adopted, then a maximal number of the aforemen-
tioned rules is applied to the initial configuration C0. Specifically, we have the
following possibilities: rule 1 (rule 2) applied with multiplicity 2 in parallel with
another rule chosen between rules 3 and 5; rule 1 applied in parallel with rule 2
(both with multiplicity 1) together with another rule chosen between rules 3 and

42 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

5; rule 1 (rule 2) applied with multiplicity 1 in parallel with rule 7. For instance,
if we choose this latter combination, we have C0 ⇒max (a, aaaa, abb, a).

In the case of locally-maximal parallelism, we have to make sure that if a cell
evolves by means of at least one rule, then all other rules affecting that same
cell that can be applied in parallel are effectively applied within the same step of
execution. Specifically, for the initial configuration C0, this means that whenever
rule 1, or 2 (rule 7) is used, then another rule chosen between rules 1, 2 and 7
(rules 1 and 2) is always applied in parallel in the same step. On the other hand,
we have C0 ⇒lmax (aa, ab, ab, λ) by just applying rule 3 because there are no other
rules involving cell 2, or 3 or 4 that can be applied in parallel at the same time.
Also, we have C0 ⇒seq (aa, aa, bb, cc) by just applying rule 5 because there are no
other rules involving cell 3 or 4 that can be applied in parallel at the same time.

In the case of minimal parallelism, a maximal number of cells evolve in parallel
at the same time with each one of the selected cells participating in at least one
interaction. Specifically, for the initial configuration C0, this means that rule 3
(rule 5) is always used in parallel with at least an application of rule 1 or 2.
However, with respect to C0, we have C0 ⇒min (a, aaa, abb, aa) by just applying
rule 7 because there are no rules involving cells 2 or 3 which can be applied in
parallel at the same time.

Remark 1. Locally-maximal parallelism was introduced in [13, 12] only for the
basic model of P systems where rules are precisely assigned to regions delimited
by membranes and the left-hand side of every rule involves only objects inside
the region which the rule is assigned to. Therefore, locally-maximal parallelism
is defined in [13, 12] by simply stating that, in each step, a certain number of
membranes is selected and a maximal number of rules is applied inside each one of
these membranes. In the case of NC’s, interaction rules may involve objects placed
inside different cells, hence locally-maximal parallelism is defined with respect to a
certain group of cells: in each step, a multiset of applicable rules can be used only
if it is maximal with respect to the cells which appear on the left-hand side of the
rules in it. However, if the rules of NC’s are restricted to have input radius equal
to 1, then the present notion of locally-maximal parallelism is consistent with the
semantics given in [13, 12] for the basic model of P systems.

Remark 2. The minimally-parallel semantics for NC’s is not defined in terms of
number of rules which are applied inside the cells, as in [6], but it is defined with
respect to the number of cells which can evolve in parallel at the same time.
Specifically, in each minimally-parallel step, a multiset of applicable rules can be
used only if there are no cells which do not appear on the left-hand side of any rule
in it and which some rules can be applied to; the multiset of applicable rules has
not to be maximal neither locally nor globally though. Minimal parallelism was
instead defined in [6] for P systems with symport/antiport where every membrane
has its own set of rules, hence, in each step, for each one of these sets of rules, if
there is a rule which is applicable, then at least one rule from that set is going
to be applied irrespective of the fact that an antiport rule involves two distinct

Networks of Cells and Petri Nets 43

regions at the same time. Therefore, although symport/antiport can be expressed
as interaction rules of NC’s, the notion of minimal parallelism proposed in [6] for
symport/antiport differs from the one considered here because interaction rules of
NC’s are not assigned a priori to any cell. However, if rules of NC’s are restricted
to have input radius equal to 1, then our minimally-parallel semantics for NC’s is
consistent with the idea from [6], that is, in each step, if at least one rule may be
used inside a region, then at least one rule is applied inside that region.

Remark 3. From a computational point of view (in the usual sense of membrane
computing), if we consider NC’s operating according to maximal parallelism, then
it is obvious that they are computationally complete and that the hierarchy on
the number of cells collapses at level 1. Moreover, the universality results obtained
for catalytic P systems and evolution-communication P systems (e.g., see [14], [3],
[10]) can be directly transferred to NC’s: NC’s with rules of input radius at most 2
are computationally complete and, for such systems, the hierarchy on the number
of cells collapses at level 2. More precisely, for NC’s corresponding to catalytic P
systems, we have universality for input radius at most 1 and cooperation degree at
most 2 [10], whereas, for evolution-communication P systems, we have universality
for input radius at most 2 and cooperation degree at most 1 when antiport rules
are used, or for input radius at most 1 and cooperation degree at most 2 when
symport rules are used [14]. On the other hand, the computational power of NC’s
operating in a sequential manner, in a freely-parallel manner, in a locally-maximal
parallel manner, or in a minimally parallel manner requires further investigations.

4 PT Nets with Localities

We introduce the class of Petri nets called place-transition nets with localities in
the form reported in [12].

Definition 4 (PTL-net). A PT-net with localities (a PTL-net, for short) is a
construct:

N = (P, T, W,M0, L),

where

1. P is a finite set of symbols whose elements are called places,
2. T is a finite set of symbols whose elements are called transitions,
3. W : (P × T) ∪ (T × P) → N is the weight function,
4. M0 ∈ P ∗ is a multiset over P called the initial marking,
5. L : T → N is a locality mapping;

and such that P ∩ T = ∅.
PTL-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares, and a directed arc (x, y) is added between x and
y if W (x, y) ≥ 1. Moreover, transitions are annotated with their localities and the

44 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

arcs are annotated with their weights if these are 2 or more. Localities are used to
partition the set of transitions into subsets of transitions which logically belongs
to distinct locations.

Given a PTL-net N , the pre- and post-multiset of a transition t are respectively
the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P , |p|preN (t) =
W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is called a marking,
is any multiset over P ; in particular, for every p ∈ P , |p|M represents the number of
tokens present inside place p. Then, we recall from [12] the notion of an execution
mode for a PTL-net by giving the following definitions.

Definition 5 (free-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is free-enabled at marking
M if (

⊔
t∈T (preN (t))|t|U) v M .

Definition 6 (seq-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is seq-enabled at marking M
if U is free-enabled at marking M and |U | = 1.

