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Summary. The most investigated variants of P systems in the last years are cell-like
models, especially in terms of efficiency. Recently, different new models of tissue-like
(symport/antiport) P systems have received important attention. This paper presents a
new class of tissue P systems with cell separation, where cell separation can generate new
workspace. Its efficiency is investigated, specifically, (a) only tractable problem can be
efficiently solved by using cell separation and communication rules with length at most
1, and (b) an efficient (uniform) solution to SAT problem by using cell separation and
communication rules with length at most 6 is presented. Further research topics and open
problems are discussed, too.

1 Introduction

Membrane computing is inspired by the structure and the function of living cells,
as well as from the organization of cells in tissues, organs, and other higher order
structures. The devices of this model, called P systems, provide distributed parallel
and non-deterministic computing models.

Roughly speaking, the main components of such a model are a cell-like mem-
brane structures, in the compartments of which one places multisets of symbol-
objects which evolve in a synchronous maximally parallel manner according to
given evolution rules, also associated with the membranes (for introduction see
[19] and for further bibliography see [29]).

Membrane computing is a young branch of natural computing initiated by Gh.
Păun in the end of 1998 [17]. It has received important attention from the scien-
tific community since then, with contributions by computer scientists, biologists,
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formal linguists and complexity theoreticians, enriching each others with results,
open problems and promising new research lines. In fact, membrane computing
was selected by the Institute for Scientific Information, USA, as a fast Emerging
Research Front in computer science, and [20] was mentioned in [28] as a highly
cited paper in October 2003.

In the last years, many different models of P systems have been proposed. The
most studied variants are characterized by a cell-like membrane structure, where
the communication takes place between a membrane and the surrounding one. In
this model we have a set of nested membranes, in such a way that the graph of
neighborhood relation is a tree.

One of the topics in the field is the study of the computational power and
efficiency of P systems. In particular, different models of these cell-like P systems
have been successfully used in order to design solutions to NP-complete problems
in polynomial time (see [6] and the references therein). These solutions are obtained
by generating an exponential amount of workspace in polynomial time and using
parallelism to check simultaneously all the candidate solutions. Inspired by living
cell, several ways for obtaining exponential workspace in polynomial time were
proposed: membrane division (mitosis) [18], membrane creation (autopoiesis) [8]
membrane separation (membrane fission) [16]. These three ways have given rise to
the corresponding P systems model: P systems with active membranes, P systems
with membrane creation, and P systems with membranes separation. These three
models are universal from a computational point of view, but technically, they are
pretty different. In fact, nowadays there does not exist any theoretical result which
proves that these models can simulate each other in polynomial time.

Under the hypothesis P6=NP, Zandron et al. [27] established the limitations of
P systems that do not use membrane division concerning the efficient solution of
NP-complete problems. This result was generalized by Pérez-Jiménez et al. [24]
obtaining a characterization of the P6=NP conjecture by the polynomial time un-
solvability of an NP-complete problem by means of language accepting P systems
(without using rules that allow to increase the size of the structure of membranes).

Here, we shall focus on another type of P systems, the so-called (because of
their membrane structure) tissue P systems. Instead of considering a hierarchical
arrangement, membranes are placed in the nodes of a virtual graph. This variant
has two biological inspirations (see [15]): intercellular communication and coopera-
tion between neurons. The common mathematical model of these two mechanisms
is a net of processors dealing with symbols and communicating these symbols
along channels specified in advance. The communication among cells is based on
symport/antiport rules, which were introduced to P systems in [20]. Symport rules
move objects across a membrane together in one direction, whereas antiport rules
move objects across a membrane in opposite directions.

From the seminal definitions of tissue P systems [14, 15], several research lines
have been developed and other variants have arisen (see, for example, [1, 2, 3, 9,
10, 26]). One of the most interesting variants of tissue P systems was presented in
[22]. In that paper, the definition of tissue P systems is combined with the one of P
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systems with active membranes, yielding tissue P systems with cell division, and a
polynomial-time uniform solution to the NP-complete problem SAT is shown. In
this kind of tissue P systems [22], there exists replication, that is, the two new cells
generated by a division rule have exactly the same objects except for at most a
pair of different objects. However, in the biological phenomenon of separation, the
contents of the two new cells evolved from a cell can be significantly different, and
membrane separation inspired by this biological phenomenon in the framework
of cell-like P systems was proved to be an efficient way to obtain exponential
workspace in polynomial time [16]. In this paper, a new class of tissue P systems
based on cell separation, called tissue P systems with cell separation, is presented,
and a linear time uniform solution to the NP-complete problem SAT is shown.

The paper is organized as follows: first, we recall some preliminaries, and then,
the definition of tissue P systems with cell separation is given. Next, recognizer
tissue P systems are briefly described. In Section 5, we prove that only tractable
problem can be efficiently solved by using cell separation and communication rules
with length at most 1. In Section 6, an efficient (uniform) solution to SAT problem
by using cell separation and communication rules with length at most 6 is shown,
including a short overview of the computation and of the necessary resources.
The formal verification of the solution is also given. Finally, some discussion is
presented.

2 Preliminaries

An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → IN is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}
and its size is defined as

∑

x∈A f(x). A multiset is empty (resp. finite) if its support
is the empty set (resp. finite).

If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then it

will be denoted as m = {{a
f(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for any x ∈ A, then this element is
omitted.

In what follows we assume the reader is already familiar with the basic notions
and the terminology of P systems. For details, see [19].
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3 Tissue P Systems with Cell Separation

In the first definition of the model of tissue P systems [14, 15], the membrane
structure did not change along the computation. We will give a new model of
tissue P systems with cell separation based on the cell-like model of P systems
with membranes separation [16]. The biological inspiration is clear: alive tissues
are not static network of cells, since new cells are generated by membrane fission
in a natural way.

The main features of this model, from the computational point of view, are
that cells are not polarized (the contrary holds in the cell-like model of P systems
with active membranes, see [19]); the cells obtained by separation have the same
labels as the original cell and if a cell is separated, its interaction with other cells
or with the environment is blocked during the separation process. In some sense,
this means that while a cell is separating it closes its communication channels.

Formally, a tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ,O1, O2, w1, . . . , wq, E ,R, i0),

where:

1. Γ is a finite alphabet whose elements are called objects, Γ = O1∪O2, O1, O2 6=
∅, O1 ∩ O2 = ∅;

2. w1, . . . , wq are strings over Γ , representing the multisets of objects placed in
the q cells of the system at the beginning of the computation;

3. E ⊆ Γ is a finite alphabet representing the set of objects in the environment
in arbitrary copies each;

4. R is a finite set of rules of the following forms:
(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;

Communication rules; 1, 2, · · · , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i, (|u| + |v| is
called the length of the communication rule (i, u/v, j));

(b) [a]i → [O1]i[O2]i, where i ∈ {1, 2, . . . , q} and a ∈ Γ ;
Separation rules; in reaction with an object a, the cell is separated into
two cells with the same label; at the same time, object a is consumed; the
objects from O1 are placed in the first cell, those from O2 are placed in
the second cell;

5. i0 ∈ {0, 1, 2, . . . , q} is the output cell.

