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Summary. We consider P systems with only one membrane using symport/antiport
rules and prove that any recursively enumerable set of k-dimensional vectors of natural
numbers can be generated (accepted) by using at most k + 4 symbols; hence, any recur-
sively enumerable set of natural numbers can be generated (accepted) by using at most
five symbols.

1 Introduction

In the area of membrane computing there are two main classes of systems: P sys-
tems with a hierarchical (tree-like) structure as already introduced in the original
paper of Gheorghe Paun (see [10]) and tissue P systems with cells arranged in
an arbitrary graph structure (see [6], [5]). We here consider “classical” P systems
using symport/antiport rules for the communication through membranes (these
communication rules first were investigated in [9]).

It is well known that equipped with the maximally parallel derivation mode
(tissue) P systems with only one membrane (one cell) already reach universal
computational power, even with antiport rules of weight two (e.g., see [2] and
[4]); yet on the other hand, in these P systems the number of symbols remains
unbounded.

Considering the generation of recursively enumerable sets of natural numbers
we may also ask the question how many symbols we need for obtaining computa-
tional completeness in a small number of membranes. In [12] the quite surprising
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result was proved that three symbols are enough in the case of P systems with
symport/antiport rules. The specific type of maximally parallel application of at
most one rule in each connection (link) between two cells or one cell and the en-
vironment, respectively, in tissue P systems allowed for an even more surprising
result proved in [7]: The minimal number of one symbol is already sufficient to
obtain computational completeness, e.g., it was shown that any recursively enu-
merable set of natural numbers can be generated by a tissue P system with at
most seven cells using symport/antiport rules of only one symbol. The question
remained open whether such a result for the minimal number of symbols can also
be obtained for “classical” P systems with symport/antiport rules.

In this paper we follow another direction and consider “classical” P systems
using symport/antiport rules with the minimal number of membranes, i.e., we are
going to prove that computational completeness can already be obtained in one
membrane by using only five symbols.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we refer to
any monograph in this area, in particular, to [1] and [14]. We just list a few notions
and notations: N denotes the set of non-negative integers (natural numbers). V* is
the free monoid generated by the alphabet V' under the operation of concatenation
and the empty string, denoted by A, as unit element; by RE (RE (k)) we denote the
family of recursively enumerable languages (over a k-letter alphabet). By ¥ (L) we
denote the Parikh image of the language L C T™, and by PsF L we denote the set
of Parikh images of languages from a given family FL. PsRFE (k) corresponds with
the family of recursively enumerable sets of k-dimensional vectors of non-negative
integers.

2.1 Register machines

The proofs of the main results established in this paper are based on the simulation
of register machines; we refer to [8] for original definitions, and to [2] for definitions
like that we use in this paper:

An (non-deterministic) register machine is a construct M = (n, R, lg, 1),
where n is the number of registers, R is a finite set of instructions injectively
labelled with elements from a given set lab (M), Iy is the initial/start label, and I,
is the final label.

The instructions are of the following forms:

- ll : (A (T) ,lg, 13)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) Iy and 3. (We say that we have an ADD instruction.)
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- ll : (S(T’),lg,lg)

If register r is not empty, then subtract 1 from its contents and go to in-
struction Iy, otherwise proceed to instruction /3. (We say that we have a SUB
instruction.)

Iy, : halt

Stop the machine. The final label [ is only assigned to this instruction.

A register machine M is said to generate a vector (sq,..., sx) of natural num-
bers if, starting with the instruction with label [y and all registers containing the
number 0, the machine stops (it reaches the instruction I, : halt) with the first k
registers containing the numbers s1, ..., s, (and all other registers being empty).

Without loss of generality, in the succeeding proofs we will assume that in each
ADD instruction Iy : (A(r),l2,l3) and in each SUB instruction Iy : (S (r),l2,13)
the labels i1, 13,13 are mutually distinct (for a short proof see [5]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of natural numbers which can be generated by Turing machines, i.e.,
the family PsRFE. Especially we know that k + 2 registers are enough to gener-
ate/accept any recursively enumerable set of k-dimensional vectors of non-negative
integers (see [2], [8]).

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [11]; comprehensive information can be found on the P systems web page
http://psystems.disco.unimib.it.