Definition 7 (max-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let
M be a marking of N . A multiset of transitions U ∈ T ∗ is max-enabled at
marking M if U is free-enabled at marking M and, for all t ∈ T , preN (t) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 8 (lmax-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is lmax-enabled at marking
M if U is free-enabled at marking M and, for all l ∈ L(T), if there is t ∈ T
with L(t) = l and |U |t > 0, then, for all t′ ∈ T with L(t′) = l, preN (t′) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 9 (min-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is min-enabled at marking
M if U is free-enabled at marking M and, for all l ∈ L(T), if there is no t ∈ T
with L(t) = l and |U |t > 0, then, for all t′ ∈ T with L(t′) = l, preN (t′) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 10 (m-execution). Let N = (P, T, W,M0, L) be a PTL-net and
let m ∈ {free, seq, max, lmax, min}. The m-execution of N is the relation-
ship ;m⊆ P ∗ × P ∗ such that, for all M, M ′ ∈ P ∗, M ;m M ′ iff, M ′ =
(M \ (

⊔
t∈T (preN (t))|t|U)) for some U ∈ T ∗ which is m-enabled at marking M .

Thus, an m-execution of a PTL-net N represents a transition step which makes
possible to derive a new marking from a given one by firing a certain number of
transitions in parallel at the same time. The firing of each transition results in
the consumption of its pre-multiset of places from the given marking and in the
production of its post-multiset of places in the new marking; the number of tran-
sitions that can fire in parallel within a transition step depends on the execution

Networks of Cells and Petri Nets 45

mode m ∈ {free, seq, max, lmax, min} and it has to be consistent with the cur-
rent availability of tokens inside each place (i.e., for each place, the number of its
tokens consumed cannot be greater than its multiplicity in the current marking).
Specifically, the aforementioned execution modes identify the following behaviors
for a PTL-net:

• free-execution: in each transition step, an arbitrary number of transitions fire
by providing that these constitute a free-enabled multiset of transitions (i.e.,
the union of their pre-multisets has to be contained in the current marking).

• seq-execution: in each transition step, only one transition fires that is chosen
amongst those whose pre-multiset of place is contained in the current marking
(i.e., in order to fire, a transition has to be enabled at the current marking);

• max-execution: in each transition step, a maximal number of transitions fire
by providing that these constitute a free-enabled multiset of transitions which
no other transition can be added to in order to obtain another free-enabled
multiset of transitions (i.e., the selected transitions has to consume a maximal
number of places so that no other transition can fire in parallel at the same
time);

• lmax-execution: in each transition step, an arbitrary set of localities is selected
and, for each one of these localities, a maximal number of transitions fire (i.e.,
for each selected locality, a maximal number of places is consumed so that no
other transition belonging to the same locality can fire in parallel at the same
time);

• min-execution: in each transition step, for each locality such that there is at
least one enabled transition associated to that locality, at least one transition
fire (i.e., the selected multiset of transitions has to involve a maximal set of lo-
calities, although the number of firing transition belonging to the same locality
has not necessarily to be maximal with respect to the current marking).

Notice that seq-execution is called min-execution in [13, 12], whereas the present
notion of min-execution is introduced as a counterpart of the minimally-parallel
semantics previously used in the area of membrane computing [6]; this latter notion
of minimal parallelism is in fact not considered in [13, 12].

5 Network of Cells versus PTL-nets

We start by extending to the class of network of cells the basic construction devised
in [7, 12, 13] to transform membrane systems into “equivalent” PTL-nets.

Definition 11. Let Π = (V, w1, w2, . . . , wn, R) be a network of cells.

1. The extended alphabet of Π, denoted by EΠ , is the set {(a, i) | a ∈ V, 1 ≤ i ≤
n}.

2. For all 1 ≤ i ≤ n, the i labeling of Π is the mapping hi,Π : V ∗ → E∗
Π such that,

for all a ∈ V , hi,Π(a) = (a, i) and, for all u, v ∈ V ∗, hi,Π(uv) = hi,Π(u)h(v).

46 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

3. For all r ∈ R of the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh), the
cell-labeled version of r, denoted by CL(r), is the (multiset rewriting) rule
hi1,Π(u1) . . . hik,Π(uk) → hj1,Π(v1) . . . hjh,Π(vh).

Thus, for all 1 ≤ i ≤ n, the i labeling assigns to every object of a given multiset
the label i; the cell-labeled version of an interaction rule is a multiset rewriting
rules where the localization of the multisets inside the cells is given by the labels
assigned to the objects. This idea of assigning a label to the objects in order to
represent their localization inside the cells is central to the following construction
which shows how to define a corresponding PTL-net for every network of cells.

Definition 12 (corresponding PTL-net). Let Π = (V, w1, w2, . . . , wn, R)
be a network of cells where rules in R are labeled in a one-to-one manner
with values in {1, 2, . . . , |R|}. The PTL-net corresponding to Π is N (Π) =
(EΠ , {1, 2, . . . , |R|},W,M0, L), where: for all p ∈ EΠ , t ∈ {1, 2, . . . , |R|},
W (p, t) = m iff t is the label of a rule r ∈ R with m = |lhs(CL(r))|p, and
W (t, p) = m iff t is the label of a rule r ∈ R with m = |rhs(CL(r))|p;
M0 = h1,Π(w1)h2,Π(w2) . . . hn,Π(wn); for all t ∈ {1, 2, . . . , |R|}, L(t) = 0.

Thus, an NC Π is transformed into a PTL-net which contains a place for each
cell in Π and for each object possibly present inside this cell, and a transition for
each rule in Π. More precisely, in the corresponding PTL-net, occurrences of the
same symbol inside different cells are represented as occurrences of tokens inside
different places, each one of them identifying the presence of that symbol inside a
certain cell. The consumption of objects from certain places and the production
of new objects in other cells are then reflected in the movement of tokens between
the respective places; pre- and post-multisets of the transitions in fact correspond
to left-hand sides and right-hand sides of the rules in Π respectively.

As an example, we show in Figure 1 the PTL-net corresponding to the NC
UNO of Example 4.

Next, similar to what was done in [13, 12], we introduce the notion of equiva-
lence between the behavior of an NC and that of its corresponding PTL-net.

Definition 13 (m-equivalence). Let Π = (V, w1, w2, . . . , wn, R) be a net-
work of cells and let N (Π) be its corresponding PTL-net. For m ∈
{free, seq, max, lmax, min}, we say that Π is m-equivalent to N (Π), and we
write Π ≡m N (Π), if, for every two configurations C = (w′1, . . . , w

′
n), C ′ =

(w′′1 , . . . , w′′n) of Π, C ⇒m C ′ iff h1,Π(w′1) . . . hi,n(w′n) ;m h1,Π(w′′1) . . . hi,n(w′′n).