The rules of a system like the above one are used in the non-deterministic max-
imally parallel manner as customary in membrane computing. At each step, all
cells which can evolve must evolve in a maximally parallel way (in each step we
apply a multiset of rules which is maximal, no further rule can be added). This
way of applying rules has only one restriction: when a cell is separated, the sepa-
ration rule is the only one which is applied for that cell in that step; the objects
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inside that cell do not evolve by means of communication rules. The new cells
could participate in the interaction with other cells or the environment by means
of communication rules in the next step – providing that they are not separated
once again. Their labels precisely identify the rules which can be applied to them.

The configuration of tissue P system with cell separation is described by all
multisets of objects associated with all the cells and environment (w′

1, · · · , w′
q;

w′
0), where w′

0 is a multiset over Γ − E representing the objects present in the
environment having a finite multiplicity. The tuple (w1, w2, · · · , wq; ∅) is the initial
configuration. The computation starts from the initial configuration and proceeds
as defined above; only halting computations give a result, and the result is encoded
by the objects present in cell i0 in the halting configuration.

4 Recognizer Tissue P Systems with Cell Separation

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency, the notions from classical compu-
tational complexity theory are adapted for membrane computing, and a special
class of cell-like P systems is introduced in [25]: recognizer P systems. For tissue
P systems, with the same idea as recognizer cell-like P systems, recognizer tissue
P systems is introduced in [22].

A recognizer tissue P system with cell separation of degree q ≥ 1 is a construct

Π = (Γ,O1, O2, Σ,w1, . . . , wq, E ,R, iin, i0)

where:

• (Γ,O1, O2, w1, . . . , wq, E ,R, io) is a tissue P system with cell separation of de-
gree q ≥ 1 (as defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisets w1, . . . , wq, but none of them
are present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

The computations of the system Π with input w ∈ Σ∗ start from a configu-
ration of the form (w1, w2, . . . , wiin

w, . . . , wq; ∅), that is, after adding the multiset
w to the contents of the input cell iin. We say that C is an accepting computation



174 L. Pan, M.J. Pérez-Jiménez

(respectively, rejecting computation) if object yes (respectively, no) appears in the
environment associated to the corresponding halting configuration of C.

We denote by TSC(k) the class of recognizer tissue P systems with cell sepa-
ration and with communication rules of length at most k.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) | n ∈ IN} of recognizer tissue P systems with
cell separation if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

We denote by PMCTSC(k) the set of all decision problems which can be solved
by means of recognizer tissue P systems from TSC(k).

5 Limitation on the Efficiency of TSC(1)

In this section, we consider the efficiency of tissue P systems with cell separation
and communication rules with length 1. Specifically, we shall prove that such
systems can efficiently solve only tractable problems.

Let Π be a tissue P system with cell separation and let all communication
rules be of length 1. In this case, each rule of the system can be activated by a
single object. Hence, there exists, in some sense, a dependency between the object
triggering the rule and the object or objects produced by its application. This
dependency allows to adapt the ideas developed in [13] for cell-like P systems with
active membranes to tissue P systems with cell separation and communication
rules of length 1.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, and a, bk ∈ Γ , k ∈ {1, · · · , s}. This pattern can be interpreted
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as follows: from the object a in the cell (or in the environment) labeled with i we
can reach the objects b1, . . . , bs in the cell (or in the environment) labeled with j.
Communication rules correspond to the case s = 1 and b1 = a.

Without loss of generality we can assume that all communication rules in the
system obey the syntax (i, a/λ, j), since every rule of the form (j, λ/a, i) can be
rewritten to follow the above syntax, with equivalent semantics.

We formalize these ideas in the following definition.

Definition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system of de-
gree q ≥ 1 with cell separation. Let H = {0, 1, . . . , q}. The dependency graph
associated with Π is the directed graph GΠ = (VΠ , EΠ) defined as follows:
VΠ = {(a, i) ∈ Γ × H : ∃j ∈ H ((i, a/λ, j) ∈ R ∨ (j, a/λ, i) ∈ R)},
EΠ = {((a, i), (b, j)) : (a = b ∧ (i, a/λ, j) ∈ R)}.

Note that when a separation rule is applied, objects do not evolve, and the
labels of membranes do not change, so separation rules do not add any nodes and
edges to the associated dependency graph.

Proposition 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell separation, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. There exists a deterministic Turing machine that constructs
the dependency graph GΠ associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of commu-
nication rules).

Proof. A deterministic algorithm that, given a P system Π with the set Rc of
communication rules, constructs the corresponding dependency graph, is the fol-
lowing:

Input: Π (with Rc as its set of communication rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ Rc of Π do

if r = (i, a/λ, j) then

VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}
The running time of this algorithm is bounded by O(|Rc|).

Proposition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system with
cell separation, in which the length of all communication rules is 1. Let H =
{0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π = {(a, i) ∈ Γ × H : there exists a path (within the dependency graph)
from (a, i) to (yes, 0)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial time
(that is, in a time bounded by a polynomial function depending on the total number
of communication rules).

Proof. We can construct the set ∆Π from Π as follows:
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• We construct the dependency graph GΠ associated with Π.
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, i) ∈ VΠ do

if reachability (GΠ , (a, i), (yes, 0)) = yes then

∆Π ← ∆Π ∪ {(a, i)}

The running time of this algorithm 3 is of order O(|VΠ | · |VΠ |2), hence it is of
order O(|Γ |3 · |H|3).

Notation: Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout) be a tissue P system
with cell separation. Let m be a multiset over Σ. Then we denote M∗

j = {(a, j) :
a ∈ Mj}, for 1 ≤ j ≤ q, and m∗ = {(a, iin) : a ∈ m}.

Below we characterize accepting computations of a recognizer tissue P system
with cell separation and communication rules of length 1 by distinguished paths
in the associated dependency graph.

Lemma 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a recognizer confluent tissue
P system with cell separation in which the length of all communication rules is 1.
The following assertions are equivalent:

(1) There exists an accepting computation of Π.
(2) There exists (a0, i0) ∈

⋃q

j=1 M
∗
j and a path in the dependency graph associated

with Π, from (a0, i0) to (yes, 0).

