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Summary. This paper proposes and preliminarily investigates the possibility of trans-
forming a configuration (membrane structure and multisets of symbol-objects present in
the compartments of this membrane structure) of a P system into another configuration,
by means of a given set of rules acting both on the membranes and on the multisets of
objects. Although such a transformation can be obtained during a computation of a P
system, we consider it as a goal per se, as a pre-computation phase, when the system itself
is built. In this framework, several important topics appear, such as the edit-distance be-
tween configurations (with respect to a given set of editing rules; actually, this is a weak
metric, because it is not necessarily symmetric), normal forms, reachability, existence
of single configurations from which a given family of configurations can be constructed,
etc. We investigate here only a few of these questions; the paper is mainly devoted to
formulating problems in the new framework, calling attention to the possible extensions
and usefulness of the present approach.

1 Introduction

Membrane computing aims to abstract computing models from the cell structure
and functioning, [14], [15]. With such a goal, the main research topics of the domain
concern the computing power (comparing the power of the models obtained with
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inspiration from the cell biology with the power of Turing machines and of their
restrictions) and the computing efficiency (solving computationally hard problems
in a feasible time, by making use of a time-space trade-off which is made possible
by various ways of producing an exponential working space in a linear time). The
investigations were rather successful from these points of view – see details in [15]
and in the web page from http://psystems.disco.unimib.it.

Roughly speaking, a cell-like P system consists of a membrane structure (a
hierarchical arrangement of membranes), in the compartments of which one places
multisets of symbol-objects; these two elements, the membrane structure and the
multisets of objects present in its compartments, form a configuration of a system
at a given time. In the compartments or associated with the membranes there also
are sets of rules, according to which the objects and the membrane structure evolve;
otherwise stated, by using these rules we obtain transitions among configurations.
A sequence of transitions is called a computation. A computation is successful only
if it halts, and with a halting computation we associate a result, e.g., in the form
of the vector describing the multiplicity of objects from a given compartment of
the halting configuration.

Here we switch the focus from computations to configurations, and we consider
the problem of passing from a configuration to another configuration with the help
of a given set of rules. This is similar to looking for transitions which link the two
configurations, but the interest is different: we do not care about the computation
itself (halting/non-halting) or about its result, while the rules we consider are
mainly devoted to handling membrane structures. In some sense, our approach is
directed to founding a “membrane calculus”, as attempted also in [4], in another
context.

Actually, there are several motivations for this kind of investigation. For in-
stance, as already mentioned in [6] (the present paper can also be considered as a
continuation of [6]), if a good (weak) metric related to the time of passing from
a configuration to another configuration, with respect to the rules of a given P
system, can be found, then it can be useful in a heuristic strategy to solving hard
problems, based on the A∗ algorithm from [13]. Then, taking into account that a P
system is nothing else than an initial configuration and given sets of rules associ-
ated with membranes, constructing the initial configuration is a way to construct
the system itself; otherwise stated, we can consider a specific set of rules for the
pre-computing case, when the computing model itself is build, and other rules for
the computation. This can have interesting consequences, for instance, in building
a family of P systems associated with a decidability problem, in order to solve it
(the particular systems from the family solve particular instances of the problem
– see details, e.g., in [16]); in the standard computational complexity theory, this
construction is done in polynomial time by a Turing machine, but the problem
was formulated several times to have the P systems solving a problem constructed
by another P system, so that the whole procedure is “uniformly bio-inspired”.
Links with other areas (such as the theory of abstract families of languages, graph
theory, or evolutionary computing) will be mentioned below.
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However, as already said, the present paper is only a preliminary exploration of
the “membrane calculus” we propose, with several results and much more research
topics formulated.

2 Preliminary Definitions

We start by fixing some notation and terminology. For related/further details (from
membrane computing), we refer to [15] and to the papers available in the web page
mentioned above.

An alphabet is a finite and non-empty set of abstract symbols. For an alphabet
A we denote by A∗ the set of all strings of symbols from A, including the empty
string, denoted by λ; the set A∗−{λ}, of non-empty strings over A, is denoted by
A+. The length of a string w ∈ A∗ is denoted by |w|.

A multiset over an alphabet A is a mapping from A to N, the set of natural
numbers. We represent the multisets by strings from A∗; the number of occurrences
of a symbol a ∈ A in a string w, denoted by |w|a, represents the multiplicity of a
in the multiset represented by w (hence all strings obtained by permuting symbols
in a string w represent the same multiset). Because of this direct correspondence
between multisets over A and strings over A, we will use the terms “multiset” and
“string” interchangeably (for instance, we speak about the “length” of a multiset,
with the obvious meaning that this is the total multiplicity of elements in the
multiset, equal with the length of the string which represents the multiset).

In one of the following sections we need the notion of a (non–deterministic)
register machine. Such a device consists of a given number of registers each of
which can hold an arbitrarily large non-negative integer number, and a set of
labelled instructions which specify how the numbers stored in registers can change
and which instruction should follow after any used instruction.

Definition 1. A (non–deterministic) register machine is a construct M =
(m,Lab, l0, lh, P ), where m ≥ 1 is the number of registers, Lab is a nonempty
finite set (whose elements are called instruction labels), l0 ∈ Lab is the start label,
lh ∈ Lab − {l0} is the halt label (assigned to instruction HALT), and P is a finite
set of (labelled) instructions of one of the following three forms:

• l1 : (ADD(r), l2, l3), for l1, l2, l3 ∈ Lab, 1 ≤ r ≤ m,
• l1 : (SUB(r), l2, l3), for l1, l2, l3 ∈ Lab, 1 ≤ r ≤ m,
• lh : HALT (the halt instruction).

Each label from Lab labels at most one instruction of P , and l0 labels one instruc-
tion of P .

A state of a register machine M = (m,Lab, l0, lh, P ) is an m-tuple (a1, . . . , am)
of natural numbers. We interpret the number ai as the content of register i. A
snapshot or instantaneous description of a register machine M = (m,Lab, l0, lh, P )
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is a pair (l, s), where l ∈ Lab is a label, and s is a state of M . Intuitively, the label
l indicates what is the instruction which is about to be executed.

A snapshot σ = (l, s) of a register machine M is called initial if l = l0 and
s = (0, 0, . . . , 0), and it is called halting if l = lh.

Definition 2. Let M = (m, Lab, l0, lh, P ) be a register machine, and σ = (l, s)
with s = (a1, . . . , am) a non–halting snapshot of M . A successor of σ is a snapshot
σ′ = (l′, s′) defined as follows:

1. If l labels an instruction (ADD(r), l2, l3), then s′ = (a1, . . . , ar +1, . . . , am), and
l′ = l2 or l′ = l3.

2. If l labels an instruction (SUB(r), l2, l3), then s′ = (a1, . . . , ar − 1, . . . , am) and
l′ = l2 if ar > 0, and s′ = s and l′ = l3 if ar = 0.

That is, the execution of an instruction (ADD(r), l2, l3) adds 1 to register r and then
go to one of the instructions with labels l2 and l3, non-deterministically chosen.
In the execution of an instruction (SUB(r), l2, l3), if register r is non-empty, then
we subtract 1 from it and continue with the instruction labelled with l2, otherwise
we continue with the instruction labelled with l3.