Thus, it is easy to see that the following proposition holds.

Proposition 5.1 For any network of cells Π, for m ∈ {free, seq,max}, we have
that Π ≡m N (Π).

On the other hand, since all the transitions of the corresponding PTL-net are
assigned to the same locality, we have that, for some network of cells Π, Π 6≡lmax

N (Π) and Π 6≡min N (Π). However, we can think of choosing a different locality

Networks of Cells and Petri Nets 47

Fig. 1. PTL-net N (UNO) with its initial marking.

mapping for the construction of Definition 12 in order to establish the equivalence
between the locally-maximal (or minimally-parallel) semantics of networks of cells
and the locally-maximal (or minimally-parallel) execution of the corresponding
PTL-net. To this aim, given an NC Π = (V, w1, w2, . . . , wn, R), and a function
F : {1, . . . , |R|} → N, it is useful to consider the PTL-net N (Π, F) which is
constructed as the one of Definition 12 except for the locality mapping which is
replaced by F . Thus, we can ask whether, for any NC Π = (V,w1, w2, . . . , wn, R),
there exists a F : {1, . . . , |R|} → N such that Π ≡lmax N (Π,F) (or Π ≡min

N (Π, F)), or not.

Proposition 5.2 There exists a network of cells Π with 3 rules such that, for all
F : {1, 2, 3} → N, we have that Π 6≡lmax N (Π, F).

Proof. Let DUE = ({a, b}, aa, bb, R) be an NC where R contains: rule (a, 1) →
(aa, 1) labeled by 1, rule (a, 1)(b, 2) → (a, 2)(b, 1) labeled by 2, and rule (b, 2) →
(bb, 2) labeled by 3. Then, let us suppose that DUE ≡lmax N (DUE,F) for some
F : {1, 2, 3} → N.

By Definition 12, PTL-net N (DUE, F) is the PTL-net (P, T, W,M0, L) with
P = {(a, 1), (a, 2), (b, 1), (b, 2)}, T = {1, 2, 3}, W ((a, 1), 1) = 1, W (1, (a, 1)) = 2,

48 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

W ((a, 1), 2) = 1, W ((b, 2), 1) = 1, W (2, (b, 1)) = 1, W (2, (a, 2)) = 1, W ((b, 2), 3) =
1, W (3, (b, 2)) = 2, W (x, y) = 0 in all other cases, and M0 = (a, 1)(a, 1)(b, 2)(b, 2).

Now, we observe that if F (1) = F (3), then, for the initial configuration C0 of
DUE, C0 ⇒lmax (aaaa, bb), but M0 6;lmax (a, 1)(a, 1)(a, 1)(a, 1)(b, 2)(b, 2). This
is because if transition 1 and transition 2 are assigned the same locality, then it
is not possible to fire transition 1 with multiplicity 2 without firing in parallel
transition 3 with multiplicity 2. This contradicts our hypothesis, hence it has to
be F (1) 6= F (3) irrespectively of the value of F (2).

Next, if F (1) 6= F (2), then M0 ;lmax (a, 1)(b, 1)(a, 2)(b, 2)(b, 2) by selecting
localities F (2) and F (3), but C0 6⇒lmax (ab, abb). This is because rule 2 involves
cell 1, hence it is not possible to apply rule 2 in parallel with rule 3 without
applying at the same time rule 1. Yet again, this contradicts our hypothesis, hence
it has to be F (1) = F (2). The same reasoning applies to the case F (2) 6= F (3):
M0 ;lmax (a, 1)(a, 1)(b, 1)(a, 2)(b, 2), but C0 6⇒lmax (aab, ab). Therefore, it has to
be F (1) = F (2) = F (3) but this is in contrast with our earlier observation that it
has to be F (1) 6= F (3) in order to have DUE ≡lmax N (DUE, F).

Thus, we can conclude that there is no F : {1, 2, 3} → N such that DUE ≡lmax

N (DUE, F). ut
Proposition 5.2 shows that, in the case of locally-maximal parallelism, it is not

always possible for the corresponding PTL-net to mimic the behavior of the original
network of cells. The intuitive reason for this is that interaction rules may involve
several cells at the same time and locally-maximal parallelism for NC’s is defined
with respect to the cells involved rather than with respect to the rules applied;
localities in PTL-nets are instead associated with transitions and determine which
transitions fire in parallel within a step of executions irrespectively of the places
involved. However, for an NC with interaction rules of input radius at most 1 (i.e.,
interaction rules that involve at most one cell in their left-hand side), it is easy to
construct a corresponding PTL-net which exhibits an equivalent behavior even for
locally-maximally parallelism. This is the case for the basic model of P systems as
shown in [13, 12].

A similar result can be obtained for minimal parallelism.

Proposition 5.3 There exists a network of cells Π with 3 rules such that, for all
F : {1, 2, 3} → N, we have that Π 6≡min N (Π, F).

Proof. Let DUE = ({a, b}, aa, bb, R) be the NC used in the proof of Proposition
5.2 with its initial configuration C0 = (aa, bb) . Then, let us suppose that DUE ≡m

N (DUE, F) for some F : {1, 2, 3} → N. PTL-net N (DUE,F) is the same as the
one defined in the proof of Proposition 5.2.

Now, we observe that if F (1) = F (2) = F (3), then, by firing only transition 1
with multiplicity 1, M0 ;min (a, 1)(a, 1)(a, 1)(b, 2)(b, 2), but C0 6⇒min (aaa, bb).
This is because rule 1 involves only cell 1, hence, since we are operating according
to the minimal parallelism, it is not possible to apply rule 1 with multiplicity 1
without applying in parallel at the same time at least another rule involving cell
2. This contradicts our hypothesis, hence it cannot be F (1) = F (2) = F (3).

Networks of Cells and Petri Nets 49

Next, if F (1) 6= F (2), then, by applying rule 2 with multiplicity 1, C0 ⇒min

(ab, ab) but M0 6;min (a, 1)(b, 1)(a, 2)(b, 2). This is because, since we are operating
according to minimal parallelism, it is not possible to fire transition 2 with mul-
tiplicity 1 without firing in parallel at the same time at least another transition
belonging to locality F (1) 6= F (2). The same reasoning apply to case F (2) 6= F (3).
Therefore, it has to be F (1) = F (2) and F (2) = F (3) but this is in contrast with
our earlier observation that it cannot be F (1) = F (2) = F (3) in order to have
DUE ≡min N (DUE, F).