Proof. (1) ⇒ (2). First, we show that for each accepting computation C of Π there
exists (a0, i0) ∈

⋃q
j=1 M

∗
j and a path γC in the dependency graph associated with

Π from (a0, i0) to (yes, 0). By induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form

(j, yes/λ, 0), with yes ∈ Γ, j 6= 0, has been applied in that step. Then, (yes, j) ∈
M∗

j , for some j ∈ {1, . . . , q}. Hence, ((yes, j), (yes, 0)) is a path in the dependency
graph associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be
an accepting computation of Π. Then C′ = (C1, . . . , Cn, Cn+1) is an accepting
computation of the system Π ′ = (Γ,Σ,Ω,M′

1, . . . ,M
′
q,R, iin), where M′

j is the

3 The Reachability Problem is the following: given a (directed or undirected) graph, G,
and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given a
(directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–search
with source a, and we check if b is in the tree of the computation forest whose root
is a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store a
linear number of items (it can be proved that there exists another polynomial time
algorithm which uses O(log2(|V |)) space).
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content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction hypothesis
there exists an object b0 in a cell i0 from C1, and a path in the dependency graph
associated with Π ′ from (b0, i0) to (yes, 0). If (b0, i0) is an element of configuration
C0 (that means that in the first step a separation rule has been applied to cell
i0), then the result holds. Otherwise, there is an element (a0, j0) in C0 producing
(b0, i0). So, there exists a path γC in the dependency graph associated with Π from
(a0, j0) to (yes, 0).

(2) ⇒ (1). Let us prove that for each (a0, i0) ∈
⋃q

j=1 M
∗
j and for each path in

the dependency graph associated with Π from (a0, i0) to (yes, 0), there exists an
accepting computation of Π. By induction on the length n of the path.

If n = 1, we have a path ((a0, i0), (yes, 0)). Then, a0 = yes and the computa-
tion C = (C0, C1) where the rule (i0, yes/λ, 0) belongs to a multiset of rules m0

that produces configuration C1 from C0 is an accepting computation of Π.
Let us suppose that the result holds for n. Let

((a0, i0), (a1, i1), . . . (an, in), (yes, 0))

be a path in the dependency graph of length n + 1. Let C1 be the configuration
of Π reached from C0 by the application of a multiset of rules containing the rule
that produces (a1, i1) from (a0, i0). Then ((a1, i1), . . . (an, in), (yes, 0)) is a path
of length n in the dependency graph associated with the system

Π ′ = (Γ,Σ,Ω,M′
1, . . . ,M

′
q,R, iin)

where M′
j is the content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction

hypothesis, there exists an accepting computation C′ = (C1, . . . , Ct) of Π ′. Hence,
C = (C0, C1, . . . , Ct) is an accepting computation of Π.

Next, given a family Π = (Π(n))n∈N of recognizer tissue P system with cell
separation in which the length of all communication rules is 1, solving a decision
problem, we will characterize the acceptance of an instance of the problem, w,
using the set ∆Π(s(w)) associated with the system Π(s(w)), that processes the
given instance w. More precisely, the instance is accepted by the system if and
only if there is an object in the initial configuration of the system Π(s(w)) with
input cod(w) such that there exists a path in the associated dependency graph
starting from that object and reaching the object yes in the environment.

Proposition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer tissue P system with cell separation in which the length of
all communication rules is 1 solving X, according to Definition 1. Let (cod, s) be
the polynomial encoding associated with that solution. Then, for each instance w
of the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ( (cod(w))∗ ∪

p
⋃

j=1

M∗
j ) 6= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).
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Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). By Lemma 1,
this condition is equivalent to the following: in the initial configuration of Π(s(w))
with input multiset cod(w) there exists at least one object a ∈ Γ in a cell labelled
with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗
j 6= ∅ for some j ∈ {1, . . . , p}, or

∆Π(s(w)) ∩ (cod(w))∗ 6= ∅.

Theorem 1. P = PMCTSC(1)

Proof. We have P ⊆ PMCTSC(1) because the class PMCTSC(1) is closed under
polynomial time reduction. In what follows, we show that PMCTSC(1) ⊆ P. Let
X ∈ PMCTSC(1) and let Π = (Π(n))n∈N be a family of recognizer tissue P
systems with cell separation solving X, according to Definition 1. Let (cod, s) be
the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:
Input: An instance w of X
- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 2

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a
pair (a, i) belonging to ∆Π(s(w)) such that the symbol a appears in the cell labelled
with i in the initial configuration (with input the multiset cod(w)).

On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, i) to (yes, 0), that is, if and only if we can obtain an accepting
computation of Π(s(w)) with input cod(w). Hence, the algorithm above described
solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩ M∗
j 6= ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ 6= ∅) is of order O(|Γ |2 · |H|2).

Hence, the running time of this algorithm can be bounded by f(|w|)+O(|Rc|)+
O(q · |Γ |2 ·n2), where f is the (total) cost of a polynomial encoding from X to Π,
Rc is the set of rules of Π(s(w)), and q is the number of (initial) cells of Π(s(w)).
Furthermore, by Definition 1 we have that all involved parameters are polynomial
in |w|. That is, the algorithm is polynomial in the size |w| of the input.
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6 Solving Computationally Hard Problems by Using TSC(6)

In this section, we consider the efficiency of tissue P systems with cell separation
and communication rules of length at most 6. As expected, such systems can
efficiently solve computationally hard problems. In what follows, we show how to
efficiently solve SAT problem by such systems.

The SAT problem is the following: given a boolean formula in conjunctive
normal form (CNF), to determine whether or not there exists an assignment to its
variables on which it evaluates true. This is a well known NP-complete problem
[5].

The solution proposed follows a brute force approach in the framework of
recognizer P systems with cell separation. The solution consists of the following
stages:

• Generation Stage: All truth assignments for the n variables are produced by
using cell separation in an adequate way.

• Checking Stage: We determine whether there is a truth assignment that makes
the boolean formula evaluate to true.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage.

Let us consider the polynomial time computable function 〈n,m〉 = ((m +
n)(m + n + 1)/2) + m (the pair function), which is a primitive recursive and
bijective function from IN2 to IN. We shall construct a family Π = {Π(t) | t ∈ IN}
such that each system Π(t) will solve all instances of SAT problem with n variables
and m clauses, where t = 〈n,m〉, provided that the appropriate input multisets
are given.

For each n,m ∈ IN,

Π(〈n,m〉) = (Γ (〈n,m〉), Σ(〈n,m〉), w1, w2,R(〈n,m〉), E(〈n,m〉), iin, i0),

with the following components:

• Γ (〈n,m〉) = O1 ∪ O2,
O1 = {xi,j , x̄i,j , ci,j , zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪

{Ai | 1 ≤ i ≤ n} ∪ {a1,i, b1,i, gi, hi | 1 ≤ i ≤ n − 1}∪
{d1,i, ei, li | 1 ≤ i ≤ n − 2} ∪ {a2,i, b2,i, d2,i | 2 ≤ i ≤ n − 1}∪
{ai,j,k, bi,j,k, di,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1}∪
{Bi | 1 ≤ i ≤ 4n} ∪ {Ci | 1 ≤ i ≤ 3n}∪
{Di | 1 ≤ i ≤ 4n + 2m} ∪ {Ei | 1 ≤ i ≤ 4n + 2m + 3}∪
{rj | 1 ≤ j ≤ m} ∪ {Ti, Fi, ti, fi | 1 ≤ i ≤ n} ∪ {c, p, s, y, z, yes, no},

O2 = {x′
i,j , x̄

′
i,j , z

′
i,j} | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪

{T ′
i , F

′
i | 1 ≤ i ≤ n} ∪ {y′, z′}.