A computation of a register machine M = (m,Lab, l0, lh, P ) is a (finite or
infinite) sequence σ0, σ1, . . . , σk of snapshots of M such that: (a) σ0 is the initial
snapshot, (b) σi+1 is a successor snapshot of σi, for i = 0, . . . , k − 1, and (c) if
k ∈ N then σk is halting (in this case, we say that the computation is halting).

The set N(M) of natural numbers computed by a register machine M is the
set of numbers x ∈ N such that there exists a halting computation such that if
σ = (lh, (a1, . . . , am)) is its halting snapshot, then a1 = x.

That is, a register machine M computes a set N(M) of numbers in the following
way: we start with all registers empty (hence storing the number zero) with the
instruction with label l0 and we proceed to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number stored at that time in register 1 is said to be computed
by M and hence it is introduced in N(M) (because of the non-determinism in
choosing the continuation of the computation in the case of ADD instructions,
N(M) can be an infinite set.)

It is known (see, e.g., [12]) that in this way we can compute all sets of numbers
which are Turing computable (even with machines with a small number of registers,
but this detail is not of interest here).

Theorem 1. If Q is a Turing computable set, then there exists a register machine
M , such that N(M) = Q.

Without loss of generality, we may assume that when halting, all registers are
empty, with the exception of register 1, which contains the generated/computed
number.
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3 Configurations

Informally speaking, a membrane structure is a 3D arrangement of vesicles, placed
in a unique external membrane, called the skin membrane, without other relations
taken into consideration than the inclusion (child-parent) relation. Mathematically,
this corresponds to a rooted tree structure, with the root associated with the skin.
As usual in membrane computing, we represent the membrane structures by strings
of labelled parentheses (the labels are associated with the membranes, hence also
with the nodes of the underlying tree) or, graphically, as Euler-Venn diagrams (of a
particular type: no intersection is allowed and there is a unique external membrane,
the skin). Figure 1 contains both the graphical and the tree representation of the
following membrane structure
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Fig. 1. Example of a membrane structure.

The number of membranes from a membrane structure µ is called the degree
of µ, and the number of levels of the associated tree (with the root in level 1) is
called the depth of µ. Sometimes, we denote the degree with deg(µ) and the depth
with dep(µ). In the case of the membrane structure from Figure 1, we have the
degree equal to 10 and the depth equal to 5.

In the example above, the labels are associated in a one-to-one way
to membranes. In the case of membrane structures which evolve during a
(pre)computation, e.g., by membrane division, we allow multiple membranes to
be labelled with the same label. In such a case, the identification of membranes
through labels will be no longer possible, that is why we use a double labelling for
membranes, by means of pairs (i, j), where i is the “real” label, and j identifies
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the copy of membrane i in the membrane structure. Thus, if we use labels from
a set H, then the actual labels are from H ∪ (H ×N), with elements of H used
alone when they label unique membranes and in couples when they label several
membranes at the same time. This extended set of labels, H ∪ (H×N), is denoted
by He. The set of labels from He which actually appear in a membrane structure
µ is denoted by He(µ); clearly, this set is finite, as we work here only with finite
membrane structures.

A systematic, recursive procedure for constructing the extended labels can
be based on an encoding 〈i1, j2〉 of numbers j1, j2, for instance, using Cantor
pair function: we start with labels h interpreted as (h, 0); when dividing such
a membrane, we label the resulting membranes by (h, 〈0, 1〉) and (h, 〈0, 2〉); the
membranes obtained by dividing the first of these membranes are labelled by
(h, 〈〈0, 1〉, 1〉) and (h, 〈〈0, 1〉, 2〉), while the membranes obtained by dividing the
second membrane are labelled by (h, 〈〈0, 2〉, 1〉) and (h, 〈〈0, 2〉, 2〉), and so on and
so forth. Because also h is a number, we can encode also h (it can be uniquely
recovered from a code), but we prefer to keep it “visible”, in pair-labels as above.

However, the following convention is made: we use natural numbers as labels of
membranes, the skin membrane is always labelled with 1, and no other membrane
has this label (hence the skin membrane does not need a double labelling).

The unique directly upper membrane of each membrane i, except the case of
the skin (i = 1), which has no membrane above it, is called the parent of i in µ and
denoted by parµ(i); conversely, the directly inner membranes placed in membrane i
are called the children of i and their set is denoted by chdµ(i). Of course, the labels
mentioned here are either from H or from He, depending on the circumstances.
For an elementary membrane h we have chdµ(h) = ∅.

If in each compartment (we also say region) i of a membrane structure µ
we place a multiset wi, of objects from a given alphabet O, then we obtain a
configuration. Note that a multiset can be empty (and then it is represented by
λ).

Definition 3. A configuration C over a set of objects O and with membranes
labelled with elements of some set H is a pair C = (µ, M), where µ is a membrane
structure with labels from He and M : He(µ) −→ O∗ is a mapping which associates
multisets over O with the regions of µ.

4 Rules for Processing Configurations

Because a configuration means both a membrane structure and the associated
multisets, we need rules for processing membranes and multisets of objects.

The types of rules we consider here are indicated in Table 1 (in all cases,
a, b, c, d are objects from an alphabet O (in rules of type (10), c plays the role of
a catalyst), h, h′, h′′ are labels from a set H, and u, v are multisets of objects over
the alphabet O).
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Table 1. Types of rules for configuration editing

Nr. Identification Form of the rule Action

1 div [
h
a]

h
→ [

h′b]h′ [h′′c]h′′ divide

2 mer [
h
a]

h
[
h′b]h′ → [

h′′c]h′′ merge

3 endo [
h
a]

h
[
h′b]h′ → [

h
[
h′d]

h′c]h
endocytosis

4 exo [
h
a[

h′b]h′ ]h
→ [

h
c]

h
[
h′d]

d′ exocytosis

5 cre a → [
h
b]

h
create

6 dis [
h
a]

h
→ b dissolve

7 in a[
h

]
h
→ [

h
b]

h
move in

8 out [
h
a]

h
→ [

h
]
h
b move out

9 ncoo [
h
a → v]

h
non-cooperative objects evolution

10 cat [
h
ca → cv]

h
catalytic objects evolution

11 coo [
h
u → v]

h
cooperative objects evolution

Note that the first four pairs of rules are one the inverse of the other: the
operation of merging two membranes is the inverse of the operation of dividing
a membrane, endocytosis is the inverse of exocytosis, creating a membrane is
the inverse of dissolving a membrane, moving an object inside a membrane is
the inverse of moving it outside a membrane. The cooperative rules for objects
evolution can be considered as their own inverse.

When applying a rule [
h
a]

h
→ [

h′b]h′ [h′′c]h′′ , the contents of membrane h,
objects and membranes alike, are replicated and introduced in both membranes h′

and h′′, with the exception of object a, which is replaced by b in the first membrane
and by c in the second membrane. Conversely, when merging the membranes h′, h′′,
by using the rule [

h′b]h′ [h′′c]h′′ → [
h
a]

h
, then the contents of both membranes is

accumulated (in the multiset sense) in membrane h, with the objects b, c replaced
by a. Similarly, in the exocytosis/endocytosis rules, the whole contents of the
moved membrane is moved together with the membrane, with the objects a, b
replaced by c, d, respectively.