Thus, we can conclude that there is no F : {1, 2, 3} → N such that DUE ≡min

N (DUE, F). ut
Proposition 5.3 shows that, even for minimal parallelism, it is not always pos-

sible for the corresponding PTL-net to mimic the behavior of the original network
of cells. Proposition 5.2 and Proposition 5.3 are both based on the fact that an
NC may contain both rules of input radius 1 with a local scope and rules of radius
greater than 1 which in a sense belong to different cells at the same time.

We pass now to consider the reverse problem of finding for every PTL-net a
corresponding network of cells with an equivalent behavior.

Definition 14. Let N = (P, T, W,M0, L) be a PTL-net.

1. A cell mapping for N is any surjective function C : P → {1, . . . , n} with n ≥ 1.
2. For all t ∈ T , for any cell mapping C for N , the pre-partition of t (w.r.t.

C), denoted by prepC(t), is the string (w1, c1)(w2, c2) . . . (wk, ck) such that
preN (t) = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

3. For all t ∈ T , for any cell mapping C for N , the post-partition of t (w.r.t.
C), denoted by postpC(t), is the string (w1, c1)(w2, c2) . . . (wk, ck) such that
postN (t) = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

4. For every marking M of N , for any cell mapping C for N , the partition of M
(w.r.t. C), denoted by partC(M), is the string (w1, c1)(w2, c2) . . . (wk, ck) such
that M = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

5. For every marking M of N , for any cell mapping C : P → {1, . . . , n}
for N , the extended partition of M (w.r.t. C), denoted by expC(M), is
the tuple (w1, w2, . . . , wn) such that M = w1w2 . . . wn with partC(M) =
(wc1 , c1)(wc2 , c2) . . . (wck

, ck) for some {c1, c2, . . . , ck} ⊆ {1, 2 . . . , n} and wi =
λ for all i 6∈ {c1, c2, . . . , ck}.

Thus, given a network of cells N , we use the cell mapping to associate places to
certain cells and we use the concept of partition to distribute the places (i.e., their
multiple occurrences) to these cells. Specifically, we give the following definition.

Definition 15 (corresponding NC). Let N = (P, T, W,M0, L) be a PTL-
net and let C : P → {1, . . . , n} be a cell mapping for N . The network of

50 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

cells corresponding to N (w.r.t. C) is P(N,C) = (P, w1, w2, . . . , wn, R) where:
expC(M0) = (w1, w2, . . . , wn) and

R = {(u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh) |
t ∈ T, prepC(t) = (u1, i1) . . . (uk, ik), postpC(t) = (v1, j1) . . . (vh, jh)}.

Thus, we can construct different NC’s corresponding to the same PTL-net depend-
ing on the way we decide to assign places to cells; the unique constraint is that
multiple occurrences of the same place have to remain confined within the same
cell. At one end, a PTL-net can be translated into an NC with one cell where all
the rules have input radius equal 1; every rule corresponds to a transition and these
rules are no more than multiset rewriting rules. At the opposite end, a PTL-net
can be translated into an NC with as many cells as its places; every rule corre-
sponds to a transition and the its input radius is equal to the cardinality of the
support of the pre-multiset of this transition. Notice that the locality mapping of
a PT-net has no direct counterpart in the corresponding NC’s.

Next, we introduce the notion of equivalence between a PTL-net and its cor-
responding NC’s.

Definition 16 (m-equivalence). Let N = (P, T, W,M0, L) be a PTL-net and let
C : P → {1, . . . , n} be a cell mapping for N . For m ∈ {free, seq, max, lmax, min},
we say that N is m-equivalent to P(N, C), and we write N ≈m P(N, C) if, for
every two markings M1,M2, M1 ;m M2 iff expC(M1) ⇒m expCM2.

Thus, we can state the fundamental property which relates PTL-nets and cor-
responding NC’s.

Proposition 5.4 For any PTL-net N = (P, T, W,M0, L), for any cell mapping
C for N , for m ∈ {free, seq, max}, we have that N ≈m P(N, C). Moreover,
if L(T) = { l } for some l ≥ 0, then, for any cell mapping C for N , for m ∈
{lmax, min}, we have that N ≈m P(N,C).

Therefore, the general equivalence between a PTL-net and its corresponding
NC’s can only be established for free-parallelism, sequential execution and max-
imal parallelism. For locally-maximal parallelism and minimal parallelism, the
aforementioned equivalence can be established only for PTL-nets where all tran-
sitions are assigned to the same locality. In fact, the following results holds.

Proposition 5.5 There exists a PTL-net N such that, for any cell mapping C
for N , for m ∈ {lmax, min}, we have that N 6≈m P(N, C).

Proof. Let NONE be the PTL-net of Figure 2 where: transition R is assigned
locality 1, transition S is assigned locality 2, and transition T is assigned locality
2; the initial marking of NONE is M0 = aabb. Then, let us suppose that there is
a cell mapping C for NONE such that NONE ≈m P(NONE, C).

Now, if C({a, b} = {1} (i.e., if P(NONE, C) contains only one cell), then it is
obvious that NONE 6≈m P(NONE, C). Therefore, it has to be C({a, b} = {1, 2}

Networks of Cells and Petri Nets 51

(i.e., P(NONE, C) has to contain two cells) in order to be able to distinguish
between locality 1 and 2.

Then, if C(a) = 1 and C(b) = 2, then, by Definition 15, P(NONE, C) contains
rules: (a, 1) → (aa, 1), (a, 1)(b, 2) → (b, 2), and (b, 2) → (bb, 2). Thus, M0 ;lmax

aabb by firing transition R and transition S belonging to the same locality, but
expC(M0) = (aa, bb) 6⇒lmax (aa, bb). This is because rule (a, 1)(b, 2) → (b, 2)
involve cell 1 as well as cell 2, hence we cannot apply rule (a, 1) → (aa, 1) in
parallel with rule (a, 1)(b, 2) → (b, 2) without applying at the same time rule
(b, 2) → (bb, 2). This contradicts our hypothesis. For symmetry, the same reasoning
apply to the case C(a) = 2 and C(b) = 1.

Therefore, we can conclude that, for any cell mapping C for N , we have that
N 6≈lmax P(N,C).

For a minimally-parallel execution, it is easy to go through the same cases
as above and verify that, for any cell mapping C for N , we have that N 6≈min

P(N,C). ut

Fig. 2. PTL-net NONE with its initial marking where transition R is assigned to
locality 1, transition S is assigned to locality 2, and transition T is assigned to locality 2.