• Σ(〈n,m〉) = {ci,j , xi,j , x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

•
w1 = {{a1,1, a2,2, g1, B1, C1,D1, E1, p, yes, no}}∪

{{ai,j,1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.
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• w2 = A1.
• R(〈n,m〉) is the set of rules:

1. Separation rule:

r1 ≡ [s]2 → [O1]2[O2]2.

2. Communication rules:

r2,i,j,k ≡ (1, ai,j,k/bi,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1;
r3,i,j,k ≡ (1, bi,j,k/c2

i,jd
2
i,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 2;

r4,i,j ≡ (1, bi,j,n−1/c2
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r5,i,j,k ≡ (1, di,j,k/ai,j,k+1, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 2;
r6,i ≡ (1, a1,i/b1,i, 0) for 1 ≤ i ≤ n − 1;
r7,i ≡ (1, b1,i/c2d2

1,ie
2
i , 0) for 1 ≤ i ≤ n − 2;

r8 ≡ (1, b1,n−1/c2, 0);
r9,i ≡ (1, d1,i/a1,i+1, 0) for 1 ≤ i ≤ n − 2;
r10,i ≡ (1, ei/a2,i+1, 0) for 1 ≤ i ≤ n − 2;
r11,i ≡ (1, a2,i/b2,i, 0) for 2 ≤ i ≤ n − 1;
r12,i ≡ (1, b2,i/c2d2

2,i, 0) for 2 ≤ i ≤ n − 2;

r13 ≡ (1, b2,n−1/c2, 0);
r14,i ≡ (1, d2,i/a2,i+1, 0) for 2 ≤ i ≤ n − 2;
r15,i ≡ (1, gi/hi, 0) for 1 ≤ i ≤ n − 1;
r16,i ≡ (1, hi/l2i A

2
i+1, 0) for 1 ≤ i ≤ n − 2;

r17 ≡ (1, hn−1/A
2
n, 0);

r18,i ≡ (1, li/gi+1, 0) for 1 ≤ i ≤ n − 2;
r19,i,j ≡ (2, ci,jxi,j/zi,jz

′
i,jxi,jx

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r20,i,j ≡ (2, ci,j x̄i,j/zi,jz
′
i,j x̄i,j x̄

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r21,i,j ≡ (2, ci,jx
′
i,j/zi,jz

′
i,jxi,jx

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r22,i,j ≡ (2, ci,j x̄
′
i,j/zi,jz

′
i,j x̄i,j x̄

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r23,i ≡ (2, Ai/TiF
′
izz′yy′s, 0) for 1 ≤ i ≤ n − 1;

r24 ≡ (2, An/TnF ′
nyy′s, 0);

r25,i ≡ (2, cTi/zz′TiT
′
i , 0) for 1 ≤ i ≤ n − 1;

r26,i ≡ (2, cT ′
i/zz′TiT

′
i , 0) for 1 ≤ i ≤ n − 1;

r27,i ≡ (2, cFi/zz′FiF
′
i , 0) for 1 ≤ i ≤ n − 1;

r28,i ≡ (2, cF ′
i/zz′FiF

′
i , 0) for 1 ≤ i ≤ n − 1;

r29,i,j ≡ (1, ci,j/zi,j , 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r30,i,j ≡ (1, ci,j/z′i,j , 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r31 ≡ (1, c/z, 2);
r32 ≡ (1, c/z′, 2);
r33,i ≡ (1, Ai/y, 2) for 2 ≤ i ≤ n;
r34,i ≡ (1, Ai/y′, 2) for 2 ≤ i ≤ n;
r35,i ≡ (1, Bi/Bi+1, 0) for 1 ≤ i ≤ 2n − 1;
r36,i ≡ (1, Bi/B2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
r37,i ≡ (1, Ci/Ci+1, 0) for 1 ≤ i ≤ 2n − 1;
r38,i ≡ (1, Ci/C2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
r39,i ≡ (1,Di/Di+1, 0) for 1 ≤ i ≤ 2n − 1;
r40,i ≡ (1,Di/D2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
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r41,i ≡ (1, Ei/Ei+1, 0) for 1 ≤ i ≤ 4n + 2m + 2;
r42,i,j ≡ (1, zi,j/λ, 0);
r43,i,j ≡ (1, z′i,j/λ, 0);
r44 ≡ (1, y/λ, 0);
r45 ≡ (1, y′/λ, 0);
r46 ≡ (1, z/λ, 0);
r47 ≡ (1, z′/λ, 0);
r48 ≡ (1, B3nC3nD3n/y, 2);
r49 ≡ (1, B3nC3nD3n/y′, 2);
r50,i ≡ (2, C3nTi/C3nti, 0) for 1 ≤ i ≤ n;
r51,i ≡ (2, C3nT ′

i/C3nti, 0) for 1 ≤ i ≤ n;
r52,i ≡ (2, C3nFi/C3nfi, 0) for 1 ≤ i ≤ n;
r53,i ≡ (2, C3nF ′

i/C3nfi, 0) for 1 ≤ i ≤ n;
r54,i ≡ (2, Bi/B2

i+1, 0) for 3n ≤ i ≤ 4n − 1;
r55,i ≡ (2,Di/Di+1, 0) for 3n ≤ i ≤ 4n − 1;
r56,i,j ≡ (2, B4ntixi,j/B4ntirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r57,i,j ≡ (2, B4ntix̄i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r58,i,j ≡ (2, B4ntix

′
i,j/B4ntirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r59,i,j ≡ (2, B4ntix̄
′
i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r60,i,j ≡ (2, B4nfix̄i,j/B4nfirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r61,i,j ≡ (2, B4nfixi,j/B4nfi, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r62,i,j ≡ (2, B4nfix̄

′
i,j/B4nfirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r63,i,j ≡ (2, B4nfix
′
i,j/B4nrj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r64,i ≡ (2,Di/Di+1, 0) for 4n ≤ i ≤ 4n + m − 1;
r65,i ≡ (2,D4n+m+iri+1/D4n+m+i+1, 0) for 0 ≤ i ≤ m − 1;
r66 ≡ (2,D4n+2m/λ, 1);
r67 ≡ (1,D4n+2m p yes/λ, 0);
r68 ≡ (1, E4n+2m+3 p no/λ, 0).

