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Summary. We consider a special form of spiking neural P systems, called axon P sys-
tems, corresponding to the activity of Ranvier nodes of neuron axon, and we briefly
investigate the language generative power of these devices

1 Introduction

Recently, ideas from neural computing based on spiking were incorporated in mem-
brane computing in the form of spiking neural P systems (for short, SN P systems),
see [1], [4] [5], etc. In SN P systems, the main “information-processor” is the neu-
ron, while the axon is only a channel of communication, without any other role –
which is not exactly the case in neuro-biology.

In the present paper we introduce a class of SN-like P systems, where the
computation is done along the axon (this time we ignore the neurons). Actually,
a sort of linear SN P system is considered, corresponding to the Ranvier nodes
of axons. Spikes are transmitted along the axon, to the left and to the right,
from a node to another node, and an output is provided by the rightmost node.
Specifically, a symbol bi is associated with a time unit when i impulses (spikes)
exit the system, and thus a string is associated with a computation.

The relationships of the families of languages generated in this way with fam-
ilies from Chomsky hierarchy are investigated, then axon P systems with states
are considered. Several open problems and research topics are formulated in the
end of the paper.
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2 The Axon as an Information Processor

We briefly describe here the neural cells structure and functioning and those fea-
tures that are of interest from a computational point of view and from which we
will abstract the (mathematical) features of our computing devices.

The nervous system consists of about 1010 nerve cells, the so-called neurons.
Each of these neurons is connected to about 10000 other neurons via synapses.
This gigantic network of neurons and synapses is placed in a small portion of
human brain. Neural networks are generally considered as information-processing
systems, i.e., as systems which operate transformations of their inputs in order to
produce outputs.

Brain cells communicate in a process that begins with an electrical signal and
ends with a neurotransmitter binding to a receptor on the receiving neuron. It
lasts less than a thousandth of a second, and is repeated billions of times daily in
each of the human brain’s 100 billion neurons. The main part of the action takes
place inside the secreting cell.

The basic transmitting unit in the nervous system is the neuron. The neuron
is not a homogeneous integrative unit but is (potentially) divided in many sub-
integrative units, each one with the ability of mediating a local synaptic output
to another cell or local electro-tonic output to another part of the same cell.

Neurons are considered to have 3 main parts: a soma, the main part of the cell
where the genetic material is present and life functions take place; a dendrite tree,
the branches of the cell from where the impulses come in; an axon, the branch of
the neuron over which the impulse (or signal) is propagated. The branches present
at the end of the axons form the terminal tree. An axon can be provided with a
structure composed by special sheaths. These sheaths are involved in molecular
and structural modifications of axons needed to propagate impulse signals rapidly
over long distance. The impulse in effect jumps from node to node, and this form
of propagation is therefore called saltatory conduction. It is an efficient mechanism
that achieves maximum conduction speed with a minimum of active membrane,
metabolic machinery, and fiber size. There is a gap between neighboring myeli-
nated regions that is known as the node of Ranvier, which contains a high density
of voltage-gated Na+ channels for impulse generation. When the transmitting im-
pulses reach the node of Ranvier or junction nodes of dendrite and terminal trees,
or the end bulbs of the trees, it causes the change in polarization of the mem-
brane. The change in potential can be excitatory (moving the potential toward
the threshold) or inhibitory (moving the potential away from the threshold). In
Figure 1, the neuron structure is illustrated.

The impulse transmission through a neuron follows this path: from dendrite
to soma to axon to terminal tree, and then to synapse. If different impulses reach
at the same time a certain node, then it might happen that the combined effects
of the exciton and inhibition may cancel each other. Once the threshold of the
membrane potential is reached, an impulse is propagated along the neuron or to
the next neuron.
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Fig. 1. A neuron structure

Some of the previously mentioned ideas will be incorporated (abstracted) in
our computing model, defined in Section 4. More details about neural biology, can
be found in the classical book [8].

3 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [6] and [7], so that we introduce here only some notations and notions
used later in the paper. For an alphabet V , V ∗ denotes the set of all finite strings
of symbols from V ; the empty string is denoted by λ, and the set of all nonempty
strings over V is denoted by V +. When V = {a} is a singleton, then we write
simply a∗ and a+ instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted
by |x|. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then mi(x) = an . . . a2a1.