Finally, we stress once more the differences between cells and places. Cells of an
NC are bags of objects that can contain multiple occurrences of different symbols,
each one of them representing a different sort of objects; cells are seen as distinct
components of a larger system whose behavior is given by their interactions; the
adopted semantics determines which and how many cells become active from time
to time. Places of a PTL-net store a number of tokens, each one of them repre-
senting a distinct occurrence of a specific place; places with their number of tokens
represent resources that have to be acquired by transitions in order to fire, and,
in PTL-nets, one usually abstracts from the actual location of these resources.
Therefore, when translating a PTL-net into an NC, one has to make some extra
assumptions about the assignment of places to cells, although, in general, one can

52 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

always see a PTL-net as an NC with one cell containing a finite set of multisets of
rewriting rules.

6 Case-Studies

We present NC’s solutions to two classical synchronization problems: pro-
ducer/consumer and dining philosophers. The proposed models are derived from
standard solutions based on Petri Nets.

6.1 Producer/Consumer

We consider the simpler version of the producer/consumer system from [20]: dis-
tinguished items are produced, delivered to a buffer, later removed from the buffer,
and finally consumed. The buffer is assumed to have capacity for one item. More-
over, like in [20], we abstract from any concrete instance of the aforementioned
operations and we focus only on the “interplay” between produce/deliver and re-
move/consume, and on the events necessary for their synchronization.

Specifically, we consider two sub-systems named producer and consumer, re-
spectively, which “synchronize” (or “interact”, or “communicate”) through a
shared buffer. The producer has two states: “ready to produce” and “ready to de-
liver”. The consumer has two states: “ready to remove” and “ready to consume”.
The buffer has two states: “filled” and “empty”. In state “ready to produce”,
the producer executes the operation “produce” and moves to state “ready to de-
liver”; in state “ready to produce”, if the buffer is “empty”, the producer executes
the operation “deliver”, which fills the buffer, and moves back to state “ready
to produce”. Similarly, in state “ready to remove”, if the buffer is “empty”, the
consumer execute the operation “remove”, which empties the buffer, and moves
to state “ready to consume”; in state “ready to consume”, the consumer executes
the operation “consume” and moves back to state “ready to remove”.

PTL-Net Representation

The PTL-net model of the aforementioned producer/consumer system, which is
presented in [20], is reported in Figure 3, with its initial marking AEG, where:

A ≡ “ready to produce”,
B ≡ “ready to deliver”,
F ≡ “filled”,
E ≡ “empty”,
G ≡ “ready to remove”,
H ≡ “ready to consume”,
p ≡ “produce”,
d ≡ “deliver”,

Networks of Cells and Petri Nets 53

Fig. 3. PTL-net model of a producer/consumer system.

r ≡ “remove”,
c ≡ “consume”.

The unique transition enabled at the initial marking AEG is transition p (“pro-
duce”), and, when fired, it transfers a token from place A (“ready to produce”) to
place B (“ready to deliver”). Next, transition d (“deliver”) is enabled and, when
fired, it produces a token in place F (i.e., the buffer is filled) and a token in place
A (“ready to produce”). Then, transition r (“remove”) can fire which produces a
token in place E (i.e., the buffer is emptied) and a token in place H (“ready to
consume”). Finally, a token can be returned to place G (“ready to remove”) by
firing transition c (“consume”).

We remark that:

• seq-execution and free-execution are non-deterministic; after transition d has
fired, both transition p and transition r are enabled and, after transition r has
fired, both transition d and transition c are enabled;

• max-execution is deterministic;
• if transitions p and d are assigned to a certain locality (i.e., the producer) and

transition r and c to another one (i.e., the consumer), then lmax-execution is
equivalent to free-execution;

• if transitions p and d are assigned to a certain locality (i.e., the producer) and
transition r and c to another one (i.e., the consumer), then min-execution is
equivalent to max-execution;

• irrespectively of the semantics, in each step, at least one transition is always
enabled (liveness);

• irrespectively of the semantics, the consumer can consume only after having
received an item from the buffer (i.e., only after having performed a “remove”
operation);

• irrespectively of the semantics, after having produced an item, the producer
has to deliver it into the buffer before returning to producer; the delivering can
take place only when the buffer has been emptied.

54 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

NC Representation

As pointed out in Section 5, it is possible to find different NC’s corresponding
to the PTL-net of Figure 3. Here, in order to model the aforementioned pro-
ducer/consumer system, we consider an NC PC with 3 cells. Cell 1 represents the
producer, cell 2 represents the consumer, whereas cell 3 represents the buffer.

Cell 1 stores an object which specifies the states of the producer; this can be
either A (“ready to produce”) or B (“ready to deliver”). Similarly, cell 2 stores an
object which specifies the state of the consumer; this can be either G (“ready to
remove”) or H (“ready to consume”). Cell 3 instead stores an object representing
the state of the buffer, either F (“filled”) or E (“empty”). The initial configuration
is the tuple (A,G, E).

The desired behavior is then implemented by considering the following rules:

1. (A, 1) → (B, 1),
2. (B, 1)(E, 2) → (A, 1)(F, 3),
3. (G, 2)(F, 3) → (H, 2)(E, 3),
4. (H, 2) → (G, 2).

Yet again, we have that:

• the application of the rules is sequential and freely-parallel;
• the maximally-parallelism is deterministic;
• irrespectively of the semantics, in each step, at least one rule is always appli-

cable;
• irrespectively of the semantics, the consumer can consume only after having

received an item from the buffer;
• irrespectively of the semantics, after having produced an item, the producer

has to deliver it into the buffer before returning to producer; the delivering can
take place only when the buffer has been emptied.

Also, the PT-net N (PC) is the same as the PTL-net of Figure 3 except for the
naming of places and transitions (i.e., they define two isomorphic graphs). In fact,
rule 1 corresponds to transition p in the PT-net of Figure 3, rule 2 corresponds
to transition d in the PT-net of Figure 3, rule 3 corresponds to transition r in
the PT-net of Figure 3, and rule 4 corresponds to transition c in the PT-net of
Figure 3. Moreover, for F : {1, 2, 3, 4} → N such that F (1) = F (2), F (3) = F (4)
and F (1) 6= F (3), we have that PC ≡lmax N (PC, F) and PC ≡min N (PC, F).
The vice versa is also true: for the PTL-net of Figure 3, if transitions p and
d are assigned to a certain locality (i.e., the producer) and transition r and c
to another one (i.e., the consumer), then, for m ∈ {free, seq, max, lmax, min},
PTL-net of Figure 3 is m-equivalent to PC. Therefore, for this version of the
producer/consumer system, there is a sort of direct transcription of the PTL-net
model into an NC model whose rules are able to represent exactly the same type
of interactions between a producer and a consumer.

