
Handling Markov Chains with Membrane

Computing

Mónica Cardona1, M. Angels Colomer1, Mario J. Pérez-Jiménez2,
Alba Zaragoza1

1 Department of Mathematics, University of Lleida
Av. Alcalde Rovira Roure, 191
25198 LLeida, Spain
{colomer,alba,mcardona}@matematica.udl.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Summary. In this paper we approach the problem of computing the n–th power of
the transition matrix of an arbitrary Markov chain through membrane computing. The
proposed solution is described in a semi–uniform way in the framework of P systems with
external output. The amount of resources required in the construction is polynomial in
the number of states of the Markov chain and in the power. The time of execution is
linear in the power and is independent of the number of states involved in the Markov
chain.

1 Introduction

In the field of the Natural Computing, two areas that have attracted a great
interest are the molecular computing based on DNA and, more recently, the cellular
computing with membranes. One of the advantages of these models with respect
to the classic ones is the massive parallelism that in these models is implemented
in a natural way and allows the simultaneous execution of many operations in an
unit of the time.

The molecular computing provides a model of computation oriented to pro-
gram and so, the computing devices proposed follow a structure similar to the
classic algorithms, in which the operations realized in each step depend on the
result obtained in the previous step. However, the cellular computing with mem-
branes provides a model of computation oriented to machines. In this model, the
computing devices (likewise Turing machines), start from an initial configuration
(a structure of membranes with certain chemical compounds in its compartments)



100 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza

which evolves by means of rules of the system (abstraction of the different chemical
reactions which are allowed in membranes). The rules are applied according to a
specific semantic, that is to say, the execution of such devices modifies the content
of their components until arriving to a halting state in which the machine canany
not work longer.

The calculation of the natural powers of the transition matrix of a finite and
homogenous Markov chain is important, because it allows us to estimate its limit
in the case that it is convergent, and so, we can know the stationary distribution
of the process. This subject has been treated in [1] where two algorithms based on
DNA are described that only allow us to obtain an estimation of the powers. These
algorithms run in polynomial time and require a polynomial amount of resources.

In this work this problem is approached within the framework of the cellular
computing with membranes, and an exact solution is provided in a time which is
linear in the order of the power and is independent of the number of states of the
Markov chain. The amount of used resources is polynomial in the power and the
number of states.

The paper is structured as follows. In the next section, basic concepts concern-
ing Markov chains and P systems that are necessary for the development of the
work are introduced. In Section 3 a P system solving (in a semi–uniform way) the
problem to find the n–th power of the transition matrix, and a formal verifica-
tion of the system is presented; the run time and the resources required in the
description of the system are analyzed.

2 Preliminaries

2.1 Markov Chains

Roughly speaking, a (discrete–time) Markov chain is a discrete–time stochastic
process such that the past is irrelevant for predicting the future given knowledge
of the present: the conditional distribution of what happens in the future given
everything up to now depends only on the present state, and not on the past.

More formally, a finite Markov chain is a sequence {Xt : t ∈ N} of random
variables verifying the following (Markov) property:

P (Xt+1 = j/X0 = i0,X1 = i1, . . . ,Xt = it) = P (Xt+1 = j/Xt = it).

That is, given the present, the future does not depend of the past: the result of
each event only depends on the result of the previous event.

The range of the random variables is called the state space of the Markov chain,
and the value of Xt is interpreted as the state of the process at time t.

We suppose that the state space is finite, that is, the random variables only
take the discrete values e1, . . . , ek, called states or results.

Hence, a Markov chain {Xt : t ∈ N} provides a random process by a change
of states or results e1, . . . , ek in certain instants of discrete times t ∈ N, and where



Handling Markov Chains with Membrane Computing 101

the result of each event only depends on the result of the previous event. So, such
a Markov chain is characterized by the conditional distribution

pij(t) = P (Xt = ej/Xt−1 = ei), for all t ≥ 1,

which is called the transition probability of the process, providing one–step transi-
tion probability.

The matrix P (t) = (pij(t))1≤i,j≤k is called the transition matrix associated
with the Markov chain {Xt : t ∈ N}. The term (i, j) of the transition matrix is
the probability of a transition from the state ei to the state ej . For that, every
element of the transition probability matrix is positive, and the sum of each row
is 1 because for all i (1 ≤ i ≤ k) we have

k
∑

j=1

pij(t) =
k

∑

j=1

P (Xt = ej/Xt−1 = ei) = 1.