A Chomsky grammar will be given in the form G = (N,T, S, P ), with N be-
ing the nonterminal alphabet, T the terminal alphabet, S ∈ N the axiom, and P
the set of rules. We denote by REG, LIN , CF , CS, RE the families of languages



228 H. Chen, T.-O. Ishdorj, Gh. Păun

generated by regular, linear, context-free, context-sensitive, and of arbitrary gram-
mars, respectively (RE stands for recursively enumerable languages). By FIN we
denote the family of finite languages. The following strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

This is the Chomsky hierarchy.
Regular languages are defined (among many other possibilities) by means of

regular expressions. In short, such an expression over a given alphabet V is con-
structed starting from λ and the symbols of V and using the operations of union,
concatenation, and Kleene +, using parentheses when necessary for specifying the
order of operations. Specifically, (i) λ and each a ∈ V are regular expressions, (ii)
if E1, E2 are regular expressions over V , then also (E1) ∪ (E2), (E1)(E2), (E1)+

are regular expressions over V , and (iii) nothing else is a regular expression over V .
With each expression E we associate a language L(E), defined in the following way:
(i) L(λ) = {λ} and L(a) = {a}, for all a ∈ V , (ii) L((E1)∪ (E2)) = L(E1)∪L(E2),
L((E1)(E2)) = L(E1)L(E2), and L((E1)+) = L(E1)+, for all regular expressions
E1, E2 over V . Non-necessary parentheses are omitted when writing a regular ex-
pression, and (E)+ ∪ {λ} is written in the from (E)∗.

A language L ⊆ V ∗ is said to be regular if there is a regular expression E over
V such that L(E) = L.

We will also invoke below the family MAT , of languages generated by matrix
grammars without appearance checking (see [2] for details) and the family REC,
of recursive languages (languages whose membership problem is decidable).

4 Axon P Systems

We pass directly to considering the device we investigate in this paper, incor-
porating in the spiking neural P systems framework the way the axon processes
information, as described in Section 2.

An axon P system of degree m ≥ 1 is a construct of the form

Π = (O, ρ1, . . . , ρm),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. ρ1, . . . , ρm are (Ranvier) nodes, of the form

ρi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in ρi;
b) Ri is a finite set of rules of the form E/ac → (al, ar), where E is a regular

expression over a, c ≥ 1, and l, r ≥ 0, with the restriction that R1 contains
only rules with l = 0.
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The intuition is that the nodes are arranged along an axon in the order
ρ1, . . . , ρm, with ρm at the end of the axon, hence participating to synapses (this
is a way to say that node ρm is the output one of the system).

A rule E/ac → (al, ar) is used as follows. If the node ρi contains k spikes, and
ak ∈ L(E), k ≥ c, then the rule can be applied, and this means that c spikes are
removed from ρi (thus only k − c remain in ρi), the node is fired, and it sends
l spikes to its left hand neighbor and r spikes to its right hand neighbor; the
first node, ρ1 does not send spikes to the left, while in the case of the rightmost
node, ρm, the spikes sent to the right are “lost” in the environment. The system
is synchronized, a global clock is assumed, marking the time for all nodes.

If a rule E/ac → (al, ar) has E = ac, then we will write it in the simplified
form ac → (al, ar).

In each time unit, if a node ρi can use one of its rules, then a rule from Ri

must be used. Since two rules E1/ac1 → (al1 , ar1) and E2/ac2 → (al2 , ar2), can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
node, and in that case, only one of them is chosen non-deterministically.

During the computation, a configuration is described by the number of spikes
present in each node. The initial configuration is C0 = 〈n1, . . . , nm〉.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where no rule can be
used. With any computation (halting or not) we associate a sequence of symbols
by associating the symbol bi with a step when the system outputs i spikes, with b0

indicating the steps when no spike is emitted from ρm to the environment. When
the computation is halting, this sequence is finite.

Let us denote by L(Π) the language of strings computed as above by halting
computations of the system Π and let LAPm(rulek, consp) the family of languages
L(Π), generated by systems Π with at most m nodes, each node having at most
k rules, and each of these rules consuming at most p spikes. As usual, a parameter
m, k, p is replaced with ∗ if it is not bounded.