Networks of Cells and Petri Nets 55

Remark 4. For the present version of producer/consumer, the fundamental prop-
erties are: there is always a transition enabled (liveness), the producer always
alternates between “ready to consume” and “ready to deliver”, and the consumer
always alternates between “ready to remove” and “ready to consume”. These prop-
erties are formally proved in [20] for the PTL-net of Figure 3 and these results
can be directly transferred to our NC model; at some extent, this gives a flavor
of the sort of properties which could be proved for NC’s (or any other membrane
systems) by using techniques developed in the area of Petri nets.

Next, we describe an evolution-communication model of the pro-
ducer/consumer systems that is not a direct translation of the PTL-net solution
from [20] but is inspired by the idea of P systems as systems where transforma-
tions involve only objects inside one specific cell and communication is responsible
for moving objects from one cell to the other. In other words, we consider an NC
with interaction rules of input radius 1 which does not rely on the simultaneous
synchronization of two different cells.

Similarly to what was done before, we consider an NC PC1 with 3 cells: cell 1,
the producer, cell 2, the consumer, and cell 3, the buffer. The initial configuration
of PC1 is the tuple (A, G,E).

Cell 1 always moves from state A (“ready to produce”) to B (“ready to
deliver”) by replacing in its inside object A with object B. In state B, after
having received an object E from cell 3 (i.e., after having been notified that the
buffer is empty), cell 3 produce in its inside an object A and object F ; object F is
then sent to cell 3 to fill the buffer. In state G (“ready to remove”), cell 2 always
waits to receive an object F from cell 3 in order produce in its inside an object H
(representing state “ready to consume”) and an object E; object E is then sent
to cell 3 to notify that the buffer is now empty. This behavior is implemented by
means of the following rules:

1. (A, 1) → (B, 1),
2. (E, 3) → (E, 1),
3. (BE, 2) → (AF, 1),
4. (F, 1) → (F, 3),
5. (F, 3) → (F, 2),
6. (GF, 2) → (HE, 2),
7. (H, 2) → (G, 2),
8. (E, 2) → (E, 3).

Thus, all these rule have input radius equal to 1 and interactions between cell
1 (cell 2) are achieved through an effective exchange of objects. However, irrespec-
tively of the semantics adopted, the aforementioned fundamental properties can
still be observed: at any time, at least one rule is applicable, the producer always
alternates between “ready to consume” and “ready to deliver”, and the consumer
always alternates between “ready to remove” and “ready to consume”. Moreover,
the producer can deliver only when the buffer is empty, and the consumer can

56 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

remove only when the buffer is filled. Also, notice that PC1 is somehow “more
concurrent” than PC: there is always some communication which can be executed
in parallel with the internal change of state. Nevertheless, maximal parallelism still
leads to a deterministic behavior for PC1 and the movement of objects E and F
does not affect the behavior of producer and consumer.

PTL-net N (PC1) is given in Figure 4.

Fig. 4. PTL-net N (PC1) with its initial marking.

Remark 5. The solution based on the NC PC uses rules of input radius at most
2 and cooperation degree at most 1, whereas the solution based on the PC1 uses
rules of input radius at most 1 and cooperation degree at most 2. In some sense,
this shows a trade-off between the cooperation at level of cells and the cooperation
at the level of objects.

Remark 6. If we do not consider the names of places and transitions, the PTL-net
of Figure 4 is the same as the PTL-net of Figure 3 excepts for the presence of
some “unary” transitions which correspond to the movement of objects E and F
between cell 1, cell 2 and cell 3. Indeed, by using standard structural methods of
Petri nets (e.g., see [11]), the aforementioned transitions could be removed so to
have a PTL-net which is the same as the one of Figure 3 and inherits the same
structural properties proved in [20]. Thus, the translation into PTL-net allows us
to relate two different models of NC’s in terms of structural properties which are
somehow hidden in the two different types of rules used.

7 Dining Philosophers

We consider a distributed system where each resource is shared by two components,
and each subsystem simultaneously requires two resources in order to start its

Networks of Cells and Petri Nets 57

activities. The problem of modeling such a resource sharing scenario is classically
formulated as the problem of the dining philosophers: five philosophers are sitting
around a table, each philosopher has his own plate and can be eating or thinking
(i.e., not eating). In order to eat, a philosopher needs two forks, but there are
only two forks next to each plate so that no two neighboring philosophers may be
eating simultaneously.

PTL-net representation

The five philosophers are denoted by A, B, C, D and E; the five forks are denoted
by f0, f1, f2, f3 and f4. For each X ∈ {A,B, C,D, E}, we denote by l(X) its
left fork and by r(X) its right fork. Specifically, we set: l(A) = f0, r(A) = f1,
l(B) = f1, r(B) = f2, l(C) = f2, r(C) = f3, l(D) = f3, r(D) = f4, l(E) = f4 and
r(E) = f0 (i.e. A sits between E and B, B sits between A and C, C sits between
B and D, D sits between C and E, and E sits between D and A).

Thus, a PTL-net FDP is constructed that contains: for each X ∈
{A,B, C,D, E}, a place Xt (“Xt is thinking”) and a place Xe (“Xe is eat-
ing”), for each 0 ≤ i ≤ 4, a place fi (“fi is available”), for each X ∈
{A,B, C,D, E}, a transition Xp (“X picks up forks”) with preFDP (Xp) =
l(X)Xtr(X) and postFDP (Xp) = Xe, and a transition Xr (“X returns forks”)
with preFDP (Xr) = Xe and postFDP (Xr) = l(X)Xtr(X). The initial marking of
FDP is AtBtCtDtEtf0f1f2f3f4 (i.e., all philosophers are thinking and all forks
are available).

Figure 5 depicts the sub-net of an FDP modeling a philosopher. This classical
PTL-net model of the dining philosophers is taken from [20].

At the initial marking AtBtCtDtEtf0f1f2f3f4, for X ∈ {A,B, C,D, E}, each
transition Xp (“X picks up forks”) is enabled by giving all philosophers a chance
to start eating. However, irrespectively of the execution mode adopted, no two
neighboring philosophers can start eating at the same time because they share one
fork and, for all 0 ≤ i ≤ 4, fi contains only one token. Thus, in the first step,
depending on the execution mode, a certain number of philosophers which are
not neighbors start eating by firing at least one transition Xp, whereas the other
philosophers keep thinking. Then, depending on the execution mode, some other
philosophers may start eating, whereas the eating philosophers may release their
forks and return thinking, and so on.