Hence, the matrix of transition probabilities associated with a Markov chain
is stochastic. Moreover, every stochastic matrix can be viewed as the matrix of
transition probabilities of some Markov chain.

We say that a finite Markov chain {Xt : t ∈ N} with k states is stationary
or homogeneous if the transition probabilities do not depend on the time, that is,
∀t ∀i, j (1 ≤ i, j ≤ k → pij(t) = pij(t + 1)). In this case, we denote pij(t) = pij ,
for all t ∈ N, and P = (pij)1≤i,j≤k = P (t) = (pij(t))1≤i,j≤k.

The probability of a transition in two, three or more steps is derived in a natural
way from the one–step transition probability and the Markov property. From the
law of total probability, for all t ≥ 2 we have:

p
(2)
ij (t) =

k
∑

r=1

P (Xt = ej/Xt−1 = er) · P (Xt−1 = er/Xt−2 = ei).

That is, p
(2)
ij (t) =

k
∑

r=1

p
(1)
rj (t) · p

(1)
ir (t − 1), where p

(1)
ij (t) = pij(t), for all t ≥ 1.

Now, if the Markov chain is homogeneous, then the transition matrix for the
two–steps transition is:

(p
(2)
ij )1≤i,j≤k = (

k
∑

r=1

p
(1)
rj · p

(1)
ir )1≤i,j≤k = P · P = P 2.

In general, for each n ≥ 2 we have

p
(n)
ij (t) =

k
∑

r=1

p
(1)
rj (t) · p

(n−1)
ir (t − 1).

If the Markov chain is homogeneous, then the transition matrix for the n–steps
transition is:



102 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza

(p
(n)
ij )1≤i,j≤k = (

k
∑

r=1

p
(1)
rj · p

(n−1)
ir )1≤i,j≤k = Pn−1 · P = Pn.

The conditions










p
(1)
ij = pij ,

p
(n)
ij =

k
∑

r=1

p
(1)
rj · p

(n−1)
ir , for all n ≥ 2,

are called the Kolmogorov–Chapmann equations associated with the homogeneous
Markov chain whose transition matrix is (pij)1≤i,j≤k.

A finite and homogeneous Markov Chain {Xt : t ∈ N} where the set of
states is {e1, . . . , ek}, is characterized by the initial probabilities qj

0 = P (X0 = ej)
(1 ≤ j ≤ k), to get the state ej in the first event, and the transition probability
matrix P = (pij)1≤i,j≤k.

We denote the initial probabilities by means of the vector q0 = (q1
0 , . . . , qk

0 ),
and for each n ≥ 1 we consider the vector qn = (q1

n, . . . , qk
n), where qj

n (1 ≤ j ≤ k)
is the probability to reach the state ej after n–steps of the random process.

Notice that we have qn = q0 · Pn, for each n ≥ 1. So, in order to determine
the distribution qn it is enough to study the matrix Pn. Moreover, the limit of
the sequence {Pn : n ∈ N} of these matrices allows us to obtain the distribution
limit in the case that it exits. For more details see [2] and [3].

Markov chains have many applications. For example, they are used in chemi-
cal engineering (modeling the probabilities in chemical reactions and in flow sys-
tems), in biology (to model processes that are analogous to biological populations),
in bioinformatics (for coding region/gene prediction), in physics (for simulation
of particle systems and spatial statistics), in telecommunications (using Markov
models for queues), and in geostatistics (in two or three dimensional stochastic
simulations of discrete variables conditional on observed data).

2.2 Membrane Systems

Membrane computing is a branch of Natural Computing, considered in October
2003 by Thomson Institute for Scientific Information (ISI) as a Fast Emerging
Research Area in Computer Science [6]. It was initiated at the end of 1998 by Gh.
Păun (by a paper circulated at that time on web and published in 2000 [4]). Since
then it has received important attention from the scientific community. Details
can be found at the web page http://psystems.disco.unimib.it, maintained
in Milano under the auspices of the European Molecular Computing Consortium.