We stress the important fact that the labels appearing in these rules are from
H, not from He −H; that is, a rule associated with a membrane with label h is
applied to all copies of this membrane. Then, because O and H are finite sets,
the number of rules of types (1) – (8) is finite; imposing a bound on the total
multiplicity of multisets u and v (on the length of strings u and v) from rules of
types (9), (10), (11), we can also ensure that the number of rules of these types is
finite.

Rules for membrane division, dissolution and creation, for sending objects in-
side or outside a membrane are currently used in P systems with active membranes;
non-cooperative and catalytic rules for objects evolution are also customary. Rules
for merging membranes and for moving a whole membrane (together with its con-
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tents) inside or outside another membrane were also occasionally used – e.g., in
[3], [1], [11]. In many cases, variants of rules of these types are considered, for
instance, in what concerns the labels of the involved membranes. In the case of
division rules, the basic variant does not allow the change of the labels (which is
allowed for division rules in Table 1 above); then, we can also allow the change of
the label for in/out rules, and this extension was used, e.g., in [2].

These rules are used as standard in membrane computing, choosing the mem-
branes and the objects in a non-deterministic manner, in such a way that the
application of rules is maximally parallel. Each object and each membrane can be
involved in the application of only one rule, with the mentioning that a rule of
the types (9), (10), (11) is not considered as using the membrane h, but only the
objects a, c and those from the multiset u, respectively. Thus, any membrane can
be involved in only one rule of types (1) – (8), but the number of rules of types
(9), (10), (11) which refer to a membrane h does not matter. In all rules of types
(1) – (8) there are involved objects (the rules themselves indicate how the mem-
brane structure is changed, under the influence of objects); these objects cannot
be used at the same time also by rules of types (9), (10), (11). The use of rules of
any type in a membrane structure is done in a bottom-up manner. For instance,
if an elementary membrane h is divided (by a rule of type (1)), or moved into
another membrane (by a rule of type (3)), then first all its objects different from
the object involved in the division or in the move should evolve through object
evolution rules, and, when divided or moved, the membrane will replicate or move
the objects obtained by the maximally parallel use of rules for object evolution.
Similarly, if a membrane contains inside other membranes, then first all lower level
membranes evolve and then the upper level membranes evolve, in the same step.

It is important to note that we have not restricted here the use of rules of any
type to elementary membranes, although this might be an interesting restriction
to investigate.

The previous list contains those rules which we consider as basic, both bio-
logically motivated and mathematically elegant, but, of course, other rules can
be considered. This research topic, related to the set of rules to use, is left to the
reader, and this is an attractive direction of investigation. Here we have mentioned
these eleven types, but we will examine in some details only some combinations
of rules, as an illustration of the type of problems which we want to raise in this
paper.

We close this section by mentioning that by creating membranes and by en-
docytosis we can increase the depth of a membrane structure, while by means of
the converse operations (by dissolving membranes and exocytosis) we can decrease
the depth of a membrane structure. In turn, the membrane division increases the
“width” of a membrane structure (hence it can increase the out-degree of the tree
describing it). Rules of types (7) – (11) do not modify the membrane structure,
they only move objects across membranes or handle objects inside compartments.
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5 The Edit-Distance Among Configurations

We now introduce one of the basic notions of our approach, the edit-distance
among two configurations with respect to a given set of rules.

Let us fix an alphabet of objects, O, and a set of labels, H. Let k be a natural
number. The family of all configurations C = (µ,M), with the membrane structure
of degree at most n and depth at most d, with labels in He and multisets of objects
over O, such that each multiset w present in a region of µ has |w| ≤ k, is denoted
by CFGn,d(O, H, k).

Because both the degree of the membrane structure and the total multiplicity
of elements in the multisets are bounded, the family CFGn,d(O, H, k) is finite for
all n, d, k ≥ 1.

Then, we define

CFG(O, H, k) =
⋃

n≥1,d≥1

CFGn,d(O,H, k).

This is the family of all configurations with membranes labelled with elements
of He and multisets (each of them of total multiplicity at most k) over O. Because
we allow membranes with the same label from H, this family is infinite.

Let us now consider a set R of rules, for instance, of some of the types (1) –
(11). This can be a set of specific rules, which are listed explicitly, or can be a
set of types of rules (that is, the set of all rules of the given types). If we use all
possible rules of given types, then we write the list of rule identifications after R;
for instance, R(div, in, cook) (resp., R(div, in, catk)) is the set of all rules over a
given alphabet and a given set of labels, of types (div), (in), (coo) (resp., (div),
(in), (cat)), with the left-hand and the right-hand member of cooperating rules
of length at most k (resp., using at most k catalysts); the alphabet and the set
of labels follow from the context where the rules are used. If the size of object
processing rules is not relevant (or not known), then we omit mentioning it, and
we write coo instead of cook. Sometimes we also write ncook, indicating the fact
that we use non-cooperating rules a → u with |u| ≤ k.

If for each rule of type (1), (3), (5), (7) we also use the reverse rule of types
(2), (4), (6), (8), respectively, and for each object evolution rule (of types (9), (10),
(11)) [hu → v]h we also have the rule [hv → u]h in the set R, then the set R is
said to be reversible. If to a set R of rules we add all rules reverse to the rules from
R, then we obtain a reversible set of rules, denoted by cR and called the reversible
completion of R. (Clearly, if R contains rules of a type (1), (3), (5), (7), then cR
also contains rules of types (2), (4), (6), (8), respectively, and, if R contain rules
of any type (ncoo), (cat), then cR may contain rules of type (coo). For instance,
cR(div, in, cat) = R(div, mer, in, out, coo), and cR(cre, ncoo) = R(cre, dis, coo).)

For two configurations C1, C2 ∈ CFG(O,H, k) we write C1 =⇒R C2 if we can
pass from C1 to C2 by using rules from R (this is a transition, in the customary
meaning in membrane computing, with the rules used in the maximally parallel
manner). We denote by =⇒∗

R the reflexive and transitive closure of the relation
=⇒R.
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Definition 4. (Edit-distance) We define the mapping

editR : CFG(O, H, k)× CFG(O, H, k) −→ N ∪ {∞},
as follows: for C1, C2 ∈ CFG(O, H, k), we take

editR(C1, C2) =





min{r | C1 =⇒R Ci1 =⇒R Ci2 =⇒R . . . =⇒R Cir
= C2},

if C2 can be reached from C1 by using rules from R,
∞, otherwise.

Of course, a minimal request about the mapping editR would be its effective
computability, but, unfortunately, this does not hold in general, it essentially de-
pends on the type of rules from the set R. Specifically, for many classes of P systems
which are known to compute all Turing computable sets of natural numbers (and
for which the proof is based on simulating register machines), the reachability of
a given configuration from the initial configuration of the system can be arranged
(this depends on the system at hand) to imply the answer to the question whether
or not a given number belongs to the set computed by the system; in turn, this is
equivalent with the membership to the respective set of numbers, and this is not
decidable for arbitrary Turing computable sets of numbers.