5 Examples

We consider here some simple axon P systems, given in the graphical form, fol-
lowing the style of spiking neural P systems: we specify the nodes along the axon,
with two way arrows among them and with an arrow which exits from the output
node, pointing to the environment; in each node we give the rules and the spikes
present in the initial configuration.

Figure 2 presents the initial configuration of the system Π1. We have two nodes,
with node ρ2 containing one spike. This spike will circulate among the two nodes
as long as the second node uses the rule a → (a, a). In this way, in every second
step one outputs a spike, starting with the first step of the computation. When
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a → (λ, a)

a

a → (a, a)

a → (λ, a)

Fig. 2. The initial configuration of system Π1

node ρ2 uses the rule a → (λ, a) no spike will remain inside and the computation
halts. Therefore, L(Π1) = (b1b0)∗b1.

Consider also the system Π2 from Figure 3. This time each node starts with a
spike, hence the two nodes can interchange a spike as long as ρ1 uses the rule a →
(λ, a) and ρ2 uses one of the rules a → (a, a), a → (a, λ). If at some moment the
two nodes use simultaneously the other rules, then no spike remains in the system
and the computation halts. In this way, one generates all strings in {b0, b1}+, hence
we have L(Π2) = {b0, b1}+.
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Fig. 3. The initial configuration of system Π2

Clearly, this system can be extended to a system which generates the language
V + for any alphabet V with at least two symbols.

The third example is slightly more complex: Π3, from Figure 4. It has n + 1
nodes, for some given n ≥ 2. The leftmost node has only one rule, the rightmost
node contains the rules a → (a2, a) and a → (λ, a), and all other nodes contain
the rules a → (λ, a) and a2 → (a2, λ). We start with one spike in node ρn+1. This
spike is moved continuously to the left and to the right of axon, and always when
it arrives in the rightmost node a spike exits the system. The computation can
be finished by the rightmost node, by using the rule a → (λ, a), which leaves the
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system without any spike inside. Consequently, we have L(Π3) = {b1(b2n−1
0 b1)∗ |

n ≥ 1}.
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Fig. 4. The initial configuration of system Π3

We do not present further examples, because the results in the next section are
also based on effective constructions of axon P systems.

6 The Generative Power of SN P Systems

6.1 A Characterization of FIN

Lemma 1. LAP1(rule∗, cons∗) ⊆ FIN .

Proof. In each step, the number of spikes present in an axon P system with only
one node decreases by at least one, hence any computation lasts at most as many
steps as the number of spikes present in the system at the beginning. Thus, the
generated strings have a bounded length.

Lemma 2. FIN ⊆ LAP1(rule∗, cons∗).

Proof. Let L = {x1, x2, . . . , xn} ⊆ V ∗, n ≥ 1, be a finite language for some V =
{b1, . . . , bk}, k ≥ 1. Let xi = xi,1 . . . xi,ri , 1 ≤ i ≤ n. For b ∈ V , define index(b) = i

if b = bi. Denote αj =
∑j

i=1 |xi|, for all 1 ≤ j ≤ n.
An axon P system that generates L is shown in Figure 5.
Initially, only a rule aαn+1/aαn+1−αj → aindex(xj,1) can be used, and in this

way we non-deterministically chose the string xj to generate. This rule outputs
the necessary number of spikes for xj,1. Then, because αj spikes remain in the
neuron, we have to continue with rules aαj−t+2/a → aindex(xj,t), for t = 2, and
then for the respective t = 3, 4, . . . , rj − 1; in this way we introduce xj,t, for all
t = 2, 3, . . . , rj − 1. In the end the rule aαj−rj+2 → aindex(xj,rj

) is used, which
produces xj,rj and concludes the computation.

It is easy to see that the rules which are used in the generation of a string xj

cannot be used in the generation of a string xk with k 6= j. Also, in each rule the
spikes consumed are not less than the spikes produced. ut
Theorem 1. FIN = LAP1(rule∗, cons∗).
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Fig. 5. An axon P system generating a finite language

6.2 Relationships with REG

Theorem 2. REG ⊆ LAP2(rule∗, cons∗).

Proof. For L ∈ REG, consider a grammar G = (N,B, S, P ) such that L = L(G),
where N = {A1, A2, . . . , An}, n ≥ 1, S = An, V = {b1, . . . , bm}, and the rules in
P are of the forms Ai → bkAj , Ai → bk, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m.