A P system (of degree m > 1) with symport/antiport rules (in the following we
shall only speak of a P system) is a construct

II =(0,T,FE, p,wy, Ry, o),
where

O is the alphabet of objects,
T C O is the alphabet of terminal objects,
E C O is the set of objects present in arbitrarily many copies in the environ-
ment,

e 1 is the membrane structure (it is assumed that we have m membranes, labelled
with 1,2,...,m, the skin membrane usually being labelled with 1),

o w;, 1 <i < m, are strings over O representing the initial multiset of objects
present in the membranes of the system,

e R;, 1<i < m, are finite sets of symport/antiport rules of the form z/y, for
some z,y € O*, associated with membrane ¢ (if |z| or |y| equals 0 then we
speak of a symport rule, otherwise we call it an antiport rule),



22 A. Alhazov, R. Freund

e g is the designated output membrane to collect the terminal symbols repre-
senting the result of a halting computation.

An antiport rule of the form z/y € R; means moving the objects specified by
2 from membrane i to the surrounding membrane j (to the environment, if i = 1),
at the same time moving the objects specified by y in the opposite direction. (The
rules with one of x, y being empty are, in fact, symport rules, but in the following
we do not explicitly consider this distinction here, as it is not relevant for what
follows.) The objects from E are never exhausted, irrespective how many copies of
each of them are brought into the system, an unbounded number of copies remains
available in the environment.

The computation starts with the multisets specified by wi,...,w,, in the m
membranes; in each time unit, the rules assigned to each membrane are used in
a maximally parallel way, i.e., we choose a multiset of rules at each membrane
in such a way that, after identifying objects inside and outside the corresponding
membranes to be affected by the selected multiset of rules, no objects remain to
be subject to any additional rule at any membrane. The computation is successful
if and only if it halts; the result is represented by the multiset of terminal objects
from T in the output membrane ig. The set of all k-dimensional vectors computed
in this way by the system IT is denoted by Ps(II, k). The family of sets Ps(I1, k) of
vectors computed as above by systems with at most m cells and at most s symbols
is denoted by PsOsP,, (k). When any of the parameters k, m, s is not bounded, it
is replaced by .

As in this paper we are dealing with systems using only one membrane, we
consider the set O to consist of the symbols a; to as, the set of terminal symbols
consists of the first k£ symbols a1 to ax, and, moreover, we shall always assume all
symbols to be available in an unbounded number in the environment, i.e., E = O.
Hence, in the following we use the following simplified notation:

Convention. For P systems with one membrane we shall only write
I = (87 k7 w1, Rl) )

where s is the number of symbols, k is the number of terminal symbols, the string
wy describes the multiset of objects initially being present in the skin membrane,
and R is the finite set of symport/antiport rules assigned to the skin membrane.

3 Results

We first prove our main result that for simulating a register machine with d reg-
isters in a P system with one membrane we only need d + 2 symbols.

Theorem 1. Each register machine with d registers can be simulated by a P system
with symport/antiport rules in only one membrane with at most d + 2 symbols.
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Proof. Let us consider a register machine M = (n, R,lo, 1) with d registers; no
matter what the goal of the computation of M is (the number k then designates
which registers are to be interpreted as output registers), we can construct the P
system (of degree 1)

I = (d—|—2,k,w1,R1)

in such a way that IT simulates the actions of M in such a way that IT starts with
the multisets of symbols corresponding to the initial values in the registers of M
and halts if and only if M halts, thereby representing the final contents of the
registers of M by the corresponding multisets of symbols in the skin membrane
(and no other symbols contained there). The P system IT therefore is constructed
as follows:

The symbols a; to aq represent the registers; their initial values i1 to ¢4 are
represented by

Wwo = alil...adid
whereas the symbols a441 and agqyo are needed for encoding the instructions of
M; aqy2 also has the function of a trap symbol, i.e., in case of the wrong choice
for a rule to be applied we take in so many symbols ag42 that we can never again
rid of them and therefore get “trapped” in an infinite loop.

Throughout the rest of the proof we shall write p for the “program symbol”
aq+1 as well as ¢ for the “trap symbol” ag4a.

An important part of the proof is to define a suitable encoding ¢ for the instruc-
tions of the register machine: Without loss of generality we assume the labels of M
to be positive integers such that the labels assigned to ADD and SUB instructions
have the values 3i — 2 for 1 < i < t, as well as o = 1 and [}, = 3t — 2, for some
t>1.