• E(〈n,m〉) = Γ (〈n,m〉) − {yes, no}.
• iin = 2 is the input cell.
• i0 = 0 is the output region.

6.1 An Overview of the Computation

A family of recognizer tissue P systems with cell separation is constructed above.
For an instance of SAT problem ϕ = M1 ∧ · · · ∧ Mm, consisting of m clauses
Mi = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where V ar(ϕ) = {x1, · · · , xn}, yi,k ∈ {xj ,¬xj |
1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, the size mapping on the set of instances
is defined as s(ϕ) = 〈n,m〉 = ((m + n)(m + n + 1)/2) + m, the encoding of the
instance is the multiset cod(ϕ) = {{ci,jxi,j | xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤
n, 1 ≤ j ≤ m}} ∪ {{ci,j x̄i,j | ¬xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.

Now, we informally describe how system Π(s(ϕ)) with input cod(ϕ) works.
Let us start with the generation stage. This stage has several parallel processes,

which we describe in several items.
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– In cells with label 2, by rules r19,i,j – r22,i,j , objects ci,jxi,j , ci,j x̄i,j ,
ci,jx

′
i,j , ci,j x̄

′
i,j introduce objects zi,jz

′
i,jxi,jx

′
i,j , zi,jz

′
i,j x̄i,j x̄

′
i,j , zi,jz

′
i,jxi,jx

′
i,j ,

zi,jz
′
i,j x̄i,j x̄

′
i,j , respectively. In the next step, the objects with prime and the

objects without prime are separated into the new daughter cells with label 2.
The idea is that ci,j is used to duplicate xi,j and x̄i,j (in the sense ignoring the
prime), so that one copy of each of them will appear in each cell with label 2.
The objects zi,j and z′i,j in cells with label 2 are exchanged with the objects
ci,j in the cell with label 1 by the rules r29,i,j and r30,i,j . In this way, the cycle
of duplication-separation can be iterated.

– In parallel with the above duplication-separation process, the objects c are used
to duplicate the objects Ti, T ′

i , Fi, and F ′
i by the rules r25,i – r28,i; the rules

r31 and r32 take care of introducing the object c from the cell with label 1 to
cells with label 2.

– In the initial configuration of the system, the cell with label 2 contains an object
A1 (Ai encodes the i-th variable in the propositional formula). The objects T1,
F ′

1, z, z′, y, y′ and s are brought in the cell with label 2, in exchange of A1,
by the rule r23,i. The objects T1 and F ′

1 correspond to the values true and
false which the variable x1 may assume (in general, Ti (or T ′

i ) and Fi (or F ′
i )

are for the variable xi), and in the next step they are separated into the new
daughter cells with label 2 by separation rule, because T1 ∈ O1 and F ′

1 ∈ O2.
The object s is used to activate the separation rule r1, and is consumed during
the application of separation rule. The objects y and y′ are used to introduce
A2 from the cell with label 1, and the process of truth-assignment for variable
x2 can continue. In this way, in 3n − 1 steps, we get 2n cells with label 2, and
each one contains one of the 2n possible truth-assignments for the n variables.

– In parallel with the operations in the cells with label 2, the objects ai,j,k+1 from
the cell with label 1 are traded for objects bi,j,k+1 from the environment at the
step 3k + 1 (0 ≤ k ≤ n − 3) by the rule r2,i,j,k. In the next step, each object
bi,j,k+1 is traded for two copies of objects ci,j and di,j,k+1 by the rule r3,i,j,k.
At step 3k + 3 (0 ≤ k ≤ n − 3), the object di,j,k is traded for object ai,j,k+2

by the rule r4,i,j,k. Especially, at step 3n − 5, ai,j,n−1 is traded for bi,j,n−1 by
the r2,i,j,k, at step 3n − 4, each copy of object bi,j,n−1 is traded for two copies
of ci,j by the r4,i,j . After step 3n − 4, there is no object ai,j,k appears in the
cell with label 1, and the group of rules r2,i,j,k – r5,i,j,k will not be used again.
Note that the subscript k of the object ai,j,k grows by 1 in every 3 steps until
reaching the value n− 1, and the number of copies of ai,j,k is doubled in every
3 steps. At step 3k + 3 (0 ≤ k ≤ n − 2), the cell with label 1 has 2k+1 copies
of object ci,j . At the same time, we have 2k+1 cells with label 2, and each cell
with label 2 contains one copy of object zi,j or one copy of object z′i,j . Due to
the maximality of the parallelism of using the rules, each cell with label 2 gets
exactly one copy of ci,j from the cell with label 1 by the rules r29,i,j and r30,i,j .
The object ci,j in cell with label 2 is used for duplication as described above.
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– The objects a1,i and a2,i in the cell with label 1 has the similar role as object
ai,j,k in cell 1, which introduce appropriate copies of object c for the duplication
of objects Ti, T ′

i , Fi, and F ′
i by the rules r6,i – r14,i. Note that at step 3k + 3

(0 ≤ k ≤ n−2), there are 2k+1(k +1) copies of object c, which ensure each cell
with label 2 gets k + 1 copies of object c by the maximality of the parallelism
of using the rules.

– The object gi+1 in the cell with label 1 is traded for hi+1 from the environment
at step 3i + 1 (0 ≤ i ≤ n − 3) by the rule r15,i. In the next step, the object
hi+1 is traded for two copies of objects li+1 and Ai+2 by the rule r13,i. At the
step 3i + 3 (0 ≤ i ≤ n − 3), the object li+1 is traded for two copies of gi+2,
so that the process can be iterated, until the subscript i of gi reaches n − 1.
Especially, at step 3n − 5, object gn−1 is traded for hn−1 by the rule r15,i, at
step 3n− 4, each object hn−1 is traded for two copies of An. After step 3n− 4,
there is no object gi appears in the cell with label 1, and the group of rules
r15,i – r18,i will not be used again. At the step 3i + 3 (0 ≤ i ≤ n − 2), the cell
with label 1 contains 2i+1 copies of Ai+2, and we have 2i+1 cells with label 2,
each of them contains one copy of object y or one copy of object y′. Due to
the maximality of the parallelism of using the rules, each cell with label 2 gets
exactly one copy of Ai+2 from the cell 1 by the rules r33,i and r34,i. In this
way, the truth-assignment for the valuable xi+1 can continue.

– The counters Bi, Ci, Di, and Ei in the cell with label 1 grow their subscripts
by the rules r35,i – r41,i. From step 2n to step 3n − 1, the number of copies
of objects of the first three types is doubled, hence after 3n − 1 steps, the cell
with label 1 contains 2n copies of B3n, C3n, and D3n. Objects Bi will check
which clauses are satisfied by a given truth-assignment, objects Ci are used to
multiply the number of copies of ti, fi as we will see immediately, objects Di

are used to check whether there is at least one truth-assignment which satisfies
all clauses, and Ei will be used to bring the object no to the environment, if
this will be the case, in the end of the computation.