In short, one abstracts computing models from the structure and the func-
tioning of living cells, as well as from the organization of cell in tissues, organs,
and other higher order structures. The main components of such a model are a
cell-like membrane structure, in the compartments of which one places multisets of
symbol-objects which evolve in a synchronous maximally parallel manner according
to given evolution rules, also associated with the membranes. The objects can also



Handling Markov Chains with Membrane Computing 103

be described by strings, they can pass through membranes, can exit the system;
in turn, membranes can be divided, dissolved, created.

A large variety of computing models, called P systems, were considered in this
framework, based on the fundamental concept of biological membrane; the re-
spective models are distributed (compartmentalized) parallel computing devices,
processing multisets of abstract objects by means of various types of evolution
rules. Parallelism, communication, non-determinism, synchronization, dynamic ar-
chitecture of the model, etc. are central concepts of the theory, with biological,
mathematical, and computer science sources of inspiration.

In this way, a comprehensive and systematic interdisciplinary research area was
developed, of a high generality and versatility, where models can be devised for a
large range of processes where compartmentalization and multiset processing are
natural ingredients. Thus, although the initial goal of membrane computing was
only to learn new ideas, tools, techniques from cell biology to the help of stan-
dard computers, much in the same way as, e.g., evolutionary computing suggests
algorithms to be implemented on the electronic computer, the membrane comput-
ing became a new framework for building models for a large variety of processes,
especially from biology (cell biology, tissues, populations of bacteria, controlling
networks of complex phenomena, tumor growth, etc.), but also from linguistics,
management, with several applications to computer science (computer graphics,
approximative solutions to computationally hard problems, modeling parallel ar-
chitectures, cryptography).

Most of these models were proven to be computationally universal, able to
compute whatever a Turing machine can compute. In the case when an enhanced
parallelism is available, by means of membrane division, string-object replication,
or membrane creation, polynomial (often linear) time solutions to NP-complete
problems were found.

In many variants, P systems are seen as devices of a generative nature, that is,
from a given initial configuration several distinct computations may be developed,
in a non–deterministic manner, producing different outputs.

In this paper we work with P systems with external output and performing
computing tasks. For example, if a certain natural number, n, is encoded by the
multiplicity of a special object in the initial configuration and we consider the
cardinality of the multiset contained in the environment of a halting configuration
as the result of a successful computation, then we can interpret this to mean that
the system computes a partial function from natural numbers onto sets of natural
numbers.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [5].



104 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza

3 Computing the n–th Power of a Markov Chain

3.1 Designing a P System

The goal of this paper is to compute the natural powers of a transition probability
matrix associated with a finite and homogeneous Markov chain within the frame-
work of the cellular computing with membranes. To this aim, for each Markov
chain and each natural number, n ≥ 2, we construct a P system with external out-
put computing the n–th power of the matrix associated with the Markov chain.
Therefore, we provide a semi–uniform solution to this problem.

Let Pk = (pij)1≤i,j≤k be the matrix of the transition probabilities associated
with a finite and homogeneous Markov chain of order k. Having in mind that pij

are real numbers in [0, 1] and P systems only work with natural numbers, we have
to specify the approximation to be used in order to represent those numbers in
our system. In this paper, as an example, we will work with an approximation to
one decimal digit, and because of that several objects appear with a factor of 10 in
their multiplicities in the description of our system (similarly, if we want to work
with m decimal digits then we must use a 10m factor).

Let n ≥ 2 be a natural number. We define a P system of degree 3 with external
output,

Π(Pk, n) = (Γ (Pk, n), µ(Pk, n),M1,M2,M3, R),

associated with the matrix Pk and the natural number n, computing the n–th
power of Pk, as follows:

• Working alphabet:

Γ (Pk, n) = {s
(r)
ij : 1 ≤ i, j ≤ k, 0 ≤ r ≤ n} ∪ {sij : 1 ≤ i, j ≤ k} ∪

{tij : 1 ≤ i, j ≤ k} ∪ {t
(r)
iju : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ n − 1} ∪

{pij : 1 ≤ i, j ≤ k} ∪ {ci : 1 ≤ i ≤ n − 1}.

• Membrane structure: µ(Pk, n) = [1 [2 [3 ]3 ]2 ]1.
• Initial multisets:

M1 = M2 = ∅;

M3 = {t
k·10·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10
ii : 1 ≤ i ≤ k} ∪ {c1}.