Three cases where this reasoning works are given in the next theorems.

Theorem 2. Given n, d,O, H, k as above and the set of rules R(cat2), the mapping
editR(cat2) : CFGn,d(O, H, k) × CFGn,d(O,H, k) −→ N ∪ {∞} is not effectively
computable. Moreover, even for given configurations C1, C2 ∈ CFGn,d(O, H, k),
we cannot effectively compute the value of editR(cat2)(C1, C2).

Proof. The assertion follows from the proof of the main result from [7], where
it is proved that catalytic P systems with two catalysts, using rules of the form
[
h
ca → cv]

h
or [

h
a → v]

h
, can generate all Turing computable sets of natural

numbers. The proof is based on simulating a register machine and the simulation
uses one membrane. One starts with the membrane containing only the initial label
l0 of the register machine – and this is the configuration C1 from the statement
of the theorem. In the end of a computation, in the membrane there remain only
the two catalysts, as well as one given object a, whose multiplicity indicates the
number generated by the computation – this is the configuration C2 from the
theorem statement. Thus, the membership of a given number to the generated
set is equivalent with the reachability of the corresponding configuration from the
initial configuration, and this is not decidable for arbitrary recursively enumerable
sets of numbers. (See more precise constructions of this type in the proofs of the
next theorems.) 2

We present now two non-computability results with full details. The first one
deals with the case when cooperative rules are used; such rules are more powerful
than catalytic rules, but we can impose an additional restriction, on the total
length of rules (which is smaller than in the case of catalytic rules, where we had
five symbols in rules of the form [

h
ca → cbd]

h
).
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Theorem 3. If R is a set of rules which can contain rules [
h
u → v]

h
of type (coo)

with |uv| ≥ 3, then the mapping editR is not computable.

Proof. It is suffices to prove that if C1, C2 ∈ CFGn,d(O, H, k) for given
n, d, O, H, k, then the value of editR(C1, C2) is not necessarily computable.

For an arbitrary non-deterministic register machine M = (n,Lab, l0, lh, P ), let
us consider the alphabet

O = {ai | 1 ≤ i ≤ n} ∪ {l, l′, l′′, l′′′ | l ∈ Lab} ∪ {f},

the configurations C1 = ([
1

]
1
, l0), C2 = ([

1
]
1
, λ), and the following set of rules:

R = {[
1
l1 → l2ar]1, [

1
l1 → l3ar]1 | for all l1 : (ADD(r), l2, l3) ∈ P}

∪ {[
1
l1ar → l2]1,

[
1
l1 → l′1l

′′
1 ]

1
, [

1
l′1ar → f ]

1
, [

1
l′′1 → l′′′1 ]

1
, [

1
l′1l
′′′
1 → l3]1 |

for all l1 : (SUB(r), l2, l3) ∈ P}
∪ {[

1
f → f ]

1
, [

1
lh → λ]

1
}.

Starting from C1, these rules simulate the register machine M . The simulation
of an ADD instruction is obvious, while the simulation of a SUB instruction l1 :
(SUB(r), l2, l3) is done as follows. When l1 is present, we either use the rule [1l1ar →
l2]1, which corresponds to the case when the register r is non-empty, or we use
the rule [

1
l1 → l′1l

′′
1 ]

1
. In the latter case, if any copy of ar is present, then in

the next step we have to use the rule [
1
l′1ar → f ]

1
, simultaneously with the rule

[
1
l′′1 → l′′′1 ]

1
; if no ar is present, then the former rule cannot be used, hence in the

third step we can introduce the label l3 by means of the rule [1l
′
1l
′′′
l → l3]1, which

completes the simulation. If the symbol f was introduced, hence the choice of the
rule [

1
l1 → l′1l

′′
1 ]

1
was “wrong”, because the subtraction was possible, then the rule

[
1
f → f ]

1
will be used forever, hence we never reach the configuration C2. Thus,

C1 =⇒∗
R C2 if and only if 0 ∈ N(M). Because M is arbitrary, the membership

of 0 to N(M) is not decidable, hence the reachability of C2 is not decidable; this
implies that we cannot compute editR(C1, C2). 2

The next result deals with non-cooperative rules, but instead it uses two types
of membrane manipulating rules.

Theorem 4. The mapping editR(div,exo,ncoo2) is not computable.

Proof. It is suffices to prove that if C1, C2 ∈ CFGn,d(O, H, k) for given
n, d, O, H, k, then the value of editR(div,exo,ncoo2)(C1, C2) is not necessarily com-
putable.

We start again from an arbitrary non-deterministic register machine M =
(n,Lab, l0, lh, P ), and consider the alphabet

O = {ai | 1 ≤ i ≤ n} ∪ {l, l′, l′′ | l ∈ Lab} ∪ {d},
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the configurations C1 = ([
1
[
2

]
2
]
1
, d, l0), C2 = ([

1
[
2

]
2
]
1
, d, λ), and the following

set of rules:

R = {[2l1 → l2ar]2, [2l1 → l3ar]2 | for all l1 : (ADD(r), l2, l3) ∈ P}
∪ {[2l1]2 → [ (r)l2] (r)[3d]3,

[
(r)

ar] (r) → [
2
d]

2
[
3
d]

3
,

[
(r)

l2] (r) → [
4
d]

4
[
4
d]

4
,

[
2
l1]2 → [

(r′)l
′
3] (r′)[3d]

3
,

[
(r′)l

′
3 → l′′3 ]

(r′),

[ (r′)l
′′
r ] (r′) → [2l3]2[3d]3,

[
(r′)ar] (r′) → [

4
d]

4
[
4
d]

4
|

for all l1 : (SUB(r), l2, l3) ∈ P}
∪ {[

1
d[

3
d]

3
]
1
→ [

1
d]

1
[
3
d]

3
,

[
4
d → d]

4
,

[
2
d → λ]

2
,

[
2
lh → λ]

2
}.

Starting from configuration C1, these rules simulate the computations of the
register machine in the following way.

The ADD instructions are simply simulated by evolution rules in the inner mem-
brane.

If the label l1 of a SUB instruction l1 : (SUB(r), l2, l3) appears in membrane
2, then we non-deterministically use one of the rules [

2
l1]2 → [

(r)
l2] (r)[3d]

3
and

[2l1]2 → [ (r′)l
′
3] (r′)[3d]3; the first one tries to follows the path towards label l2

(when at least one copy of ar is present), the latter one corresponds to the case
when no ar is present.

