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Summary. We present a characterization of context-free languages in terms of a re-
stricted class of P automata (P systems accepting strings of symbols using sym-
port/antiport communication rules). The characterization is based on the form of the
rules used by the system.

1 Introduction

Membrane systems, or P systems, are distributed computing models inspired by
the functioning of the living cell. Their main components are membrane structures
consisting of membranes hierarchically embedded in the outermost skin membrane.
Each membrane encloses a region containing a multiset of objects and possibly
other membranes. Each region has an associated set of operators working on the
objects contained by the region.

The evolution of the objects inside the membrane structure from an initial
configuration to a somehow specified end configuration corresponds to a compu-
tation having a result which is derived from some properties of the specific end
configuration. Several variants of the basic notion have been introduced and stud-
ied proving the power of the framework; see the monograph [6] for a summary
of notions and results of the area, and the web site [8] for recent developments.
As the reader might notice, this machinery has relatively strong capabilities, so
it might seem reasonable to look for as simple P system variants as possible, as
for example systems using communication rules only. For more details on these
variants, see [3], [5].

In the present paper we deal with the problem of characterizing language
classes, other then the class of regular or recursively enumerable languages, in
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terms of P systems using only symport/antiport communication rules. We use the
notion of P automata.

Besides their simplicity, the introduction of P automata in [1] was motivated by
the idea of using P systems as language acceptors. The objects in a P automaton
may move through the membranes from region to region, but they may not be
modified during the functioning of the systems, and furthermore, the “words”
accepted by a P automaton correspond to the sequences of multisets containing
the objects entering from the environment in each step of the evolution of the
system.

In what follows, after presenting the necessary definitions and notations, we
first shortly review other characterizations of non-regular language classes which
do not coincide with the class of recursively enumerable languages, in particular, a
sub-logarithmic-space class from [2], and two characterizations of context-sensitive
languages from [2] and from [4], and then we present our result, the characterization
of context-free languages in terms of P automata.

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to be
familiar with the basics of formal language theory (for details see [7]). Let Σ be a
finite set of symbols called alphabet. Let Σ∗ be the set of all words over Σ, that
is, the set of finite strings of symbols from Σ, and let Σ+ = Σ∗ − {ε} where ε
denotes the empty word.

Let V be a set – the universe – of objects, and let N denote the set of natural
numbers. A multiset is a pair M = (V, f), where f : U → N is a mapping which
assigns to each object a ∈ V its multiplicity. The support of M = (V, f) is the set
supp(M) = {a ∈ V | f(a) ≥ 1}. If supp(M) is a finite set, then M is called a finite
multiset. The set of all finite multisets over the set V is denoted by V ◦.

We say that a ∈ M = (V, f) if a ∈ supp(M). M1 = (V, f1) ⊆ M2 = (V, f2) if
supp(M1) ⊆ supp(M2) and for all a ∈ V , f1(a) ≤ f2(a). The union of two multisets
is defined as (M1 ∪M2) = (V, f ′) where for all a ∈ V , f ′(a) = f1(a) + f2(a), the
difference is defined for M2 ⊆ M1 as (M1 −M2) = (V, f ′′) where f ′′(a) = f1(a)−
f2(a) for all a ∈ V , and the intersection of two multisets is (M1 ∩M2) = (V, f ′′′)
where for a ∈ V , f ′′′(a) = min(f1(a), f2(a)), min(x, y) denoting the minimum of
x, y ∈ N. We say that M is empty, denoted (as in the case of sets) by ∅, if its
support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string
w over the alphabet V with |w|a = f(a) where a ∈ V and where |w|a denotes
the number of occurrences of the symbol a in the string w. In the following we
sometimes identify the finite multiset of objects M = (V, f) with the word w over
V representing M , thus we write w ∈ V ◦, or even w1 ∪ w2 where w, w1, w2 are
strings of symbols from V , or sometimes we enumerate the not necessarily distinct
elements of w = a1 . . . at ∈ V ◦ as {{a1, . . . , at}}.
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A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The outmost membrane which is unique and usually labeled with 1,
is called the skin membrane. The membrane structure is denoted by a sequence
of matching parentheses where the matching pairs have the same label as the
membranes they represent. If membrane i contains membrane j, and there is no
other membrane, k, such that k contains j and i contains k, then we say that
membrane i is the parent membrane of j.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another one.
In the following we concentrate on communication rules called symport or antiport
rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x must enter from the parent
region or must leave to the parent region, respectively. An antiport rule is of the
form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, in
which case they can only be applied if region i contains the objects of multiset
z, or, if Z = ¬z, then region i must not contain the elements of z. (For more on
symport/antiport see [5], for the use of promoters see [3].)