Then L can be generated by an axon P system as shown in Figure 6.
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Fig. 6. An axon P system generating a regular language

In the first step, node ρ2 fires by a rule a2n/a2n−j → (an, ak) (or a2n → (λ, ak))
associated with a rule An → bkAj (or An → bk) from P , and sends k spikes to the
environment. In this step node ρ1 also fires and sends n spikes to node ρ2. It will
send n spikes back to node ρ2 as long as it receives n spikes from node ρ2.

Assume that in some step t, the rule an+i/an+i−j → (an, ak), for Ai → bkAj ,
or an+i → (λ, ak), for Ai → bk, is used, for some 1 ≤ i ≤ n, and n spikes are
received from node ρ1
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If the first rule is used, then n spikes are sent to node ρ1, k spikes are sent to
the environment, n + i − j spikes are consumed, and j spikes remain in node ρ2.
Then in step t + 1, we have n + j spikes in node ρ2, and a rule for Aj → bkAl or
Aj → bk can be used. In step t + 1 node ρ2 also receives n spikes. In this way, the
computation continues.

If the second rule is used, then no spike is sent to node ρ1, k spikes are sent to
the environment, all spikes in node ρ2 are consumed, and n spikes are received in
node ρ1. Then the computation halts.

In this way, all the strings in L can be generated. ut
Actually, as we will see in the next section, the inclusion above is proper.

6.3 Beyond REG

Theorem 3. LAPm(rulek, consp)−REG 6= ∅ for all m ≥ 2, k ≥ 3, p ≥ 3.

Proof. An example of a non-regular language generated by an axon P system of
the complexity mentioned in the theorem is presented in Figure 7. As long as the
first rule of R1 is used, no spike is output, and node ρ1 accumulates continuously
two more spikes. After n steps of this type, node ρ2 will contain 2(n+1)+1 spikes.
At any step, node ρ1 can use the rule a(aa)+/a3 → (λ, a2). This both leaves an
even number of spikes in node ρ1, and sends two spikes to node ρ2. The number of
spikes from node ρ1 becomes 2(n+2) (it receives four spikes and consumes three).
In the next step, we do not output any spike, but from now on we begin output
spikes in each step: node ρ1 uses the rule (aa)+/a2 → (λ, a3), thus continuously
decreasing by two the number of spikes it contains. This can be done for n + 2
steps, hence the generated string is bn+2

0 bn+2
1 , that is, L(Π) = {bn

0 bn
1 | n ≥ 2}.

This is not a regular language. ut
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Fig. 7. An axon P system generating a non-regular language

Also much more complex languages can be generated:

Theorem 4. The family LAP2(rule3, cons3) contains non-semilinear languages.
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Proof. Consider the axon P system from Figure 8. Assume that we start from a
configuration of the form 〈3n + 1, 0〉; initially, this is the case, with n = 1. As long
as at least four spikes are present in node ρ1, the rule a(aaa)+/a3 → (λ, a9) is
used and it moves all spikes to the second node, multiplied by 3. When we remain
with only one spike in node ρ1, we can use one of the other two rules of R1.

If we use a → (λ, a), then in the second node we get a number of spikes of the
form 3m + 1, hence the first rule is applied as much as possible, thus returning
the spikes to node ρ1. In the end, we have to use the rule a → (a, λ) ∈ R2, which
makes again the number of spikes from node ρ1 to be of the form 3m + 1 (note
that no rule can be applied in any node when the number of spikes is multiple of
3). This process can be iterated any number of times, thus multiplying by 3 the
number of spikes present in node ρ1.
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a → (λ, a)

a → (λ, a2)

a(aaa)+/a3 → (a3, λ)

a → (a, λ)

aa(aaa)+/a3 → (λ, a)

Fig. 8. An axon P system generating a non-semilinear language

At any time, node ρ1 can also use the rule a → (λ, a2) instead of a → (λ, a).
This makes the number of spikes from node ρ2 to be of the form 3m + 2, hence
the rule aa(aaa)+/a3 → (λ, a) should be applied. This rule does not change the
3-arity of the number of spikes, hence it is used as much as possible. In this way,
a spike exits the system in each step, until exhausting the spikes from the output
node (when only two spikes remain inside, no rule can be used).