• The set R of evolution rules consists of the following rules:
– Rules in the skin membrane labeled by 1:

{t
(r)10pij

iju −→ (t
10pij

ij s
(r+1)10pij

uj , in2) : 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ n − 1} ∪
{sij −→ (sij , out) : 1 ≤ i, j ≤ k}.

– Rules in the membrane labeled by 2:

{s
(r)10
ij t

10pj1

j1 . . . t
10pjk

jk −→ (t
(r)10pj1

j1i . . . t
(r)10pjk

jki , out) : 1 ≤ i, j ≤ k, 0 ≤ r ≤

n − 1} ∪ {s
(n)
ij −→ (sij , out) : 1 ≤ i, j ≤ k}.



Handling Markov Chains with Membrane Computing 105

– Rules in the membrane labeled by 3:

{s
(0)
ii −→ s

(0)10
ii : 1 ≤ i ≤ k} ∪ {tij −→ t10ij : 1 ≤ i, j ≤ k} ∪

{ci −→ ci+1 : 1 ≤ i ≤ n − 2} ∪ {cn−1 −→ δ}.

3.2 An Overview of Computations

The P system Π(Pk, n) works in the following way. At the beginning, the skin
membrane and the membrane labeled by 2 are empty and the membrane labeled
by 3 has: (a) objects tij (1 ≤ i, j ≤ k) encoding the elements pij of the transition
matrix of the Markov chain; (b) objects sii (1 ≤ i ≤ k) encoding the states ei of
the chain; and (c) objects ci (1 ≤ i ≤ n− 1) interpreted as counters used to know
when a suitable number of objects tij and sii have been produced.

In the n − 2 first steps only rules in the internal membrane labeled by 3 are

applied. During this (called) first stage, each object s
(0)
ii and each tij is replicated

10 times in each transition step. Furthermore, in membrane 3 a counter ci appears,
initialized in c1, whose subscript increases by one unit in each step. For that reason,

after n−2 steps, membrane 3 contains the multiset of objects s
(0)·10n−1

ii t
k·10n−1·pij

ij ,

and the counter cn−1. In the (n − 1)–th step, each object s
(0)
ii and each object tij

are replicated 10 times and, moreover, membrane 3 is dissolved, and its content
passes to the internal membrane labeled by 2.

Therefore, when the system is going to execute the n–th step, the skin mem-
brane continues being empty and the content of the internal membrane labeled by

2 is s
(0)·10n

ii t
k·10n·pij

ij .
In a second stage, in each (n − 1 + 2m + 1)–th step, with m ∈ N, only rules

of membrane 2 will be applied; they will consume all the objects s
(m)
ij and some

objects tij , sending to the skin certain objects tjui. In each (n − 1 + 2m)–th step,
with m ∈ N − {0}, only rules in the skin are applied (because there do not exist

objects sij in membrane 2), sending new objects tij and objects s
(m)
ij to membrane

2. This second phase finalizes when m = n − 1.
A third stage begins with the execution of the (3n − 1)–th step, and after

that the skin membrane will be empty and objects s
(n)
ij appear in membrane 2.

Then, the execution of the rules s
(n)
ij −→ (sij , out) sends these objects to the skin

membrane, and in the following step, they are sent to the environment by means
of the skin rules sij −→ (sij , out). In this moment, no rule of the system will be
applicable and so, the configuration obtained after the (3n + 1)–th step will be
a halting one. Moreover, in the last step, the content of the environment will be

s
w

(n)
ij

ij .

Finally, it remains to show that the multiplicity w
(n)
ij of the object sij is equal

to the (i, j)–term of the matrix 10n · Pn
k .



106 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza

3.3 Formal Verification

Throughout this section we are going to justify that the system Π(Pk, n) is de-
terministic and that the computation of the system codifies in the environment of
the halting configuration the n–th power of the transition probability matrix, Pk,
associated with a finite and homogeneous Markov chain.

First of all, let us list the necessary resources to build the system Π(Pk, n)
from the matrix Pk and the natural number n ≥ 2:

• Size of the alphabet: (n + 1)k2 + k2 + k2 + nk3 + (n − 1) ∈ Θ(nk3).
• Sum of the sizes of initial multisets: ≤ 10k3 + 10k + 1 ∈ Θ(k3).
• Maximum of rules’ lengths: 20k + 10 ∈ Θ(k).
• Number of rules: nk3 + k2 + nk2 + k2 + k + k2 + (n − 1) ∈ Θ(nk3).