– The objects zi,j , z′i,j , y, y′, z, and z′ in the cell with label 1 are removed by
the rules r42,i,j – r47. (Actually, if the objects zi,j , z′i,j , y, y′, z, and z′ stay in
the cell with label 1, they do not influence the work of the system. The rules
r38 – r43 are designed just in order to simplify the formal verification.)

In this way, after the (3n − 1)–th step the generation stage finishes and the
checking stage starts. At this moment, the cell with label 1 contains 2n copies
of objects B3n, C3n, and D3n, and there are 2n cells with label 2, each of them
containing a copy of y and n − 1 copies of z, or a copy of y′ and n − 1 copies of
z′. The objects z and z′ in cells with label 2 will not evolve anymore, because the
cell with label 1 contains no object c from now on, and the rules r31 and r32 can
not be applied.

At the step 3n, objects y or y′ are traded for objects B3n, C3n, and D3n by
rules r48 and r49. (Note that the rules r33,i and r34,i can not be used, because
there is no object Ai in the cell with label 1 at this moment and henceforth. And
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the cells with label 2 cannot separate any more.) Due to the maximality of the
parallelism of using the rules, each cell with label 2 gets exactly one copy of each
of B3n, C3n, and D3n.

In the presence of C3n, the objects Ti and T ′
i , Fi and F ′

i introduce the objects
ti and fi, respectively. We have only one copy of C3n available, for each one of ti
and fi we need one step. So this phase needs n steps that is, this phase ends at
step 4n.

In parallel with the previous operations, the counters Bi and Di increase their
subscripts, until reaching the value 4n by the rules r54,i and r55,i. Each cell with
label 2 contains one copy of D4n and 2n copies of B4n. Simultaneously, Ei increase
its subscript in the cell with label 1.

At step 4n+1, with the presence of B4n, we start to check the values assumed
by clauses for the truth-assignments from each cell with label 2 by the rules r56,i,j

– r63,i,j . Each membrane with label 2 contains nm objects xi,j and x̄i,j or nm
objects x′

i,j and x̄′
i,j , because each clause contains at most n literals, and we have

m clauses. Note that each membrane with label 2 contains 2n copies of B4n and
n objects ti and fi. At each step, n objects xi,j and x̄i,j , or n objects x′

i,j and
x̄′

i,j are checked. So it takes m steps. In parallel, Di increases the subscript, until
reaching the value 4n + m (at step 4n + m) by the rule r64,i.

By the rule r65,i, in each cell with label 2, we check whether or not all clauses are
satisfied by the corresponding truth-assignment. For each clause which is satisfied,
we increase by one the subscript of Di, hence the subscript reaches the value
4n + 2m if and only if all clauses are satisfied.

The output stage starts at the (4n + 2m + 1)-th step.

– Affirmative answer: If one of the truth-assignments from a cell with label 2 has
satisfied all clauses, then in that cell there is an object D4n+2m as described
above, which is sent to the cell with label 1 by the rule r66. In the next step,
the object yes leaves the system by the rule r67, signaling the fact that the
formula is satisfiable. In cell 1, the counter Ei increases its subscript by the
rule r41,i, until reaching the value 4n + 2m + 3, but after that it will remain
unchanged – it can leave the cell with label 1 only in the presence of p, but
this object p was already moved to the environment at step 4n + 2m + 2. The
computation halts at step 4n + 2m + 2.

– Negative answer: If the counter Ei reaches the subscript 4n + 2m + 3 and the
object p is still in the cell with label 1, then the object no can be moved to the
environment by the rule r68, signaling that the formula is not satisfiable. The
computation finishes at step 4n + 2m + 3.

6.2 Formal Verification

In this subsection, we prove that the family built above solves SAT problem in a
polynomial time, according to Definition 1. First of all, the Definition 1 requires
that the defined family is consistent, in the sense that all systems of the family
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must be recognizer tissue P systems with cell separation. By the construction (type
of rules and working alphabet) it is clear that it is a family of tissue P systems
with cell separation. In order to show that all members in Π are recognizer systems
it suffices to check that all the computations halt (this will be deduced from the
polynomial bound), and that either an object yes or an object no is sent out exactly
in the last step of the computation (this will be deduced from the soundness and
completeness).

Polynomial uniformity of the family

We will show that the family Π = {Π(〈n,m〉) | n,m ∈ IN} defined above is
polynomially uniform by Turing machines. To this aim it will be proved that
Π(〈n,m〉) is built in polynomial time with respect to the size parameter n and m
of instances of SAT problem.

It is easy to check that the rules of a system Π(〈n,m〉) of the family are
defined recursively from the values n and m. And the necessary resources to build
an element of the family are of a polynomial order, as shown below:

• Size of the alphabet: 3n2m + 4nm + 30n + 5m − 5 ∈ O(n2m).
• Initial number of cells: 2 ∈ O(1).
• Initial number of objects: nm + 10 ∈ O(nm).
• Number of rules: 3n2m + 15nm + 36n + 3m − 12 ∈ O(n2m).
• Maximal length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can build Π(〈n,m〉) in a polynomial
time with respect to n and m.

Polynomial bound of the family

For an instance of SAT problem ϕ = M1 ∧ · · · ∧ Mm, consisting of m clauses
Mi = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where V ar(ϕ) = {x1, · · · , xn}, yi,k ∈ {xj ,¬xj |
1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, we recall the size mapping function s(ϕ) and
the encoding function cod(ϕ): s(ϕ) = 〈n,m〉, and cod(ϕ) = {{ci,jxi,j | xi ∈ {yj,k |
1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{ci,j x̄i,j | ¬xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤
n, 1 ≤ j ≤ m}}. The pair (cod, s) is computable in polynomial time, cod(ϕ) is an
input multiset of the system Π(s(ϕ)).

In order to prove that the system Π(s(ϕ)) with input cod(ϕ) is polynomially
bounded, it suffices to find the moment in which the computation halts, or at least,
an upper bound for it.

Proposition 4. The family Π = {Π(〈n,m〉) | n,m ∈ IN} is polynomially bounded
with respect to (SAT, cod, s).

Proof. We will informally go through the stages of the computation in order to
estimate a bound for the number of steps. The computation will be checked more
in detail when addressing the soundness and completeness proof.
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Let ϕ = M1 ∧ · · · ∧ Mm be an instance of the problem SAT. We shall study
what happens during the computation of the system Π(s(ϕ)) with input cod(ϕ)
in order to find the halting step, or at least, an upper bound for it.

First, the generation stage has exactly 3n − 1 steps, where at steps 3k + 2
(0 ≤ k ≤ n − 1) the cells with label 2 are separated. In this way, we get 2n cells
with label 2, each of them contains one of the 2n possible truth-assignments for
the n variables.