The fundamental property of the PTL-net FDP is that it avoids the deadlocks:
FDP never produces a marking which no transition is enabled at. Moreover, from
time to time, FDP offers every philosopher the chance to start eating (i.e., it
avoids scenarios where no philosopher can ever start eating), although fairness
is not guaranteed (i.e., there may be some philosophers which always alternate
between thinking and eating with the other philosophers thinking indefinitely).
Yet again, this structural properties are formally proven in [20].

58 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

Fig. 5. PTL-net representation of a dining philosopher with its initial marking.

NC Representation

By starting from the PTL-net FDP , we construct an NC PH with 6 cells: cell 1
represents philosopher A, cell 2 represents philosopher B, cell 3 represents philoso-
pher C, cell 4 represents philosopher D, cell 5 represents philosopher E, and cell
6 representing the table. If we denote by ph(i) the philosopher represented by cell
i, for all 1 ≤ i ≤ 5, then cell i always contain either an object ph(i)t (“ph(i) is
thinking”) or an object ph(i)e (“ph(i) is eating”). Also, as in the previous PTL-net
representation, for each X ∈ {A,B, C,D, E}, we denote by l(X) its left fork and
by r(X) its right fork. Cell 6, the table, always contain the currently available
forks: the availability of a fork fi, for all 0 ≤ i ≤ 4, is represented as occur-
rence of an object fi inside cell 6. The initial configuration of PH is the tuple
(At, Bt, Ct, Dt, Et, f0f1f2f3f4).

The behavior of the five dining philosophers is then implemented by means of
a set of rules which, for all 1 ≤ i ≤ 5, contains the rules:

1. (ph(i)t, i)(l(ph(i)) r(ph(i)), 6) → (ph(i)e, i),
2. (ph(i)e, i) → (ph(i)t, i)(l(ph(i)) r(ph(i)), 6).

Specifically, for all 1 ≤ i ≤ 5, rule 1 models transition ph(i)p (“ph(i) picks up
forks”) of the PTL-net FDP , whereas rule 2 models transition ph(i)r (“ph(i) re-
turns forks) of the PTL-net FDP . In fact, the NC PH is the PTL-net N (FDP,C)
with C(At) = C(Ae) = 1, C(Bt) = C(Be) = 2, C(Ct) = C(Ce) = 3,

Networks of Cells and Petri Nets 59

C(Dt) = C(De) = 4, C(Et) = C(Ee) = 6, and C(fi) = 6 for all 0 ≤ i ≤ 4.
Therefore, even for the NC PH, we can say that deadlock is avoided.

Another NC representation of the five dining philosophers can be obtained by
distributing the forks to five different cells. Specifically this means considering an
NC PH1 obtained from PH by removing cell 6 and adding a cell 6+ i, for all 0 ≤
i ≤ 4; each cell 6+i contains an occurrence of object fi whenever fork fi is available.
The initial configuration of PH1 is the tuple (At, Bt, Ct, Dt, Et, f0, f1, f2, f3, f4,).

Then, for all 1 ≤ i ≤ n, the new set of rules contains the rules:

1. (ph(i)t, i)(l(ph(i)), c(l(ph(i))))(r(ph(i)), c(r(ph(i))) → (ph(i)e, i),
2. (ph(i)e, i) → (l(ph(i)), c(l(ph(i))))(r(ph(i)), c(r(ph(i)))).
where, for all 1 ≤ i ≤ 5, c(l(ph(i))) and c(r(ph(i))) denote the respective locations
of these two forks.

The NC PH1 contains rules of input radius at most 3 and cooperation degree at
most 1, and it corresponds to the PTL-net N (FDP, C) with C(At) = C(Ae) = 1,
C(Bt) = C(Be) = 2, C(Ct) = C(Ce) = 3, C(Dt) = C(De) = 4, C(Et) = C(Ee) =
6, and C(fi) = 6 + i for all 0 ≤ i ≤ 4. Therefore, with respect to their PTL-net
representation, the NC PH and NC PH1 cannot be distinguished.

8 Discussion

Networks of cell (NC’s, for short) are a general class of P systems which encompass
the essential features of evolution/communication of both P systems and tissue P
systems. Rules in NC’s allow different cells to synchronize in order to consume some
multisets from their inside and produce some new multisets inside some other cells.
As we have seen, this means that we can express within the framework of NC’s
both forms of coupled transports, like boundary rules and standard evolution rules
with communication controlled by targets here, in, out. However, the structure of
an NC does not necessarily corresponds to a graph or a tree; NC’s of cells abstract
from the underlying structure by focusing only on the interactions which can take
place between the cells present in the system. In fact, these cells can be equally
thought as being physically connected in some way which makes possible for the
interactions to take place, or as randomly bumping into each other and interacting
whenever it is possible. In a sense, such an approach is closer to the idea of a Petri
net as a collection of transitions which can fire when certain resources become
available, with some of these transitions competing for the same set of resources.
The difference is that in NC’s resources are objects which are specifically placed
inside certain cells. This has led us to two important observations:

• Despite being able to translate every NC into a PTL-net by using a construction
analogous to the one used in [7, 13, 12], in the case of locally-maximal paral-
lelism and minimal parallelism, it is not always possible for the corresponding
PTL-net to mimic the behavior of the original network of cells; locally-maximal

60 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

parallelism for PTL-nets is defined with respect to the localities which are as-
signed to the transitions; these localities then determine which transitions can
possibly fire in parallel at the same time irrespectively of the places involved;
rules of NC’s involving more than one cells are instead not assigned a priori to
any cell, and locally-maximally parallelism and minimal parallelism are defined
with respect to a cell that can get involved in some interactions from time to
time depending on a particular distribution of objects;

• For a given PTL-net, it is possible to find different corresponding NC’s de-
pending on the way places are assigned to the cells; the only restriction is that
multiple occurrences of the same place has to remain confined within the same
cell; for instance, for the five dining philosophers, it has been possible to pro-
duce two NC-based models: one with 6 cells and rules of input radius 2, and
another one with 10 cells and rules of input radius 3.