Assume that we have used the first rule. In the next step we can use the
rule [ (r)l2] (r) → [4d]4[4d]4, and this leads to an endless computation which never
reaches the configuration C2; the only way to avoid this is to use instead the rule
[
(r)

ar] (r) → [
2
d]

2
[
3
d]

3
, provided that there is a copy of ar in the membrane. In

this way, membrane (r) is used, and divided into a membrane with label 2 and
one with label 3. All membranes with label 3 (and object d inside) are thrown out
of the configuration, by the exocytosis rule [1d[3d]3]1 → [1d]1[3d]3. Therefore,
we return to a configuration with two membranes, l2 inside the inner membrane,
and the number of objects ai, 1 ≤ i ≤ n, corresponding to the contents of the
registers (note that the object d produced by the division operation instead of
the subtracted ar was erased from membrane 2). That is, the continuation has
a chance to go to configuration C2 only if the simulation of this case of the SUB
instruction was correct (otherwise, further objects and membranes remain forever
in the configurations we reach).
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If we apply first the rule [
2
l1]2 → [

(r′)l
′
3] (r′)[3d]

3
, then in the next step we have

to use the object evolution rule [ (r′)l
′
3 → l′′3 ] (r′). Simultaneously (because the rule

above does not “keep busy” the membrane), if any occurrence of ar is present,
then we have to also use the rule [

(r′)ar] (r′) → [
4
d]

4
[
4
d]

4
, which introduces the

trap membrane 4, again preventing the reach of configuration C2. If no occurrence
of ar is present, then the membrane remains unchanged, hence in the next step
we can use the rule [ (r′)l

′′
r ] (r′) → [2l3]2[3d]3, which both returns the label of the

membrane to 2 and introduces the object l3. This means that also this sequence
of operations correctly simulates the SUB instruction, in the sense that we remain
“on the way towards C2” if and only if l3 is introduced and no ar is present.

We continue in this way. The only way to reach C2 is to reach the label lh,
which can be erased. This means that 0 ∈ N(M), which is undecidable for an
arbitrary register machine M , and this completes the proof. 2

In the previous theorems, the configurations C1, C2 are taken from the finite
set CFGn,d(O, H, k), but the reachability is not restricted to paths through con-
figurations which belong to the same CFGn,d(O,H, k), but arbitrarily large con-
figurations, as the multisets contained, are allowed; if we restrict to paths through
CFGn,d(O,H, k), then, of course, the reachability is decidable, because we only
have to search a finite set of configurations.

Remark 1. The previous proofs also give the universality of P systems using rules
of types (coo2), and (div), (exo), (ncoo2), respectively; the first result is known –
see Theorem 3.3.3 from [15] – except that the proof from [15] use rules u → v with
|u| ≤ 3 and |v| ≤ 4; the latter result reminds a similar result from [2] (our division
rules do not use polarizations, as usual in P systems with active membranes, but
they allow label change, a feature also used in [2]), with the mentioning that the
result from [2] is obtained in a more complicated manner (the proof is based on
simulating matrix grammars with appearance checking), instead of exocytosis uses
(out) rules, and the used rules for object evolution are of the form a → v with
|v| ≤ 3. A universality result for P systems using (div), (exo), (ncoo) rules appears
also in [11], but using endocytosis rules (the proof is based on a different idea:
simulating another class of P systems, which is known to be universal).

Research topic: Find sets R of rules for which the mapping editR is com-
putable on CFG(O, H, k)× CFG(O, H, k).

Still, from a mathematical point of view, the mapping editR can be considered
as a good estimation of the distance from C1 to C2:

Lemma 1. For any R, editR is a weak-metric.

Proof. The fact that editR(C1, C2) = 0 if and only if C1 = C2 is obvious. The
triangle inequality is also obvious: if we can pass from C1 to C3 and from C3 to C2,
this also gives a path from C1 to C2, which should be at least as long as the shortest
path from C1 to C2; that is, editR(C1, C2) ≤ editR(C1, C3) + editR(C3, C2). 2
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The symmetry condition does not hold in general, but it is entailed by the
reversibility of R:

Lemma 2. If R is reversible, then editR(C1, C2) = editR(C2, C1) for all C1, C2 ∈
CFG(O, H, k).

Proof. Each transition performed by a reversible rule can be performed also in the
reverse direction, using the reverse operations made possible by the rules, hence
any path from C1 to C2 corresponds to a path from C2 to C1, with the same length.
Thus, not only C2 is reachable from C1 if and only if C1 is reachable from C2, but
also the minimal number of transitions necessary in any of the two directions is
the same. 2

This lemma makes possible the definition of a plain metric among configura-
tions:

Lemma 3. For a reversible set R of rules, editR is a metric.

Proof. Combine Lemmas 1 (weak metric) and 2 (the symmetry condition). 2

6 A Case Study: Rules of Types (cre) and (ncoo)

Somewhat expected, by using membrane creation rules (as well as non-cooperative
rules for handling the objects), we can create any configuration from a configura-
tion of a very reduced form, a sort of “seed-of-configurations”. This result is of a
particular interest, having several consequences.

Let us consider the simplest non-trivial configuration, C0 = ([1 ]1, a) (one
membrane, one single object inside).

Theorem 5. For every configuration C ∈ CFGn,d(O, H, k), there is a finite
set R of rules of types (cre) and (ncoo), over an alphabet O′ ⊃ O, such that
editR(C0, C) ≤ 2d− 1.

Proof. Let us assume that C = (µ, M), with deg(µ) = n and dep(µ) = d. For each
label g ∈ He(µ) of a membrane in µ we consider the objects 〈g〉 and 〈g〉′. That is,

O′ = O ∪OH , where OH = {〈g〉, 〈g〉′ | g ∈ He(µ)}.

Now, we consider the following rules, over O′:

1. [1a → M(1)〈j1〉〈j2〉 . . . 〈jr1〉]1, where {j1, j2, . . . , jr1} = chdµ(1).
2. 〈g〉 → [g〈g〉′]g,

[
g
〈g〉′ → M(g)〈h1〉〈h2〉 . . . 〈hrg 〉]g

, where {h1, h2, . . . , hrg} = chdµ(g) and g ∈
He(µ).
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It is obvious that by using these rules we can construct C2 level by level, with two
steps necessary for each level which is not the first one (of the root). Thus, in at
most 2d − 1 steps (if d = 1 and C 6= C0, then we pass from C0 to C in one step)
we reach the configuration C. That is, editR(C0, C) ≤ 2d − 1, where R is the set
of rules considered above. 2

If we add to R also the reverse rules, then we can pass in the same number of
steps also from C to C0. Thus, editcR(C0, C) ≤ 2d− 1.

Note the interesting fact that the distance from C0 to C does not depend on
the degree of C, but only on its depth.

Of course, in the theorem above we can take R as containing all rules of types
(cre) and (ncoo) over O′ and H, with bounded object evolution rules), that is,
R(cre, ncook+r), where r = max{card(chdµ(g) | g ∈ He(µ)}. This dependence of
the size of object processing rules (those of type (ncoo)) from R on k and on the
out-degree of µ is not very attractive. At the expense of a linear slowdown, this
dependence can be avoided, and we can consider rules [

g
a → v]

g
with |v| ≤ 2 –

hence the set R(cre, ncoo2).
Indeed, each rule [

g
α → α1α2 . . . αk]

g
can be replaced with the sequence of

rules

[
g
α → α1〈α2 . . . αk〉]g

,

[g〈αi . . . αk〉 → αi〈αi+1 . . . αk〉]g, 2 ≤ i ≤ k − 2,

[
g
〈αk−1αk〉 → αk−1αk]

g
,

where 〈αi . . . αk〉, 2 ≤ i ≤ k, are new symbols, constructed for all α, αi ∈ O′.
In this way, the size of rules from R becomes independent of C, but the con-

struction of C does no longer proceed level by level and, moreover, it can last
d · (k + r) − 1 steps, where r is the maximal out-degree of µ: instead of one rule
[
g
〈g〉′ → M(g)〈h1〉 . . . 〈hr〉]g

we use now k + r − 1 rules, to which we have to add
the use of the rule 〈g〉 → [g〈g〉′]g. This result is rather interesting, hence it is
worth stating as a theorem.