Bearing in mind the recursive description of the rules and the fact that the
amount of resources is polynomial in n · k, it is possible to construct the system
Π(Pk, n) from the matrix Pk and the natural number n ≥ 2, by means of a
deterministic Turing machine working in polynomial time.

Next we are going to define in a recursive manner in r the expression w
(r)
ij , for

each i, j such that 1 ≤ i, j ≤ k, that is necessary in the formal verification of the
system that will follow.

Definition 1. Let w0 = 10n. For each i, j such that 1 ≤ i, j ≤ k we define:

w
(0)
ij =

{

w0 if i = j,
0 if i 6= j,

w
(r+1)
ij =

k
∑

u=1

w
(r)
iu puj , for r < n.

Remark: In the case of a finite and homogeneous Markov chain, with states
e1, . . . , ek and transition matrix Pk, the definition of the values wr+1

ij can be inter-
preted as an abstraction of the equation of Kolmogorov–Chapmann: the transition

of the state ei to the state ej in (r+1) steps (that is, the value w
(r+1)
ij ) is obtained

from all the transitions in r steps of the state ei to any state eu (that is, the value

w
(r)
iu ), with 1 ≤ u ≤ k, multiplied by the transitions of eu to ej in only one step

(that is, the value puj).

Next we establish the relation that exists between the elements w
(r)
ij and the

term (i, j) of the matrix 10n · P r
k , for each 1 ≤ r ≤ n.

Proposition 1. Let n ≥ 2. Let us denote B(r, n) = 10n · P r
k , for each r such that

r ≥ 1, r ≤ n. If B(r, n) = (b
(r,n)
ij )1≤i,j≤k, then

∀r ≥ 1 (r ≤ n −→ ∀i, j (1 ≤ i, j ≤ k −→ b
(r,n)
ij = w

(r)
ij )).



Handling Markov Chains with Membrane Computing 107

Proof. By induction on r.
The base case, r = 1, follows from the following remark:

w
(1)
ij =

k
∑

s=u

w
(0)
iu psj = w0pij = 10npij = b

(1,n)
ij .

Let r ≥ 1 be such that r < n and suppose that b
(r,n)
ij = w

(r)
ij is verified. Bearing

in mind that 10n · P r+1
k = 10nP r

k · Pk = B(r, n) · Pk, we deduce that for each i, j
such that 1 ≤ i, j ≤ k:

b
(r+1,n)
ij =

k
∑

u=1

b
(r,n)
iu puj

h.i.
=

k
∑

u=1

w
(r)
iu puj = w

(r+1)
ij . �

For each m ∈ N, we denote by Cm the configuration of the system obtained
after the execution of m steps. For each label l ∈ {1, 2, 3}, we denote by Cm(l) the
multiset of objects contained in the membrane labeled by l in the configuration
Cm. Also, we denote by Cm(env) the content of the environment of the system in
the configuration Cm.

From the definition of the system Π(Pk, n) the following holds: C0(1) =

C0(2) = ∅ , and C0(3) = {t
k·10·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10
ii : 1 ≤ i ≤ k} ∪ {c1}.

Next, we are going to determine the content of the different membranes of
the system along the execution, and will show that after 3n + 1 steps the system
reaches a halting configuration, in which the content of the environment is the

multiset of objects {s
w

(n)
ij

ij : 1 ≤ i, j ≤ k}.
In the proof of the following result, it can be checked that there exists only one

multiset of rules applicable to a non-halting configuration in each transition step,
and, consequently, the membrane system Π(Pk, n) is deterministic.

Theorem 1. Let n ≥ 2.

(a) For each r ∈ N such that 1 ≤ r ≤ n − 2 we have:






Cr(1) = ∅,
Cr(2) = ∅,

Cr(3) = {t
k·10r+1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10r+1

ii : 1 ≤ i ≤ k} ∪ {cr+1}.

(b) Moreover, we have:
{

Cn−1(1) = ∅,

Cn−1(2) = {t
k·10n·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10n

ii : 1 ≤ i ≤ k}.