A P automaton is a construct Γ = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)), where
n ≥ 1 is the number of membranes, V is a finite set of objects, µ is a membrane
structure of n membranes with membrane 1 being the skin membrane, and for all
i, 1 ≤ i ≤ n,

• wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite multiset
of all objects contained by region i;

• Pi is a finite set of communication rules associated to membrane i; they can
be symport rules or antiport rules, with or without promoters or inhibitors, as
above;

• Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states of
region i; if Fi = ∅, then all the states of membrane i are considered to be final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where we
also allow x, y, z to be the empty string. If y = ε or x = ε, then the notation above
denotes the symport rule (x, in)|Z or (y, out)|Z , respectively, and if Z = ε, then
the rules above are without promoters or inhibitors.

The n-tuple of finite multisets of objects present in the n regions of the P au-
tomaton Γ describes a configuration of Γ ; the n-tuple (w1, . . . , wn) ∈ (V ◦)n is the
initial configuration.

The application of the rules can take place in a sequential, or in a maximally
parallel manner.
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The transition mapping of a P automaton is a partial mapping δX : V ◦ ×
(V ◦)n → 2(V ◦)n

. These mappings are defined implicitly by the rules of the sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′1, . . . , u
′
n) ∈ δX(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′1, . . . , u

′
n) ∈ (V ◦)n, if there exist rules as follows.

• if X = seq, then for all i, 1 ≤ i ≤ n, there is a rule (xi, in; yi, out)|Zi
∈ Pi with

z ⊆ ui for Zi = z ∈ V ◦, and z ∩ ui = ∅ for Zi = ¬z, z ∈ V ◦, satisfying the
conditions below, or

• if X = par, then for all i, 1 ≤ i ≤ n, there is a multiset of rules Ri =
{{ri,1, . . . , ri,mi}}, where ri,j = (xi,j , in; yi,j , out)|Zi,j ∈ Pi with z ⊆ ui for
Zi,j = z ∈ V ◦, and z ∩ ui = ∅ for Zi,j = ¬z, z ∈ V ◦, 1 ≤ j ≤ mi, satisfy-
ing the conditions below, where xi, yi denote the multisets

⋃
1≤j≤mi

xi,j and⋃
1≤j≤mi

yi,j , respectively. Furthermore, there is no rule occurrence r ∈ Pj , for
any j, 1 ≤ j ≤ n, such that the rule multisets R′i with R′i = Ri for i 6= j and
R′j = {{r}} ∪Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2.

⋃
parent(j)=i xj ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′i = ui ∪ xi − yi ∪
⋃

parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

We define the sequence of multisets of objects accepted by the P automaton as the
sequence of input multisets which appear in the environment and are consumed
by the skin membrane in each computational step while the system reaches a
final state, a configuration where for all j with Fj 6= ∅, the contents uj ∈ V ◦ of
membrane j is “final”, i.e., uj ∈ Fj .

Let us extend δX to δ̄X , X ∈ {seq, par}, a function mapping (V ◦)∗, the se-
quences of finite multisets over V , and (V ◦)n, the configurations of Γ , to new
configurations. We define δ̄X as

1. δ̄X(v, (u1, . . . , un)) = δX(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄X((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δX(vs+1, (u′1, . . . , u

′
n))

for all (u′1, . . . , u
′
n) ∈ δ̄X((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in order
to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

Let Γ be a P automaton as above with initial configuration (w1, . . . , wn), let
Σ be an alphabet, and let f : V ◦ −→ Σ ∪ {ε} be a mapping with f(x) = ε if and
only if x = ∅.
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The language accepted by Γ is defined as

LX(Γ, f) = {f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄X((v1) . . . (vs), (w1, . . . , wn))
with uj ∈ Fj for all j with Fj 6= ∅, 1 ≤ j ≤ n, 1 ≤ s},

for X ∈ {seq, par}. Obviously, the choice of the mapping f is essential. It has to
be “easily” computable because the power of the P automaton should be provided
by the underlying membrane system and not by f itself. The notion of “easiness”,
however, greatly depends on the context we are working in, so we do not give it a
general specification here.