We now define the encoding ¢ on non-negative integers in such a way that
N — N is a linear function that has to obey to the following additional conditions:

e For any i,7 with 1 <14,j < 3t, ¢(i) + ¢ (j) > ¢(3t), i.e., the sum of the codes
of two instruction labels has to be larger than the largest code we will ever use
for the given M.

e The distance g between any two codes ¢ (i) and ¢ (i + 1) has to be larger than
any of the multiplicities of the symbol p which appear besides codes in the
rules defined below.

As we shall see in the construction of the rules below, we may take
g=28(d+2).
Moreover, we define
h=g/2=4(d+2).
A function c fulfilling all the conditions stated above then, for example, is
c(z) =gz +3tg = g(x + 3t) for x > 0.
With [y = 1 we therefore obtain
c(lp)=9gBt+1)=8(d+2)(3t+1).
Hence, the initial multiset now is
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wy = wop).

Finally, we have to find a number f which is so large that after the introduction

of f symbols we inevitably enter an infinite loop with the rule

a’ /q*;

as we shall justify below, we can take

f=(c(3t)”.

Equipped with this coding function and the constants defined above we are

now able to define the following set of symport/antiport rules assigned to the skin
membrane for simulating the actions of the given register machine M :

Ry = {p°®) pet2)a,, pet) /peUs)a, | 1y (A(r), ls,13) € R}
U {pc(ll)ar/pc(lg)’pc(ll)/pc(llJrl)prthr’
pc(l1+1)/pc(l1+2)7prthrar/quy
pc(l1+2)p7-qh—7-/pc(lg) | I : (S(T),lg,lg,) c R}
U {p /A"l [P

The correct work of the rules in R; can be described as follows:

1.

Throughout the whole computation in II, it is directed by the code p¢® for
some [ < 3t — 2; in order to guarantee the correct sequence of encoded rules
the trap is activated in case of a wrong choice, which in any case guarantees
an infinite loop with the symbols ¢ by the “trap rule”
f / 2f

q /q*.
The minimal number of superfluous number of symbols p to start the trap is
h and causes the application of the rule p”/¢?f.

. For each ADD instruction Iy : (A(r),l2,13) of M, we introduce the rules

() /pel=) g, and

pc(ll)/pc(lg)ar.
In that way, the ADD instruction Iy : (A(r),ls,l3) of M is simulated in only
one step: the number of symbols p representing the instruction of M labelled
by Iy is replaced by the number of symbols p representing the instruction of
M labelled by 5 or l3, respectively, in the same moment also incrementing the
number of symbols a,.
If we do not choose one of the correct rules, then the trap will be activated
by the rule p"/¢?/: The coding function has been chosen in such a way that
instead of the correct rule for the label [y only rules for labels [ < [y could
be chosen, but on the other hand, as the number of symbols p is not large
enough for allowing the remaining rest being interpreted as the code of another
instruction label, at least 2h symbols p would remain and activate the trap
by the rule p"/¢?/, i.e., the computation would enter an infinite loop at this
point.
For simulating the decrementing step of a SUB instruction Iy : (S(r),ls,l3)
from R we introduce the rule
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pc(ll)ar/pc(l‘z)
for decrementing the contents of cell r (which represents register ).
In that way, the decrementing step of the SUB instruction Iy : (S(r),l2,l3) of
M now is also simulated in one step: together with p°(*) we also send out one
symbol a, and take in p°2), which encodes the label of the instruction that
has to be executed after the successful decrementing of register r.
Again we notice that if we do not choose the correct rule, then the trap is
activated by the rule p”/q¢?f.
. For simulating the zero test, i.e., the case where the contents of register r is
zero, of a SUB instruction Iy : (S(r),l2,13) from R we now take the following
rules:

pc(ll)/pc(llJrl)prthr’