(c) For each m ∈ N such that m < n we have:


























C(n−1)+2m(1) = ∅,

C(n−1)+2m(2) = {t
kw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(m)w

(m)
ij

ij : 1 ≤ i, j ≤ k},

C(n−1)+2m+1(1) = {t
(m)w

(m)
ij

pju

jui : 1 ≤ i, j, u ≤ k},

C(n−1)+2m+1(2) = {t
kw0pij−

Pk
u=1 w

(m)
ui

pij

ij : 1 ≤ i, j ≤ k}.



108 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza

(d) The configuration C3n+1 is a halting one, and

C3n+1(env) = {s
w

(n)
ij

ij : 1 ≤ i, j ≤ k}.

Proof.

(a) If n = 2, then the result is obvious. Let us assume now that n > 2. We will
prove the result by induction on r.
In order to prove the base case r = 1, let us observe that from the initial con-

figuration of the system we have: C0(1) = C0(2) = ∅, and C0(3) = {t
k·10·pij

ij :

1 ≤ i, j ≤ k} ∪ {s
(0)10
ii : 1 ≤ i ≤ k} ∪ {c1}.

Then, only in membrane 3 of configuration C0 there are applicable rules, specif-

ically, the rules: s
(0)
ii −→ s

(0)10
ii , for 1 ≤ i ≤ k; tij −→ t10ij , for 1 ≤ i, j ≤ k, and

c1 −→ c2.

Therefore, C1(1) = C1(2) = ∅, and C1(3) = {t
k·102·pij

ij : 1 ≤ i, j ≤ k} ∪

{s
(0)102

ii : 1 ≤ i ≤ k} ∪ {c2}.

Let r be a natural number such that 1 ≤ r < n − 2. Let us suppose that

Cr(1) = Cr(2) = ∅, and Cr(3) = {t
k·10r+1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10r+1

ii : 1 ≤
i ≤ k} ∪ {cr+1}.t

Let us note that only in membrane 3 there are applicable rules to configuration

Cr; specifically, this is the case for the rules: s
(0)
ii −→ s

(0)10
ii , for 1 ≤ i ≤ k;

sij −→ t10ij , for 1 ≤ i, j ≤ k; and cr+1 −→ cr+2 (recall that r < n− 2 and then
r + 1 < n − 1).

Therefore, Cr+1(1) = Cr+1(2) = ∅, and r+1(3) = {t
k·10r+2·pij

ij : 1 ≤ i, j ≤

k} ∪ {s
(0)10r+2

ii : 1 ≤ i ≤ k} ∪ {cr+2}.

(b) Directly from (a) it follows that: Cn−2(1) = Cn−2(2) = ∅, and Cn−2(3) =

{t
k·10n−1·pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)10n−1

ii : 1 ≤ i ≤ k} ∪ {cn−1}.

In order to obtain the configuration Cn−1, let us note that only in membrane

3 there are applicable rules, namely the rules s
(0)
ii −→ s

(0)10
ii , for 1 ≤ i ≤ k,

tij −→ t10ij , for 1 ≤ i, j ≤ k, and cn−1 −→ δ.
Then, membrane 3 will be dissolved, its content go to membrane 2, and the

counters ci disappear. Thus, Cn−1(1) = ∅, and Cn−1(2) = {t
k·10n·pij

ij : 1 ≤

i, j ≤ k} ∪ {s
(0)10n

ii : 1 ≤ i ≤ k}.

(c) We prove the result by induction on m. From (b) we deduce that Cn−1(1) = ∅,

and Cn−1(2) = {t
kw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(0)w

(0)
ij

ij : 1 ≤ i, j ≤ k}.

From Definition 1 we have

{s
(0)10n

ii : 1 ≤ i ≤ k} = {s
(0)w0

ii : 1 ≤ i ≤ k} = {s
(0)w

(0)
ij

ij : 1 ≤ i, j ≤ k}.

Let us note that only in the internal membrane (labeled by 2) there are ap-
plicable rules to configuration Cn−1, namely the rules:



Handling Markov Chains with Membrane Computing 109

s
(0)10
ij t

10pj1

j1 . . . t
10pjk

jk −→ (t
(0)10pj1

j1i . . . t
(0)10pjk

jki , out), for 1 ≤ i, j ≤ k.