This means that after a number of steps when no spike is sent to the envi-
ronment, we output spikes for 3n steps, for some n ≥ 1. Actually, counting the
number of steps for accumulating 3n+1 spikes in node ρ2, we conclude that we have
L(Π) = {b3n+2n−3

0 b3n

1 | n ≥ 1}, which, obviously, is not a semilinear language. ut
The previous language is not in MAT . However, as we will immediately see,

this kind of systems has strong limitations.

Lemma 3. The number of configurations reachable after n steps by an axon P
system of degree m is bounded by a polynomial g(n) of degree m.

Proof. Let us consider an axon P system Π = (O, ρ1, . . . , ρm) of degree m, let n0

be the total number of spikes present in the initial configuration of Π, and denote
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α = max{l + r | E/ac → (al, ar) ∈ Ri, 1 ≤ i ≤ m} (the maximal number of spikes
produced by any of the rules of Π). In each step of a computation, each node ρi

produces some l and r spikes to br sent to the left and right nodes of node ρi,
respectively. We have l + r ≤ α. Each node can do the same, hence the maximal
number of spikes produced in one step is at most αm. In n consecutive steps, this
means at most αmn spikes. Adding the initial n0 spikes, this means that after
any computation of n steps we have at most n0 + αmn spikes in Π, hence the
number of configurations are no more than (n0 + αmn)m. This is a polynomial of
degree m in n (α is a constants) which bounds from above the number of possible
configurations obtained after computations of length n in Π. ut
Theorem 5. If f : V + −→ V + is an injective function, card(V ) ≥ 2, then there
is no axon P system Π such that Lf (V ) = {x f(x) | x ∈ V +} = L(Π).

Proof. Assume that there is an axon P system Π of degree m such that L(Π) =
Lf (V ) for some f and V as in the statement of the theorem. According to the
previous lemma, there are only polynomially many configurations of Π which can
be reached after n steps. However, there are card(V )n ≥ 2n strings of length n in
V +. Therefore, for large enough n there are two strings w1, w2 ∈ V +, w1 6= w2, such
that after n steps the system Π reaches the same configuration when generating
the strings w1 f(w1) and w2 f(w2), hence after step n the system can continue any
of the two computations. This means that also the strings w1 f(w2) and w2 f(w1)
are in L(Π). Due to the injectivity of f and the definition of Lf (V ) such strings
are not in Lf (V ), hence the equality Lf (V ) = L(Π) is contradictory. ut
Corollary 1. The following languages are not in LAP∗(rule∗, cons∗) (in all cases,
card(V ) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},
L2 = {xx | x ∈ V +},
L3 = {x cvalk(x) | x ∈ V +}, c /∈ V.

Note that language L1 above is a non-regular minimal linear one (generated
by linear grammars with only one nonterminal symbol), L2 is context-sensitive
non-context-free, and L3 is non-semilinear.

Theorem 6. LAP∗(rule∗, cons∗) ⊆ REC.

Proof. This is a direct consequence of the fact that a string of length n is produced
by means of a computation of length n; thus, given an axon P system Π and a
string x, in order to check whether or not x ∈ L(Π) it is enough to produce all
computations of length |x| in Π and to check whether any of them generates the
string x. ut
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7 Axon P Systems with States

In this section, we consider a way to control the rule applications by means of node
states. Specifically, the rules we are going to use are of the form sE/ac → (s′, al, ar),
where s, s′ are states, E is regular expression, and c ≥ 1, l ≥ 0, r ≥ 0.

Formally, an axon P system of degree m ≥ 1 with states is a construct of the
form

Π = (O, Q, ρ1, . . . , ρm),

where:

1. O = {a} is the singleton alphabet;
2. Q is the finite set of states;
3. ρ1, . . . , ρm are (Ranvier) nodes, of the form

ρi = (s0, ni, Ri), 1 ≤ i ≤ m,

where:
a) s0 ∈ Q is the initial state of node;
b) ni ≥ 0, is the initial number of spikes in node;
c) Ri is a finite set of rules of the form sE/ac → (s′, al, ar), where s is the

current state of the node, E is a regular expression over a, c ≥ 1, and
l, r ≥ 0, with the restriction that R1 contains only rules with l = 0.

A rule sE/ac → (s′, al, ar) from Ri is applied like the rule E/ac → (al, ar), but
only if node ρi is in state s; after the use of the rule, the state of ρi becomes
s′.