pc(l1+l)/pc(l1+2)7

p¢" "a,/q*, and

pc(l1+2)prqh—r/pc(l3)_
In that way, the zero test step of the SUB instruction Iy : (S(r),ls,l3) of M
now is simulated in three steps: in the first step, together with pc(h+1) we
also introduce a small additional number r of symbols p and a small number
h — r of symbols ¢ (both less than the number necessary to activate the trap
rule p"/q*/ or ¢ /q*/, respectively, because r < d +2 < 4(d+2) = h and
h—r<h<f).
In the combination p"¢"~" the number of symbols ¢ in fact uniquely determines
which rule is applicable: for consuming a rule prlqh’rl with < r we do
not have enough symbols ¢, whereas for consuming a rule pr/qh_r/ with 7/ >
r we do not have enough symbols p or else, if choosing a rule involving a
smaller code ¢ (1), instead too many symbols p would remain thus allowing the
application of the trap rule p"/¢?/, because ¢ (I; + 1) — ¢ (I) > 2h and 7’ < h,
ie, (c(li+1)—c()—7">h.
This unique combination p"¢"~" now checks whether the symbol a, is present
with the rule p"¢"~"a,/q* (which, after having been applied, lets the com-
putation never stop again), whereas in the meantime the rule peliat1) / pellit2)
can be applied in any case. If a, has not been present, p"¢"~" are still there
and exchanged together with p¢(1*2) by the rule ptht2)prgh=r/pes) thus
introducing p°(3), which encodes the label of the instruction that has to be
executed after the successful zero test on register 7.
Once again we notice that if in any of these steps described above we do not
choose the correct rule, then the trap is activated by the rule p"/¢?/.
. The number of symbols p never exceeds ¢ (l) . By definition,

F=(c(3)® = (c(3t —2) +29)* = (c(In) + 4h)* > 8he (),
therefore all the rules p"¢"~" consuming small numbers of symbols ¢ in to-
tal can never eliminate more than hc (I,) symbols. As 2hc (1) < f, from 2f
symbols occurring in the skin membrane after the application of a trapping
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rule, more than f symbols remain for the application of the rule ¢/ /¢?f, which
guarantees that the computation will never stop.
6. Finally, for the halt label I, = 3t — 2 we only take the rule
pC(lh) /A,
hence, the work of IT will stop exactly when the work of M stops (provided the
trap has not been activated due to a wrong non-deterministic choice during
the computation).

From the explanations given above we conclude that I halts if and only if M
halts, and moreover, the final configuration of II represents the final contents of
the registers in M. These observations conclude the proof. O

Looking carefully into the proof elaborated above we may realize that the final

rule

pe)
is the only symport rules, all other rules are antiport rules. We could only avoid
this by relaxing the condition that at the end of a computation in the P system
only the symbols representing the contents of the registers of M are allowed to
be present in the skin membrane; hence instead of the symport rule p°(») /X we
might also take the antiport rule

pe) /pt,
i.e., one “garbage symbol” p would remain in the skin membrane.

The main result proved above immediately implies the following results for
generating, accepting as well as for computing P systems, as it is well known that
only two additional registers are needed for generating, accepting or computing
any recursively enumerable set of k-dimensional vectors of non-negative integers
by a register machine:

In the generating case, the first & symbols represent the output registers:
Corollary 1. PsRE (k) = PsOsPy(k) for allk > 1 and s > k + 4.

For k£ = 1 we therefore obtain the result that any recursively enumerable set
of non-negative integers can be generated by a P system with one membrane and
at most five symbols.

In the accepting case, we designate the first [ cells as the input cells and start
the computation by introducing multisets over the corresponding symbols a; to a;
in the skin membrane; these multisets are accepted if and only if the computation
halts.

Corollary 2. For every set L from PsRE () we can construct a P system with
one membrane and at most | + 4 symbols which accepts L.

For computing functions from N® to NP we can use the first a symbols for
representing the input values and the first 3 symbols for representing the output
values; due to Theorem 1 we obtain the following result:
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Corollary 3. For every function f from N* to N® we can construct a P system
with one membrane and at most max {«, B} + 4 symbols which computes f.

4 Open Questions

The number of symbols needed in the proofs given in this paper possibly may be
improved, but we conjecture that the results obtained in this paper are already
optimal.

As was proved in [12], three symbols are enough to obtain computational com-
pleteness with four membranes. So there remain several interesting open questions,
e.g., how many symbols are needed for two and three membranes and, on the other
hand, how many membranes are needed for two and four symbols to obtain com-
putational completeness.
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