Theorem 6. If C ∈ CFGn,d(O, H, k), then editR(cre,ncoo2)(C0, C) < d·(n+k)−1.

Proof. Besides the previous discussion, we have to use the fact that the maximal
out-degree of µ is strictly smaller than the degree of µ, which is n. 2

If we want to use a construction as in the proof of Theorem 5 for obtaining the
initial configuration of a P system, hence we also have sets of rules associated with
the compartments of µ, acting on the membranes and on the multisets of C in a
computation which is different from the pre-computation done by using the rules
of R, then there appears a problem here: in general, when dealing with classes of
membrane systems where we can create new membranes, the rules associated with
membranes are supposed to be given as soon as the membrane is created (and they
are identified by the label of the membrane). That is, in the construction above,
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after introducing a multiset M(g) in a membrane g, the rules associated with g
can start working, although the membranes from lower levels are not yet present.
This leads to the de-synchronization of the system, which is not correct.

Still, this difficulty can be overcome, by introducing the multisets only in the
last moment of the construction. Because this is a rather important aspect, we
give here the full details, modifying the construction from the proof of Theorem 5
for this case.

Theorem 7. For every configuration C = (µ,M) ∈ CFGn,d(O,H, k), there is a
finite set R of rules of types (cre) and (ncoo), over an alphabet O′ ⊃ O, such
that editR(C0, C) ≤ 2d − 1 and the multisets of C are available only in the last
step of the passage from C0 to C. That is, there exist configurations C1, . . . , Cp ∈
CFGn,d(O,H, k) such that p ≤ 2d− 1, C0 =⇒R C1 =⇒R C2 =⇒R . . . =⇒R Cp =
C, and for all i ∈ He(µ), M(i) ∈ C − (C0 ∪ C1 ∪ . . . ∪ Cp−1).

Proof. This time, for each label g ∈ He(µ) of a membrane in µ we consider the
objects 〈g〉, 〈g〉′ indexed with the step when such symbols are supposed to evolve.
We proceed in the same way with the multisets M(i). Specifically, we take

O′ = O ∪ {〈g〉s, 〈g〉′s | g ∈ He(µ), 2 ≤ s ≤ 2d− 1}
∪ {〈M(g)〉s | g ∈ He(µ), 2 ≤ s ≤ 2d− 1},

and the following rules in R:

1. [1a → 〈M(1)〉2〈j1〉2〈j2〉2 . . . 〈jr1〉2]1, where {j1, j2, . . . , jr1} = chdµ(1).
2. 〈g〉2s → [g〈g〉′2s+1]g,

[
g
〈g〉′2s+1 → 〈M(g)〉2s+2〈h1〉2s+2〈h2〉2s+2 . . . 〈hrg 〉2s+2]g

, where
{h1, h2, . . . , hrg} = chdµ(g) and g ∈ He(µ) labels a membrane in a level s of
µ with s < d.

3. 〈g〉2d−2 → [
g
〈g〉′2d−1]g

,

[g〈g〉′2d−1 → M(g)]g, where g is a membrane in level d of µ.
4. [g〈M(g)〉j → 〈M(g)〉j+1]g, for all g ∈ He(µ) and 1 ≤ j ≤ 2d− 2,

[
g
〈M(g)〉2d−1 → M(g)]

g
, for all g ∈ He(µ).

This time, each multiset M(g) is introduced in the “protected” form 〈M(g)〉s,
with s indicating the step of the computation (pre-computation, if we take into
account the fact that we want to construct the initial configuration of a P system);
only in the last step the symbols 〈M(g)〉2d−1 are replaced with the actual multisets
M(g), all of them at the same time, hence from now on the computation can start,
synchronously, in all compartments of µ. 2

The remark made after Theorem 5, about the possibility of bounding the mul-
tiset v from rules [

g
a → v]

g
, is valid also for the construction from the proof of

Theorem 7, but this time we have to be careful with the synchronization, hence ev-
ery symbol from a multiset should be “protected”, such that it becomes active only
in the last step of the pre-computation. This can be again achieved by indexing
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each object from O with counters which increase with the steps of the computa-
tion. Because the length of the pre-computation depends on the out-degree of the
tree of µ, we have to count in the indices of symbols 〈M(i)〉s for each level exactly
r + 1 steps, where r is the maximal out-degree of µ, even if the out-degree of the
node where we work might be smaller than r. Thus, after (r + 1)d − 1 steps, we
pass to producing the symbols of multisets M(i), one by one, during k − 1 steps,
where k is the maximal length of a multiset. That is, we un-protect the symbols,
passing from objects of type 〈a〉s to a only after (r +1)d− 1+ (k− 1) steps. The
technical details, although clear from the previous discussion, are cumbersome,
hence we omit them.

We illustrate the construction from the proof of Theorem 7 (without restrictions
on the size of rules of type (ncoo)) with the case of the configuration C with the
membrane structure as in Figure 1 and multisets M(i), 1 ≤ i ≤ 10, which we do
not specify. The set R contains the rules given in Table 2 (we present the rules in
the order they are used in the 9 steps of the passage from C0 to C). The reader is
asked to follow the work of these rules, on the way from C0 to C.

Table 2. Rules of types (cre), (ncoo) for obtaining the configuration from Figure 1

Step Rules

1 [
1
a → 〈M(1)〉2〈2〉2〈3〉2]1

2 〈2〉2 → [
2
〈2〉′3]2, 〈3〉2 → [

3
〈3〉′3]3, [

1
〈M(1)〉2 → 〈M(1)〉3]1

3 [
2
〈2〉′3 → 〈M(2)〉4〈4〉4]2, [

3
〈3〉′3 → 〈M(3)〉4〈5〉4〈6〉4]3, [

1
〈M(1)〉3 → 〈M(1)〉4]1

4 〈4〉4 → [
4
〈4〉′5]4, 〈5〉4 → [

5
〈5〉′5]5, 〈6〉4 → [

6
〈6〉′5]6,

[
1
〈M(1)〉4 → 〈M(1)〉5]1, [

2
〈M(2)〉4 → 〈M(2)〉5]2, [

3
〈M(3)〉4 → 〈M(3)〉5]3

5 [
4
〈4〉′5 → 〈M(4)〉6〈7〉6〈8〉6〈9〉6]4, [

5
〈5〉′5 → 〈M(5)〉6]5, [

6
〈6〉′5 → 〈M(6)〉6]6,

[
1
〈M(1)〉5 → 〈M(1)〉6]1, [

2
〈M(2)〉5 → 〈M(2)〉6]2, [

3
〈M(3)〉5 → 〈M(3)〉6]3

6 〈7〉6 → [
7
〈7〉′7]7, 〈8〉6 → [

8
〈8〉′7]8, 〈9〉6 → [

9
〈9〉′7]9,

[
i
〈M(i)〉6 → 〈M(i)〉7] i

, for i = 1, 2, 3, 4, 5, 6

7 [
7
〈7〉′7 → 〈M(7)〉8]7, [

8
〈8〉′7 → 〈M(8)〉8〈10〉8]8, [

9
〈9〉′7 → 〈M(9)〉8]9,

[
i
〈M(i)〉7 → 〈M(i)〉8] i

, for i = 1, 2, 3, 4, 5, 6

8 〈10〉8 → [
10
〈10〉′9]10, [

i
〈M(i)〉8 → 〈M(i)〉9] i

, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9

9 [
10
〈10〉′9 → M(10)]