3 Related Results

P automata were already used to characterize interesting language classes. If the
rule application is sequential, then the “problem” of mapping the set of possible
input multisets to a finite alphabet does not appear since the number of possible
inputs is finite. If {v1, . . . , vt}, vi ∈ V ◦ are the different multisets appearing in
rules (vi, in;ui, out) ∈ P1, 1 ≤ i ≤ t, then Σ = {a1, . . . , at}, and f(vi) = ai is a
natural correspondence between the two sets.

In [2], P automata with sequential rule application were shown to characterize
a language class which is strictly included in the class of languages accepted by
Turing machines reading the separate input tape one way, and using logarithmic
space for additional computations on the work-tapes. This sub-logarithmic-space
language class still contains interesting languages, {anbncn | n ≥ 1}, for example.

If the rule application of P automata is maximally parallel, the situation is more
complex. A mapping between the potentially infinite set of input multisets and a
finite alphabet have to be specified. In [2] it was shown that if rules of the type
(v, in) are not allowed in the skin membrane, and if the mapping f : V ◦ → Σ∪{ε}
is specified in such a way that f(x) = ε implies x = ∅ and f is linear space
computable by a Turing machine, then P automata accept exactly the class of
context-sensitive languages. Moreover, it is also shown that all context-sensitive
languages can be accepted using an f which maps an input multiset x ∈ V ◦

nondeterministically to any element of {a ∈ V | a ∈ supp(x)} and f(∅) = ε,
thus, it is also possible to give a characterization of context-sensitive languages in
terms of P automata, which is “easy” to check, that is, to verify if a given systems
conforms to this specification or not.

The authors of [4] also characterize the class of context-sensitive languages,
using variants of so called symport/antiport acceptors called exponential sym-
port/antiport acceptors. These systems have a separate terminal alphabet Σ ⊆ V ,
and the input is given as a sequence of terminal symbols provided by the envi-
ronment. The symbols in this sequence of terminals have to be consumed by the
symport/antiport rules of the system during the computation in the order they
appear in the sequence. If the special end-marker is reached and the system halts,
the string is accepted.
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The results of [4] show that certain syntactic restrictions, that is, restrictions on
the forms of the symport/antiport rules used by the system, can be given in such a
way that the restricted exponential symport/antiport acceptors accept exactly the
class of context-sensitive languages. Moreover, it is also shown that the number of
nonterminal symbols in V with a fixed number of membranes, or the number of
membranes with a fixed number of nonterminals, induces an infinite hierarchy of
accepted languages.

4 P Automata for Context-free Languages

Now we introduce a restricted variant of P automata with parallel rule application
which, as we show below, characterize the class of context-free languages.

Definition 1 A P stack-automaton is a construct Π = (V, µ, (w1, P1, F1),. . . ,
(wn, Pn, Fn)), a P automaton where V can be partitioned into disjoint subsets as

V = Σ ∪ {b} ∪ C ∪D,

the initial multisets are of the form

w1 = bic for some i ≥ 0, c ∈ C,

wj ∈ D◦ for all 2 ≤ j ≤ n,

the sets of final states are finite sets of finite multisets over D,

Fi ⊂ D◦ for 1 ≤ i ≤ n,

and there is a fixed positive integer k, such that all the rules of are one of the
forms below.

For P1:

• (a, out) where a ∈ Σ,
• (bki

, in; bk, out)|c where i ≥ 0, c ∈ C, and
• (ablc1, in; bmc2, out) where a ∈ Σ, c1, c2 ∈ C, l,m ≥ 0,

and for Pi, 2 ≤ i ≤ n:

• (bicj , in; u, out) where i ≥ 1, c ∈ C, j ≥ 0, and u ∈ D+.