Let us examine some examples, in order to clarify the definitions and to illus-
trate the way our devices work.

Consider first the simple system

Π1 = (O,Q, ρ1, ρ2),

where:

1. O = {a};
2. Q = {s0, s1};
3. ρ1 = (s0, 1, R1), ρ2 = (s0, 1, R2);

R1 = {r1 : s0a
+/a → (s0, λ, a)};

R2 = {r1 : s0a
+/a → (s0, a

2, λ);
r2 : s0a → (s1, λ, λ); r3 : s1a → (s1, λ, a)}.

It generates the non-regular context-free language

L(Π1) = {bn
0 bn

1 | n ≥ 1}.
The computation steps are presented in Table 1.

Let us observe on Table 1 how the system works. Initially each node contains
one spike (a), and they are in the initial state s0. Node ρ1 has only one rule and
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step a a step a a

1 r1 : a r2 : a b0 1 r1 : a r1 : a b0

2 – r3 : a b1 2 r1 : a2 r1 : a b0

3 r1 : a r2 : a b1

4 – r3 : a b1

step a a step a a

1 r1 : a r1 : a b0 1 r1 : a r1 : a b0

2 r1 : a2 r1 : a b0 2 r1 : a2 r1 : a b0

3 r1 : a3 r1 : a b0 3 r1 : a3 r1 : a b0

4 r1 : a4 r1 : a b0 4 r1 : a4 r1 : a b0

5 r1 : a5 r1 : a b0 . . . . . . . .
6 r1 : a6 r2 : a b0 n− 1 r1 : an−1 r1 : a b0

7 r1 : a5 r3 : a b1 n r1 : an r2 : a b0

8 r1 : a4 r3 : a b1 n + 1 r1 : an+1 r3 : a b1

9 r1 : a3 r3 : a b1 n + 2 r1 : an r3 : a b1

10 r1 : a2 r3 : a b1 . . . . . . . .
11 r1 : a r3 : a b1 2n− 1 r1 : a r3 : a b1

12 – r3 : a b1 2n – r3 : a b1

Table 1. Some computations in Π1

it never change its state. In turn, node ρ2 has 2 states and 3 rules; rules r1 and
r2 apply in state s0, but once rule r2 is chosen the state of the node is changed to
s1, and from now on rule r3 should apply until the computation halts.

It is easy to see that the system generates strings of the form bn
0 bn

1 in 2n steps,
for some n ≥ 1. Let us follow the table. We apply rule r1 in node ρ2 for a number
of times, thus generating symbols b0 (no spike is sent to the environment); in
the meantime, node ρ1 accumulates continuously spikes growing. Once rule r2 is
chosen (suppose this happens in the n-th step), the node changes its state to s1

and starts to send the spikes of node ρ1 to the environment, using the rule r3.

Let us now consider a system with a more sophisticated functioning, namely

Π2 = (O,Q, ρ1, ρ2),

where:

1. O = {a};
2. Q = {s0, s1, s

′
1, s2, s

′
2, s3, s#};

3. ρ1 = (s0, 0, R1), ρ2 = (s0, 2, R2);
R1 = {r1 : s0a → (s0, λ, a2)},
R2 = {r1 : s0a

2 → (s#, λ, λ); r2 : s0a
+/a → (s3, λ, a);

r3 : s0a
+/a → (s3, λ, a2); r4 : s0a

+/a → (s2, a, a2);
r5 : s0a

+/a → (s1, a, a); r6 : s1a
+/a → (s1, a, a);

r7 : s1a
+/a → (s2, a, a2); r8 : s1a

+/a → (s′1, λ, a3);
r9 : s′1a

+/a3 → (s3, λ, a3); r10 : s2a
+/a → (s2, a, a2);

r11 : s2a
+/a → (s′2, λ, a3); r12 : s′2a

+/a3 → (s3, λ, a3);
r13 : s3a

+/a → (s3, λ, a3)}.
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The language generated is

L(Π2) = {bn
1 bm

2 bn+m
3 | n,m ≥ 0},

which is in CF . Initially, there is no spike in node ρ1, but there are two spikes in
node ρ2. The main work of controlling the computation is done by node ρ2, while
node ρ1 helps to grow spikes in node ρ2. There are 5 rules in state s0 in node ρ2

and one of them is non-deterministically chosen when computation starts. Rule r1

is for word λ (n = m = 0), rule r2 is for b1b3 (n = 1,m = 0), rule r3 is for b2b3

(n = 0, m = 1), and rule r4 is for words bm
2 bm

3 (n = 0,m ≥ 1). Words of the form
bn
1 bm

2 bn+m
3 (n ≥ 1,m ≥ 0) can be generated if the computation starts by rule r5.