In other words, in P systems, one naturally reasons about components (e.g.,
producer, consumer, buffer) and these are usually seen as being separate cells (or
membranes). Also, one naturally distinguishes between operations affecting the
inner state of a membrane and the operations involving interactions between dif-
ferent membranes. Moreover, in membrane systems, the inner state of a membrane
can be given by an arbitrarily large multiset; this allows us to combine cooper-
ation at the level of objects with interaction between different cells. Petri nets,
with their graphical notation, are centered around the idea of resources which
have to be acquired (tokens inside places) before certain actions can be taken; this
facilitates the reasoning about properties like causality (the execution of certain
actions depends on the execution of some others), concurrency (certain group of
action can always be executed in parallel), and conflicts (certain actions compete
with some others for the usage of certain resources); in membrane systems, these
structural properties instead remains somehow hidden in the formalism used for
representing the rules.

The present research can be continued in several directions. For instance, from
a computational point of view, although we know that NC’s with a maximally-
parallel semantics are computationally complete, the computational power of NC’s
of cells with other semantics deserves further investigations especially for what
concerns the size and types of rules used. Moreover, as pointed out in [24], inter-
action rules of NC’s can express forms of cooperative communication other than
symport/antiport or conditional uniport, and the computational power of these
forms of communication is not yet fully understood. Then, for what concerns the
relationships between P systems and Petri nets, as observed in [12], other features
of P systems (without being limited to NC’s) may or may not be representable in
Petri nets. However, for some classes of P systems, their Petri-net representation
offers the possibility of analyzing their behavior with respect to certain structural
properties which can be formally proved for Petri nets and which are thoroughly
managed through a plethora of tools [2]. Finally, we remark that, although one
may see Petri nets as a low-level implementation of P systems, there are classes
of high-level Petri Nets (e.g., colored Petri nets [11], objects nets [11], system nets

Networks of Cells and Petri Nets 61

[20]) with features usually not considered for P systems, such as: types, variables,
and predicates. The need for these features in P systems may be checked for specific
modeling purposes against appropriate case-studies.

Acknowledgements

The research of Francesco Bernardini is supported by NWO, Organisation for
Scientific Research of The Netherlands, project 635.100.006 “VIEWS”.

References

1. The P systems web page. http://psystems.disco.unimib.it.
2. Petri nets world - Petri nets tools database.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html.
3. F. Bernardini and M. Gheorghe. Cell Communication in Tissue P Systems: Univer-

sality Results. Soft Computing, 9, 9 (2005), 640–649.
4. F. Bernardini and V. Manca. P Systems with Boundary Rules. In Gh. Păun,

G. Rozenberg, A. Salomaa, and C. Zandron, editors, Membrane Computing. Interna-
tional Workshop, WMC-CdeA 02, Curtea de Argeş, Romania, August 19-23, 2002.
Revised Papers. Volume 2597 of Lecture Notes in Computer Science, Springer, 2003,
107–118.

5. F. Bernardini, F.J. Romero-Campero, M. Gheorghe, and M.J. Pérez-Jiménez. A
Modelling Approach Based on P Systems with Bounded Parallelism. In H.J. Hooge-
boom, Gh. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing,
Seventh International Workshop, WMC7, Leiden, The Netherlands, July 2006. Vol-
ume 4361 of Lecture Notes in Computer Science, Springer, 2007, 49–65.

6. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez. P systems with minimal paral-
lelism. Theoretical Computer Sci., to appear.

7. S. Dal Zilio and E. Formenti. On the Dynamics of PB Systems: A Petri Net View.
In C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing, International Workshop, WMC 2003, Tarragona, Spain, July,
17-22, 2003, Revised Papers. Volume 2933 of Lecture Notes in Computer Science,
Springer, 2004, 153–167.

8. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Petri Nets and Concur-
rency. Volume 3098 of Lecture Notes in Computer Science. Springer, 2004.

9. R. Freund. Asynchronous P Systems and P Systems Working in the Sequential
Mode. In G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing. International Workshop, WMC 2004, Milan, Italy,
June 2004. Revised and Invited Papers. Volume 3365 of Lecture Notes in Computer
Science, Springer, 2005, 36–62.

10. R. Freund, L. Kari, M. Oswald, and P. Sośık. Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science, 330
2 (2005), 251–266.

11. C. Girault and R. Valk. Petri Nets for Systems Engineering. Springer, 2003.
12. J. Kleijn and M. Koutny. Synchrony and Asynchrony in Membrane Systems. In

H.J. Hoogeboom, Gh. Paun, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, Seventh International Workshop, WMC7, Leiden, The Netherlands, July
2006. Volume 4361 of Lecture Notes in Computer Science, Springer, 2007, 66–85.

62 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

13. J. Kleijn, M. Koutny, and G. Rozenberg. Towards a Petri Net Semantics for Mem-
brane Systems. In R. Freund, Gh. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing: 6th International Workshop, WMC 2005, Vienna, Austria,
July 18-21, 2005, Revised, Selected and Invited Papers. Volume 3850 of Lecture Notes
in Computer Science, Springer, 2006, 292–309.

14. S.N. Krishna and A. Păun. Results on Catalytic and Evolution-Communication P
Systems. New Generation Computing, 22, 4 (2004), 377–394.

15. C. Martin-Vide, Gh. Păun, J. Pazoz, and A. Rodriguez-Paton. Tissue P Systems.
Theoretical Computer Sci., 296, 2 (2003), 295–326

16. C. Mart́ın-Vide, Gh. Păun, and G. Rozenberg. Membrane Systems with Carriers.
Theoretical Computer Science, 270, 1-2 (2002), 779–796.

17. Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

18. Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
19. Gh. Păun, Y. Sakakibara, and T. Yokomori. Membrane Systems on Graphs of Re-

stricted Forms. Publicationes Mathematicae Debrecen, 60 (2002), 635–660.
20. W. Reisig. Elements of Distributed Algorithms. Modelling and Analysis with Petri

Nets. Springer, 1998.
21. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models. Volume

1491 of Lecture Notes in Computer Science. Springer, 1998.
22. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications. Volume

1492 of Lecture Notes in Computer Science. Springer, 1998.
23. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1–3.

Springer, 1997.
24. S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Generalized Commu-

nicating P Systems. Submitted, 2007.
25. S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Computational Com-

pleteness of Tissue P Systems with Conditional Uniport. In H.J. Hoogeboom,
Gh. Păun, G. Rozenberg, and A. Salomaa, editors. Membrane Computing, Seventh
International Workshop, WMC7, Leiden, The Netherlands, July 2006. Volume 4361
of Lecture Notes in Computer Science, Springer, 2007, 521–535.