The language accepted by the P stack-automaton Π over the finite alphabet Σ is
the language L(Π, f) accepted by the P automaton Π with a function f defined
in such a way that, as usual, the empty multiset, and only the empty multiset
is mapped to ε, and for nonempty input multisets, the image depends only on
the occurrence or non-occurrence of certain symbols, but not on their multiplicity.
That is

f : V ◦ → Σ ∪ {ε}, where for any x 6= ∅, f(x) 6= ε,

and moreover, for any x, y ∈ V ◦,

supp(x) = supp(y) implies that f(x) = f(y).
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Thus, a P stack-automaton is a P automaton having rules of a restricted form and
a special, very simple mapping. Initially, the skin membrane contains a number
of copies of the object b, plus one object from the set C, the other membranes
contain finite multisets of objects over the set D. The rules are applied until a
final configuration, a certain combination of a finite number of elements from the
set D, is reached. Note that it is impossible that all copies of b and of objects from
C leave the system, thus, there must be regions where the sets of given final states
are empty, that is, where any state is considered to be final.

Theorem 1. A language is context-free if and only if it is accepted by a P stack-
automaton.

Proof. First we prove that every context-free language can be accepted by a P
stack-automaton.

Let L be a context-free language and M = (Σ, Γ, Q, δ, q,X1) be a pushdown
automaton with input alphabet Σ, stack alphabet Γ , set of states Q, transi-
tion mapping δ, initial state q ∈ Q, and initial stack contents X1, accepting
L \ {ε} with empty stack. Let us assume, without the loss of generality, that
Γ = {X1, X2, . . . , Xt}, Q = {q}, and the transitions of M are of the form

(q, α) ∈ δ(q, a,X) where q ∈ Q, α ∈ Γ ∗, a ∈ Σ, X ∈ Γ.

(Such a pushdown automaton can be obtained from a context-free grammar in
Greibach normal form, i.e., having rules X → aα where X is a nonterminal, a is
a terminal, and α is a not necessarily nonempty string of nonterminals.) Let us
also assume, again without the loss of generality, that X1 only occurs as the initial
contents of the stack, and if (q, α) ∈ δ(q, a, X1), then |α| = 1.

Let k = |Γ |+ 1, and let t = max({|α| | (q2, α) ∈ δ(q1, a, X)}). We construct a
P stack-automaton accepting the same language as M . Let

Π = (V, [ [ ]2]1, (w1, P1, {E}), (w2, P2, ∅))

be a P stack-automaton with

V = Σ ∪ I ∪B ∪ {T,E},

where I = {(i) | 0 ≤ i ≤ t}, B = {b}, and let

w1 = bkb(1),

P1 = {(bki

, in; bk, out)|(i)}
∪ {(a(j)bl, in; bm(i), out) | (q, α) ∈ δ(q, a, Xm), l = val(α), i = |α|}
∪ {(a, out) | a ∈ Σ},

w2 = TE,

P2 = {(b, in; T, out)} ∪ {(b(i), in;E, out)} ∪ P ′2.
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where

P ′2 =
{{(bkb(1), in;E, out)} if ε ∈ L(M),
∅ otherwise.

A configuration (w, γ) of M corresponds to the configuration (u1, u2) where the
k-ary notation of |u1|b is the string 1i1i2 . . . is where Xi1Xi2 . . . Xis

= γ, Xis
being

the topmost symbol, the digits 10 (denoting the integer k) corresponding to γ = ε.
In the following we will denote by string(n) the sequence of pushdown symbols

corresponding to the integer n ≥ k.
Let us assume that

u1 = c(i)bn (1)

where c ∈ Σ, (i) ∈ I, and bn corresponds to the string γ ∈ Γ ∗, string(n) = γ.
Since there is only one occurrence of an object from I is present, the rules which
could be used in the skin region are of the form

(bki

, in; bk, out)|(i) and (a(j)bl, in; bm(i), out) (2)

where there exists a transition among the transitions of the pushdown automaton
M

tr : (q, α) ∈ δ(q, a, Xm), l = val(α), i = |α|.
If the application of two such rules consumes all the b objects of the skin region,
then string(n) = γ = γ′Xm, and after the application of the rules we obtain a
configuration (u′1, u2) where u′1 = a(j)bp with p = ((n−m)/k)ki, that is, an object
a ∈ Σ (and a number of b-s) has entered the system, the new string corresponding
to the new number of b objects is string(p) = γ′α, where γ′α is the new contents
of the stack of M after executing the transition tr above.