By the condition of maximal parallelism, each one of these rules will be applied
w

(0)
ij

10 times. Consequently, we have:






Cn(1) = {t
(0)w

(0)
ij

pju

jui : 1 ≤ i, j, u ≤ k},

Cn(2) = {t
kw0pij−w0pij

ij : 1 ≤ i, j ≤ k} = {t
kw0pij−

Pk
u=1 w

(0)
ui

pij

ij : 1 ≤ i, j ≤ k}.

Hence, the result is true for m = 0. Let m < n − 1. Let us suppose that the
result holds for m, that is,


























C(n−1)+2m(1) = ∅,

C(n−1)+2m(2) = {t
kw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(m)w

(m)
ij

ij : 1 ≤ i, j ≤ k},

C(n−1)+2m+1(1) = {t
(m)w

(m)
ij

pju

jui : 1 ≤ i, j, u ≤ k},

C(n−1)+2m+1(2) = {t
kw0pij−

Pk
u=1 w

(m)
ui

pij

ij : 1 ≤ i, j ≤ k}.

In order to obtain the configuration C(n−1)+2m+2, let us note that there are
applicable rules only in the skin membrane of the configuration C(n−1)+2m+1.
Specifically, this is the case with the rules:

t
(m)10pju

jui −→ (t
10pju

ju s
(m+1)10pju

iu , in2), for 1 ≤ i, j, u ≤ k.

By the condition of maximal parallelism, each one of these rules will be applied
w

(m)
ij

pjs

10pjs
=

w
(m)
ij

10 times. Hence,


































C(n−1)+2m+2(1) = ∅,

C(n−1)+2m+2(2) = {t
kw0pij−

Pk
u=1 w

(m)
ui

pij

ij : 1 ≤ i, j ≤ k} ∪

{t
w

(m)
1i

pij+···+w
(m)
ki

pij

ij : 1 ≤ i, j ≤ k} ∪

{s
(m+1)w

(m)
i1 p1j+···+w

(m)
ik

pkj

ij : 1 ≤ i, j ≤ k}

= {t
kw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(m+1)w

(m+1)
ij

ij : 1 ≤ i, j ≤ k}.

In order to obtain the configuration C(n−1)+2m+3, let us note that there are ap-
plicable rules only in the internal membrane of the configuration C(n−1)+2m+2

(let us recall that m < n − 1, and then m + 1 < n). Specifically, the following
rules can be applied:

s
(m+1)10
ij t

10pj1

j1 . . . t
10pjk

jk −→ (t
(m+1)10pj1

j1i . . . p
(m+1)10pjk

jki , out), 1 ≤ i, j ≤ k.

By the condition of maximal parallelism, each one of these rules will be applied
w

(m+1)
ij

10 times. Thus,






C(n−1)+2m+3(1) = {t
(m+1)w

(m+1)
ij

pju

jui : 1 ≤ i, j, u ≤ k},

C(n−1)+2m+3(2) = {t
kw0pij−

Pk
u=1 w

(m+1)
ui

pij

ij : 1 ≤ i, j ≤ k}.

Hence, the result is true for m + 1, concluding the proof of (c).
(d) From (c) we deduce that



110 M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza







C3n−2(1) = {t
(n−1)w

(n−1)
ij

pju

jui : 1 ≤ i, j, u ≤ k},

C3n−2(2) = {t
kw0pij−

Pk
u=1 w

(n−1)
ui

pij

ij : 1 ≤ i, j ≤ k}.

Let us observe that there are applicable rules only in the skin membrane of
the configuration C3n−2. Specifically, the following rules can be used:

t
(n−1)10pju

jui −→ (t
10pju

ju s
(n)10pju

iu , in2), for 1 ≤ i, j, u ≤ k.

By the condition of maximal parallelism, each one of these rules will be applied
w

(n−1)
ij

pjs

10pjs
=

w
(n−1)
ij

10 times. Consequently, we have:


































C3n−1(1) = ∅,

C3n−1(2) = {t
kw0pij−

Pk
u=1 w

(n−1)
ui

pij

ij : 1 ≤ i, j ≤ k} ∪

{t
w

(n−1)
1i

pij+···+w
(n−1)
ki

pij

ij : 1 ≤ i, j ≤ k} ∪

{s
(n)w

(n−1)
i1 p1j+···+w

(n−1)
ik

pkj

ij : 1 ≤ i, j ≤ k}

= {t
kw0pij

ij : 1 ≤ i, j ≤ k} ∪ {s
(n)w

(n)
ij

ij : 1 ≤ i, j ≤ k}.