After one more step, the objects B3n, C3n, and D3n arrive at cells with label 2,
and the checking stage starts. The object C3n works for n steps introducing objects
ti or fi into cells with label 2, until all object Ti, T ′

i , Fi and F ′
i are consumed, at

the step 4n. From step 4n+1, the objects B4n start to work checking which clauses
are satisfied by the truth-assignment from each cell with label 2. This checking
takes m steps. When the subscript of Di grows to 4n + m at step 4n + m, the
system starts to check whether or not all clauses are satisfied by the corresponding
truth-assignment. It takes m steps, and the checking stage ends at step 4n + 2m.

The last one is the answer stage. The longest case is obtained when the answer
is negative. In this case there are two steps where only the counter Ei is working.
At the step 4n+2m+3 the object E4n+2m+3 works together with object p bringing
no from the cell with label 1 into the environment.

Therefore, there exists a linear bound (with respect to n and m) on the number
of steps of the computation.

Soundness and completeness of the family

In order to prove the soundness and completeness of the family Π with respect
to (SAT, cod, s), we shall prove that for a given instance ϕ of the problem SAT,
the system Π(s(ϕ)) with input cod(ϕ) sends out an object yes if and only if the
answer to the problem for the considered instance ϕ is affirmative and the object
no is sent out otherwise. In both cases the answer will be sent to the environment
in the last step of the computation.

For the sake of simplicity in the notation, we consider the following two
functions ψ(σj(xi)) and γ(σj(xi)). Let F be the set of all assignments of the
variables x1, x2, · · · , xn. We order the set S in lexicographical order, that is,
F = {σ1, σ2, · · · , σ2n}, where σj(xi) ∈ {0, 1} (1 ≤ j ≤ 2n, 1 ≤ i ≤ n) is an
assignment of variables. For 1 ≤ j ≤ 2n, 1 ≤ i ≤ n, we define ψ as follows: if j is
odd, then

ψ(σj(xi)) =

{

Ti, if σj(xi) = 1,
Fi, if σj(xi) = 0;

if j is even, then

ψ(σj(xi)) =

{

T ′
i , if σj(xi) = 1,

F ′
i , if σj(xi) = 0.

For each assignment σj(xi) ∈ {0, 1}, and for i = 1, . . . , n, we define γ as follows:

γ(σj(xi)) =

{

ti, if σj(xi) = 1;
fi, if σj(xi) = 0.
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In this way, each assignment of variables σj is associated a multiset {{ψ(σj(x1)),
ψ(σj(x2)), · · · , ψ(σj(xn))}} and a multiset {{γ(σj(x1)), γ(σj(x2)), · · · , γ(σj(xn)
)}}.

Given a computation C we denote the configuration at the i-th step as Ci.
Moreover, Ci(1) will denote the multiset associated to cell 1 in such configuration.

Proposition 5. Let C be an arbitrary computation of the system, then at step
3k + 2 for all k such that 0 ≤ k ≤ n − 2, the cell with label 1 gets 2k+1 copies of
object ci,j, 2k+1(k + 1) copies of object c, and 2k+1 copies of object Ak+2 from the
environment. And after step 3n− 3, the cell with label 1 cannot get objects ci,j, c,
Ai any more.

Proof. It is not difficult to find that in the set of all rules there are 6 types of
rules related to object ci,j , that is, rules r2,i,j,k – r5,i,j,k, r29,i,j and r30,i,j . The
rules r29,i,j and r30,i,j are used to move ci,j from the cell with label 1 to cells with
label 2 in exchange of zi,j or z′i,j , which happens at steps 3k +3 for all k such that
0 ≤ k ≤ n − 2. Anyway, these two rules do not bring object ci,j into the cell with
label 1. So we need only to check how these 4 types of rules r2,i,j,k – r5,i,j,k work.

First, by induction on k, we prove that at step 3k + 2 (0 ≤ k ≤ n− 3), the cell
with label 1 gets 2k+1 copies of object ci,j and the cell with label 1 has exactly
2k+1 copies of di,j,k+1.

In the multiset C0(1), there is one copy of each object ai,j,1 (1 ≤ i ≤ n,
1 ≤ j ≤ m). By application of rules r2,i,j,1 and r3,i,j,1, the cell with label 1 gets
two 2 copies of ci,j and 2 copies di,j,1 at step 2.

Now suppose the result is true for k < n − 4. We have, by the inductive
hypothesis, at step 3k + 2, the cell with label 1 gets 2k+1 copies of object ci,j and
the cell with label 1 has exactly 2k+1 copies of di,j,k+1. At step 3k + 3, among
these 4 types of rules r2,i,j,k+1 – r5,i,j,k, only rule r5,i,j,k+1 can be applied, 2k+1

copies of di,j,k+1 are traded for 2k+1 copies of ai,j,k+2. At step 3(k + 1) + 1, 2k+1

copies of ai,j,k+2 are traded for 2k+1 copies of bi,j,k+2 by the r2,i,j,k+2. At step
3(k + 1) + 2, by the rule r3,i,j,k+2, the cell with label 1 gets 2k+2 copies of object
ci,j and the cell with label 1 has exactly 2k+2 copies of di,j,k+2.

Based on the above result, specifically, we have, at step 3(n − 3) + 2, the cell
with label 1 has exactly 2n−2 copies of di,j,n−2. In the next 3 steps, the rules
r5,i,j,n−2, r2,i,j,n−1, and r4,i,j,n−1 are applied in order. At step 3(n − 2) + 2, the
cell with label 1 gets 2n−1 copies of ci,j . Note that on object di,j,k is brought into
the cell with label 1 at step 3(n − 2) + 2, and the group of rules r5,i,j,k, r2,i,j,k,
and r4,i,j,k cannot be used any more. Therefore the cell with label 1 will not get
object ci,j any more, and the result holds.

For the cases of objects c and Ai, the results can be proved similarly. We omit
them here.

Proposition 6. Let C be an arbitrary computation of the system, then

1. For each assignment σj(xi), i = 1, 2, · · · , n, there exists only one cell with label
2 in C3n−1 that contains multiset {{ψ(σj(xi)) | i = 1, 2, · · · , n}}.
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2. There exist exactly 2n cells with label 2 in configuration Ck (k ≥ 3n − 1).
Particularly, in configuration C3n−1, each cell with label 2 contains a multiset
{{y}}∪{{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset
{{y′}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.