If no rule-pair of the form (2) can be applied in the skin region or a rule-pair is
applied in a way which does not consume all b objects, that is, when no transition
of M is simulated, then, due to the maximal parallelism of rule application, a rule
(b, in; T, out) is applied in the second region sending the trap object T to the skin
region which makes it impossible for Π to reach the final configuration.

As we have seen, a configuration C = (u1, u2) with u1 of the form (1) of Π
corresponds to a configuration of M , and any configuration of Π following C is
either corresponding to a possible next configuration of M , or the computation of
Π cannot produce any result. No we explain how the computation of Π is started
and finished.

The initial configuration of Π is

(bkb(1), TE)

and the initial transition of M is of the form (q, Xi) ∈ δ(q, a,X1), so it is correctly
simulated by the rules

(bk, in; bk, out)|(1) and (a(j)bi, in; b(1), out),
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so after the first computational step, we either obtain a configuration with the
trap symbol in the first region, or

(bkbi(j), TE).

This is a configuration corresponding to the configuration of M after the initial
transition.

Let us assume now that Π is in a configuration

(vbn(0), u2)

where string(n) = Xm and a possible transition of M is

(q, ε) ∈ δ(q, a, Xm)

which finishes the computation by emptying the stack. This means that the rule-
pair

(b, in; bk, out)|(0) and (a(j), in; bm(0), out)

is present and applicable in the first region, producing

(ab(j), u2).

Now the computation can be finished by applying the rule (a, out) in the first
region, and the rule (b(j), in;E, out) in the second region, producing the final
configuration

(E, b(j)u′2)

where Eu′2 = u2.
As we have seen, Π either simulates a computation of M (or accepts the empty

word, if ε ∈ L), or does not reach the final configuration.
To show that all languages accepted by P stack-automata are context-free, we

present the following, rather informal argument.
Looking at the restrictions which define a P stack-automaton, we can notice

that the regions other than the skin region, can only contain a limited number of
objects which means that they can be in a finite number of different configurations.
The skin region can also contain a finite number of objects other than b, thus, to
record a configuration of the P stack-automaton, we need to record the potentially
unbounded number of b-s in the skin membrane, plus a finite set of states to record
the distribution of the objects in the other regions.

If we look at the rules of the skin region, we can also notice that the number of
b-s can be recorded with a stack, thus, that a usual pushdown automaton is able
to simulate the work of the P stack-automaton. To see this, consider the rules

(bki

, in; bk, out)|c where i ≥ 0, c ∈ C, (3)

and
(ablc1, in; bmc2, out) where a ∈ Σ, c1, c2 ∈ C, l, m ≥ 0. (4)



276 G. Vaszil

Since there is at most one occurrence of one object from C which is present in the
skin region, the rules of type (3) multiply the number of b-s by ki−1, thus, if we
consider the k-ary number denoting the number of b-s, the rules of type (3) append
i − 1 zeroes to the end of the string of k-ary digits (or, if i = 0, add the value
expressed by the last digit to the value obtained by erasing it from the end of the
string). Since the length of the manipulated suffix of the digit string is bounded,
the string of digits can be stored in a stack by introducing k−1 symbols to denote
the digits. Moreover, since there is only one copy of a rule of type (4) can be used
(because there is at most one copy of c ∈ C is present), the changes of the number
of b-s caused by these rules can be simulated using the finite control by modifying
a bounded number of topmost symbols of the stack.

5 Conclusion

We have considered a problem left open in [4], namely the problem of characterizing
the class of context-free languages in terms of symport/antiport P systems. We
have introduced a restricted class of P automata called P stack-automata and
shown that they accept exactly the class of context-free languages.
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