10
, [

i
〈M(i)〉9 → M(i)]

i
, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9

Theorem 6 has a series of interesting consequences.
For an alphabet O and a set H of labels, let OH be the alphabet defined in

the proof of Theorem 5. Let R(cre, ncoo2) be the set of all rules of types (cre) and
(ncoo) with objects in O ∪OH and labels in H. Clearly, this is a finite set.

Corollary 1. If C1 ∈ CFGn1,d1(O, H, k1) and C2 ∈ CFGn2,d2(O, H, k2), then
editcR(cre,ncoo2)(C1, C2) < d1 · (n1 + k1) + d2 · (n2 + k2)− 2.
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Proof. We just write the triangle inequality for C1, C2, C0 and we use the re-
sult from Theorem 6. Because we work with the reversible completion of the set
R(cre, ncoo2), we can pass both from C0 to C1, and C2, and conversely, thus having
a path from C1 to C2. 2

This means that any two configurations from CFG(O, H, k) can be reached
from each other, they are at a finite distance with respect to the set cR(cre, ncoo2)
of rules.

The previous corollary gives only an upper bound on the distance among the
considered configurations. Can this estimation be improved? This seems to be
always possible, at least with a (small) constant: when passing directly from C1

to C2 we can “save” that part of the membrane structure of C1 which can be
found also in C2 (for instance, the skin membrane). The question which is the
largest improvement in general, or for two configurations with certain “similarities”
remains as a research topic.

7 Generators for Families of Configurations

Another interesting consequence of Theorem 6 is the fact that the configuration C0

can be seen as a generator of the whole family CFG(O,H, k), with respect to rules
from R(cre, ncoo2), or, in terms of P systems, as a normal form for all systems
which can use rules for membrane creation (the “minimality” of the configuration
C0 is somewhat surprising and, of course, pleasant: any recursively enumerable set
of numbers can be generated by a system with the initial configuration equal to
C0). We place this idea in a more general framework, resembling the one of AFL
(abstract family of languages) theory, see [8].

Definition 5. Let C ⊆ CFG(O,H, k) be a family of configurations and R a set of
rules. We define

genR(C) = {C ∈ CFG(O, H, k) | editR(C ′, C) < ∞ for some C ′ ∈ C}.
That is, genR(C) is the family of configurations which can be reached, in a finite
number of steps, when starting from configurations from C, by using rules from R.

Definition 6. For C1, C2 ⊆ CFG(O,H, k) and a set R of rules, we say that:

1. C1 is an R-generator for C2 if genR(C1) = C2;
2. C1 is an R-cover for C2 if C2 ⊆ genR(C1).

Of course, any set of configurations is an R-cover for itself with respect to any
set of rules, hence of interest are minimal generators and covers, in particular,
singleton generators and covers.

Definition 7. A family C ⊆ CFG(O, H, k) of configurations is said to be principal
with respect to a set R of rules if there is a configuration C ∈ CFG(O, H, k) such
that genR({C}) = C. In such a case we say that C is an R-generator for C.
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In this framework, Theorem 6 directly implies the following interesting result:

Theorem 8. The family CFG(O, H, k) is principal with respect to the set of rules
R(cre, ncoo2), and C0 is an R(cre, ncoo2)-generator for CFG(O, H, k).

Because in a principal family each configuration can be reached from any given
generator, if the respective set of rules is reversible, then it also follows that any
configuration can be reached from any other configuration (passing through the
given generator), hence we have:

Corollary 2. In the family CFG(O, H, k), any configuration is a generator with
respect to cR(cre, ncoo2) = R(cre, dis, coo2).

8 Using Rules of Types (div), (endo), and (ncoo)

The rules of type (cre) and (ncoo) are not the only ones for which we can obtain
results as above. The use of rules of type (ncoo) (or (cat), (coo)) cannot be avoided,
because these rules are the only ones (in the basic set considered here) which
can increase the number of objects in the configurations, but membranes can be
created also by division. However, as we have noticed already, by division we cannot
increase the depth of the membrane structure. This can be done by endocytosis
rules, hence a combination of rules of type (div) and (endo) can simulate rules of
type (cre).

For instance, if we want to create a new membrane, with label g, inside an
existing membrane h, we can first pass from [ha]h to [hb]h[gc]g (the object a is
supposed to exist in membrane h), by using a division rule, then to [

h
[
g
c′]

g
b′]

h
,

by an endocytosis rule.
Still, one more difficulty arises: we cannot divide the skin membrane, hence we

cannot start from the configuration C0 used in the previous sections, we need at
least two membranes in the beginning.

On the other hand, by using endocytosis/exocytosis rules (as well as rules of
type (coo)), any configuration with n membranes can be transformed into any
configuration with the same number of membranes. Then, if exocytosis is allowed
also with respect to the skin membrane, then we can expel membranes from the
configurations, thus decreasing the degree of the membrane structures. Of course,
by using membrane dissolving rules (but not membrane creation rules) we can
again decrease the degree of configurations.

Therefore, several combinations of rules can be considered which leads to results
like those from Sections 6 and 7 (of course, with edit-distances among configura-
tions different from those in sections above).

In what follows we consider only the case when we use rules of types
(div), (endo), and (ncoo), again with a bound on the length of rules of
type (ncoo), without permitting the exocytosis for the skin membrane (con-
sequently, the number of membranes cannot be decreased). That is, we use
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the set R(div, endo, ncoo2) of rules. Consider also the configurations Cm
0 =

([1[2 . . . [m ]m . . . ]2]1, a1, a2, . . . , am), for all m ≥ 1, where a1, a2, . . . , am are new
symbols, not in the alphabet O, with each object ai present in region i, 1 ≤ i ≤ m.

We mention here, without a proof, only the result corresponding to Theorem
8. For m ≥ 1, let us denote

CFG≥m(O, H, k) =
⋃

n≥d≥m

CFGn,d(O, H, k),

hence this is the family of all configurations C = (µ,M) with membrane structures
of degree at least m.

Theorem 9. The family CFG≥m(O, H, k) is principal with respect to the set of
rules R(div, endo, ncoo2), and Cm

0 is an R(div, endo, ncoo2)-generator for this fam-
ily.

It is also worth noting the result corresponding to Theorem 7, which provides
a further normal form for systems which are allowed to use rules for the division of
membranes and endocytosis, and non-cooperative rules for object evolution: any
system of this type of degree at least m is equivalent with a system having the
initial configuration equal to Cm

0 .
If we consider a set of rules containing rules of types (div), (endo), (exo), (ncoo),

without restricting the exocytosis, or if we allow dissolving rules, then we can again
generate CFG(O, H, k) starting from C0, hence we have a general normal form
theorem, for P systems of any degree.