For the reader’s exercise, we omit the detailed explanation here.

The last example we present is Π3 = (O, Q, ρ1, ρ2, ρ3), given in a graphical form
in Figure 9; it generates the non-context-free context-sensitive language {bn

1 bn
2 bn

0 |
n ≥ 1}.

a

r1 : s0a → (s#, a2, a2)

'

&

$

%

r2 : s0a
+/a → (s′1, λ, a)

r3 : s0a
+/a → (s1, λ, a)

r4 : s1a
+/a → (s1, λ, a)

r5 : s′1a
2/a2 → (s′′2 , a2, a2)

r6 : s′′2a2/a2 → (s0, a
2, a2)

r7 : s1a
+/a3 → (s2, a

2, a2)

r8 : s2a
+/a → (s2, a

2, a2)

'

&

$

%

'

&

$

%

-r1 : s0a
+/a → (s0, a, λ)

a

r1 : s0a → (s0, a
2, a)

r2 : s0a
2/a2 → (s0, λ, a2)

1 23

Fig. 9. An axon P system generating a non-context-free language

The string bn
1 bn

2 bn
0 , n ≥ 1, is generated in 3n steps. Initially, node ρ1 contains

no spike, while each node ρ2 and ρ3 contain only one spike. The computation steps
are mainly controlled by node ρ2. There are three rules in node ρ3 (r1, r2, r3) which
can be applied in the first step of the computation. If computation starts applying
rule r1 (r2, or r3), a word b1b2b0 (resp. b2

1b
2
2b

2
0 or bn

1 bn
2 bn

0 ) will be generated. The
reader can easily trace the computation steps from Table 2.

8 Final Remarks

The present paper has a preliminary character, and many open problems and
research topics about axon P systems remain to be considered. We only mention
here some of them.
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step a a step a a

1 – r1 : a r1 : a b1 1 – r3 : a r1 : a b1

2 r1 : a2 a2 r2 : a2 b2 2 – r4 : a2 r1 : a b1

3 r1 : a – – b0 3 – r4 : a3 r1 : a b1

4 – r4 : a4 r1 : a b1

5 – r7 : a5 r1 : a b1

6 r1 : a2 r8 : a4 r2 : a2 b2

a a 7 r1 : a3 r8 : a3 r2 : a2 b2

1 – r2 : a r1 : a b1 8 r1 : a4 r8 : a2 r2 : a2 b2

2 – r5 : a2 r1 : a b1 9 r1 : a5 r8 : a r2 : a2 b2

3 r1 : a2 r6 : a2 r2 : a2 b2 10 r1 : a6 – r2 : a2 b2

4 r1 : a3 – r2 : a2 b2 11 r1 : a5 – – b0

5 r1 : a2 – – b0 12 r1 : a4 – – b0

6 r1 : a – – b0 13 r1 : a3 – – b0

14 r1 : a2 – – b0

15 r1 : a – – b0

Table 2. Some computations in Π3

Actually, many questions are suggested by the research about SN P systems.
For instance, in the systems considered here we have no delay associated with the
rules, the spikes are emitted immediately after firing the rule – otherwise stated,
the delay is always 0. However, an arbitrary delay can be considered, as usual
in SN P systems. Is this of any help? What about considering infinite sequences
generated by axon P systems, as investigated in [5] for SN P systems? Can any
interesting class of languages or of infinite sequences be characterized/represented
in this framework?

Are the hierarchies on the number of nodes infinite? The universality implies
the fact that the hierarchies on the number of nodes collapse, but, in view of
Theorem 6, our systems are not universal. Another problem related to the non-
universality result is to find decidable properties other than the membership one.

What about associating a language in the following way: for each node i we
consider a symbol ci and a configuration 〈k1, . . . , km〉 is described by the string
ck1
1 . . . ckm

m . We obtain a language (strictly bounded). Variant: to take only the
strings which describe configurations which send out a spike (thus we have a se-
lection of strings). Any relation with L systems?
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