Then, to obtain the configuration C3n, it is possible to apply rules only in the
internal membrane of the configuration C3n−1, namely, the following rules:

s
(n)
ij −→ (sij , out), for 1 ≤ i, j ≤ k.

Thus, C3n(1) = {s
w

(n)
ij

ij : 1 ≤ i, j ≤ k}, and C3n(2) = {t
kw0pij

ij : 1 ≤ i, j ≤ k}.

Then, there are applicable rules only in the skin membrane of the configuration
C3n. Specifically, the following rules can be applied:

sij −→ (sij , out), for 1 ≤ i, j ≤ k.

Hence, we have: C3n+1(1) = ∅;C3n+1(2) = {t
kw0pij

ij : 1 ≤ i, j ≤ k}, and

C3n+1(env) = {s
w

(n)
ij

ij : 1 ≤ i, j ≤ k}.

Then, there is no other applicable rule to configuration C3n+1. Consequently,
this configuration is a halting one. �

Theorem 2. Let k ≥ 1, n ≥ 2. Let Pk = (pij)1≤i,j≤k be the transition matrix
associated with a finite and homogeneous Markov chain. Let Π(Pk, n) be the P
system defined in Section 3.1. The output of the only computation of this system
(that is, the content of the environment in the halting configuration) codifies the
matrix B(n, n) = 10n · Pn

k .

Proof. From (d) in Theorem 1 we deduce that the configuration C3n+1 of the
system Π(Pk, n) is a halting one and, moreover, the multiset associated with the

environment is C3n+1(env) = {s
w

(n)
ij

ij : 1 ≤ i, j ≤ k}.
Directly from Proposition 1, with r = n, it follows that ∀i ∀j (1 ≤ i, j ≤ k →

w
(n)
ij = b

(n,n)
ij ). That is, the multiplicity w

(n)
ij of the object sij in the environment of

the halting configuration C3n+1 coincides with b
(n,n)
ij , the (i, j)–term of the matrix

B(n, n) = 10n · Pn
k . �



Handling Markov Chains with Membrane Computing 111

4 Conclusions

In this paper a deterministic P system with external output associated with a nat-
ural number, n ≥ 2, and with a finite and homogeneous Markov chain, is described.
This P system provides the n–th power of the transition matrix associated with the
Markov chain, encoding the power in the environment of a halting configuration
of the system.

In [1] this problem has been addressed by means of a molecular DNA based
algorithms, giving an estimation of this power in polynomial time, and providing
a new approach to the problem of computing the limit of a Markov chain.

The solution presented in this work is placed in the scope of the cellular com-
puting with membranes. It is a semi–uniform solution, because for each Markov
chain and each power, a specific P system is designed. The solution is efficient,
because it is linear in the power and independent of the number of states of the
Markov chain. Furthermore, the amount of resources initially required to construct
the system is polynomial in the power and in the order of the Markov chain.

The paper also provides a new example of formal verification of P systems
designed to solve a problem, following a specific methodology valid in some cases
like those considered in the paper. These examples are always interesting, for
instance, in order to find systematic processes of formal verification in a model of
computation oriented to machines, like the cellular model, a framework where it
is well known that the mechanisms of verification are often a very hard task.

Acknowledgement

The second author wishes to acknowledge the support of the project TIN2005-
09345-C04-01 of the Ministerio de Educación y Ciencia of Spain, cofinanced by
FEDER funds.

References

1. M. Cardona, M.A. Colomer, J. Conde, J.M. Miret, J. Miró, A. Zaragoza: Markov
chains: computing limit existence and approximations with DNA. BioSystems, 81, 3
(2005), 261–266.

2. O. Häggström: Finite Markov Chains and Algorithmic Applications. London Math-
ematical Society, Cambridge University Press, 2002.

3. R. Nelson: Probability, Stochastic Processes, and Queueing Theory: The Mathematics

of Computer Performance Modeling. Springer-Verlag, New York, 1995.
4. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report Nr.
208, 1998.

5. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
6. ISI web page: http://esi-topics.com/erf/october2003.html