In order to have an idea about the way the path from Cm
0 to an arbitrary

configuration C ∈ CFG≥m(O,H, k) proceeds, we illustrate the construction for a
result like that from Theorem 5 – hence without the complications which appear
if we want to protect the multisets of objects, in view of a proof of a result like
Theorem 7, and without limiting the size of object processing rules.

We consider again a configuration C with the membrane structure µ from
Figure 1 and multisets M(i) placed in the compartments i = 1, 2, . . . , 10 of µ. The
configuration C can be generated from C2

0 , even if we use no exocytosis rule, and
we consider here this case.

The set of rules used is given in Table 3, which, like in case of Table 2, presents
the rules in the order of the steps when they are used. The symbols b, c, d, e, f used
in the rules are chosen in an ad hoc manner; in order to generalize the construction
to an arbitrary configuration, these symbols should be related in a systematic
manner to the membranes whose evolution they control and to the step of the
construction (which is also related to the level of the tree where we work). Such
technicalities are left to the reader.

9 A Plethora of Research Topics

Several research topics were already mentioned above, and many others can be
considered. We formulate here only some of them, without any intention to be
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Table 3. Rules of types (div), (endo), (ncoo) for obtaining the configuration from Fig-
ure 1

Step Rules

1 [
1
a1 → M(1)]

1
, [

2
a2]2 → [

2
b1]2[3b2]3

2 [
2
b1]2 → [

2
c1]2[4c2]4, [

3
b2]3 → [

3
c1]3[5c2]5

3 [
2
c1]2[4c2]4 → [

2
[
4
c′2]4c

′
1]2, [

3
c1]3[5c2]5 → [

3
[
5
c′2]5c

′
1]3

4 [
2
c′1 → M(2)]

2
, [

3
c′1 → M(3)]

3
,

[
4
c′2]4 → [

4
d1]4[7d2]7, [

5
c′2]5 → [

5
d1]5[6d2]6

5 [
4
d1]4[7d2]7 → [

4
[
7
d′2]7d

′
1]4, [

5
d1 → M(5)]

5
, [

6
d2 → M(6)]

6

6 [
4
d′1 → M(4)]

4
, [

7
d′2]7 → [

7
e1]7[8e2]8

7 [
7
e1 → M(7)]

7
, [

8
e2]8 → [

8
e′2]8[9e3]9

8 [
9
e3 → M(9)]

9
, [

8
e′2]8 → [

8
f1]8[10f2]10

9 [
8
f1]8[10f2]10 → [

8
[
10

f ′2]10f
′
1]8

10 [
8
f ′1 → M(8)]

8
, [

10
f ′2 → M(10)]

10

exhaustive (and without knowing which of these topics are difficult and which are
straightforward).

In the previous sections we have investigated only some very particular cases:
the family CFG(O, H, k), the set of rules R(cre, ncoo2), the generator C0, as well
as the family CFG≥2(O, H, k), the set of rules R(div, endo, ncoo2), and the gen-
erator Cm

0 . Consider other families of configurations. For instance, what about
CFGn,d(O,H, k)? What about families using particular types of membrane struc-
tures (described by linear trees, binary trees, trees of depth 2, etc)? Then, there
are families of P systems – hence of configurations – which appear in a natural
way in various contexts; such a context is that of solving NP-complete problems
in polynomial time, using a family of P systems constructed in an uniform man-
ner, starting from the problem to solve (see details in [16] and in a series of other
papers). Can such a family be generated from a given unique configuration, using
a suitable set of rules?

Many problems are suggested by the parallelism with the AFL theory. De-
fine a sort of “abstract family of configurations”, with “nice” closure properties
(under operations defined by evolution rules, but also under set-theoretical oper-
ations, such as union and intersection). Consider sets of rules R and families of
configurations C such that genR(C) 6= CFG(O, H, k); which properties has such a
family?

A large panoply of problems is related to the set of rules taken into account.
Any set of rules of types belonging to a subset of the set {(1),. . . , (11)} can be
considered, arbitrary or reversible, with specific restrictions on the size of multisets
used in rules for object evolution. Also, other types of rules can be considered.
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Find families of configurations and sets of rules for which the minimal gen-
erators are not singletons (that is, find families of configurations which are not
principal with respect to a given set of rules). Is the property of being a generator
decidable for a given family of configurations, a given set of rules, and a given
candidate generator? (The answer should be negative in general, because of the
Turing completeness of most classes of P systems.) Providing that we know that
a family is principal, how can we find a generator? Is this possible in an effective,
algorithmic way? Which is the complexity of such an operation?

The decidability and complexity issues were already mentioned for the question
whether a configuration can be reached from another configuration by means of
rules in a given set, and this is of a crucial importance (e.g., for the possible
applications of our approach). Again, the answer depends in an essential manner
on the set of rules – but how exactly this happens it remains to be discovered.
Connections with previous investigations of reachability issues will probably be
useful, especially for cases where the reachability can be decided – see, e.g., [9],
[10].

A series of interesting questions concerns the possible relations of the inves-
tigations above with other areas of computer science, of mathematics in general.
Processing configurations means to process the underlying trees, too. Can any con-
nection with tree/graph grammars be established? Then, we can naturally define
a graph on the set CFG(O, H, k), with the configurations as nodes and the arcs
indicating the transitions among configurations with respect to a given set of rules.
How this link can be used? Looking for (the number of) connected components
in this graph seems to be directly related to the cardinality of generator sets.
Furthermore: what about the topological properties of the metric space defined
by a distance editR? Which is the relevance of such connections for membrane
computing?

On the same line, interesting connections seems to be possible with evolution-
ary computing. Assume that we have a criterion according to which some config-
urations can be considered “better” than others (and that this criterion can be
checked in an efficient manner). Then we can try to “improve” the configurations
as usual in evolutionary computing: start from an initial population of configura-
tions, apply a given number of rules, randomly, to these configurations, so that
a new population is obtained; select from this population only part of configura-
tions, in the decreasing order of their quality; repeat these steps until a satisfactory
configuration is obtained (or a given number of steps have been performed). Any
application of this strategy?

We close this section with an “exotic” question, that of self-reproduction: by
sending membranes out of the skin membrane (by exocytosis – rules of type (a)),
we can send a whole configuration/system into the environment. How can this be
done in such a way to start from a given configuration (any given configuration?)
and to send out a copy of it? This is interesting also as an intrinsic problem, and
it can be useful both for creating exponential space for solving hard problems and
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for creating further and further agents capable of “exploring the extraterrestrial
space” in the speculative framework sketched in [5].

10 Final Remarks

We conclude these notes with the belief that the investigations started here deserve
further efforts, both because of the mathematical appeal of the many questions
raised in this framework, but also because of the interest for membrane computing
in general, and for possible applications in particular (e.g., in finding heuristic
algorithms for addressing certain decidability or optimization problems).

We hope to return to this topic in a forthcoming paper.
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