Proof. We prove the result by induction.
In the configuration C0, there is only one cell with label 2, which has multiset

{{cij , xi,j , x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{A1}}. The rules r19,i,j – r22,i,j and
r23,1 can be applied. At step 1, the cell with label 2 has multiset {{zi,j , xi,j | xi,j ∈
cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j |

x̄i,j ∈ cod(ϕ)}}∪{{z, z′, T1, F
′
1, y, y′, s}}. At step 2, with the appearance of object

s, the separation rule r1 is used to separate cell with label 2, object s is consumed,
and the multiset {{zi,j , xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪
{{z, T1, y}} are placed in one new cell with label 2, the multiset {{z′i,j , x

′
i,j | xi,j ∈

cod(ϕ)}} ∪ {{z′i,j , x̄
′
i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z′, F ′

1, y
′}} are placed in another new

cell with label 2. We take the cell with label 2 where ψ(σj(x1)) appears.
By Proposition 5, at step 2, the cell with label 1 has two copies of ci,j , two

copies of c, two copies of A2. So, at step 3, the rules r29,i,j , r30,i,j , r33,2 and r34,2

can be applied. Due to the maximality of the parallelism of using rules, each cell
with label 2 gets exactly one copy of ci,j , one copy of c, and one copy of A2 from
the cell with label 1. Object ci,j and c are used for duplication, and A2 is used to
assign truth-values to the valuable x2. In this way, the next cycle of duplication-
separation can continue.

In general, after step 3k + 2 (0 ≤ k ≤ n − 1) (that is, the second step in the
(k + 1)-th cycle of duplication-separation), we take the cell with label 2 where
{{ψ(σj(x1)), · · · , ψ(σj(xk+1))}} appears. In this way, at step 3n − 1, there exists
exactly one cell with label 2 whose multiset is {{ψ(σj(x1)), · · · , ψ(σj(xn))}}. (Note
the difference of the rule r24 and the rules r23,i. The rule r24 does not bring objects
z and z′ into cells with label 2 from the environment, and this rule is used at step
3n − 2. So the object z does not appear in the multiset of cell 2 that corresponds
to the assignment σj .)

From the above proof, it is easy to see that the multiset {{ψ(σj(x1)), · · · , ψ(σj

(xn))}} appears only in the corresponding cell with label 2.
In every cycle of duplication-separation, the number of cells with label 2 is

doubled. In the 3n − 1 steps, there are n cycles. So there exist exactly 2n cells
with label 2 in configuration C3n−1; and from now on, cells with label 2 will not
separate anymore.

In the last cycle of duplication-separation, at step 3n−2, each of the 2n−1 cells
with label 2 contains one copy of y and one copy of y′ by the rule r24; at step
3n− 1, the 2n−1 cells with label 2 are separated by the rule r1, each of the 2n new
cells gets one copy of object y or one copy of object y′.

Proposition 7. Let C be an arbitrary computation of the system, then C3n−1(1) =
{{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}.
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Proof. In order to prove C3n−1(1) = {{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}, we will
check how all the rules related to the cell 1 work in the first 3n − 1 steps.

– Checking the rules r2,i,j,k – r18,i.
From the proofs of Propositions 5 and 6, we can find that after step 3n−3, there
are no objects ai,j,k, bi,j,k, ci,j , di,j,k, a1,i, b1,i, c, d1,i, ei, a2,i, b2,i, d2,i, gi, hi, li, Ai

in the cell with label 1, and the rules r2,i,j,k – r18,i will not bring any more
objects into the cell with label 1.

– Checking the rules r35,i – r40,i.
In the first 2n − 1 steps of the computation, by the rules r35,i, r37,i, and r39,i,
the subscripts of B1, C1, and D1 grow to 2n. In the next n steps, by the rules
r36,i, r38,i, and r40,i, the subscripts of B2n, C2n, and D2n grow to 3n, and at
every step, the numbers of objects of each type Bi, Ci, and Di are doubled. So
the cell with label 1 has 2n copies of B3n, 2n copies of C3n, and 2n copies of
D3n at the step 3n − 1.

– Checking the rule r41,i.
By the rule r41,i, the subscript of E1 grow to 3n in the first 3n− 1 steps of the
computation. So the cell 1 has the object E3n at step 3n − 1.

– Checking the group of rules r29,i,j – r34,i,j and the group of rules r42,i,j – r47.
In the first 3n−3 steps, the cell with label 1 has communication with cells with
label 2 getting objects zi,j , z′i,j , z, z′, y, y′ from cells with label 2, by the rules
r29,i,j – r34,i,j . In the next step after the objects zi,j , z′i,j , z, z′, y, y′ reach the
cell 1, they are sent to the environment by the rules r42,i,j – r47.

– Checking the group of rules r48 – r49.
At the step 3n − 1, the subscript of objects Bi, Ci and Di grow to 3n. The
rules r48 – r49 can be applied at step 3n. But, in the first 3n − 1 steps of the
computation, they cannot be applied.

– Checking the rules r66 – r68.
In the first steps 3n − 1, there are no object D4n+2m appearing in cells with
label 2, and no object E4n+2m+3 appearing in the cell with label 1. The rules
r66 – r68 cannot be applied in the first 3n− 1 steps of the computation, so the
cell with label 1 has objects yes, no and p at the step 3n − 1.

Therefore, C3n−1(1) = {{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}.

Proposition 8. Let C be an arbitrary computation of the system, then

1. C3n(1) = {{y2n−1

, (y′)2
n−1

, E3n+1, p, yes, no}};
2. For each assignment σj there exists only one cell with label 2 in C3n that

contains multiset {{ψ(σj(xi)) | i = 1, 2, · · · , n}}. In configuration C3n, each
cell with label 2 contains a multiset {{B3n, C3n,D3n}} ∪ {{zi,j , xi,j | xi,j ∈
cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or multiset {{B3n, C3n,D3n}} ∪
{{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.
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Proof. The multiset C3n(1) is obtained from C3n−1(1) by the application of the
rules r41,i, r48 and r49. The object E3n in C3n−1(1) increases its subscript by one
by the rule r41,i, so one copy of E3n+1 appears in C3n(1). By Proposition 7, at step
3n−1, the cell with label 1 has 2n copies of B3n, 2n copies of C3n, and 2n copies of
D3n. By Proposition 6, at step 3n−1, there exist exactly 2n cells with label 2, each
of them contains one copy of object y or one copy of object y′, and the number of
cells with label 2 containing object y (resp. y′) is 2n−1 (resp. 2n−1). At step 3n, the
rules r48 and r49 can be applied, 2n copies of objects B3nC3nD3n in the cell with
label 1 are traded for y or y′ from the cells with label 2. Due to the maximality
of the parallelism of using rules, each cell with label 2 gets one copy of objects
B3nC3nD3n, and the cell with label 1 gets 2n−1 copies of object y and 2n−1 copies
of object y′. Therefore, C3n(1) = {{y2n−1

, (y′)2
n−1

, E3n+1, p, yes, no}}; and for each
assignment σj there exists only one cell with label 2 in C3n that contains multiset
{{ψ(σj(xi)) | i = 1, 2, · · · , n}}. By Proposition 6 and the above proof, it is not
difficult to see that in configuration C3n, each cell with label 2 contains a multiset
{{B3n, C3n,D3n}} ∪ {{zi,j , xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or
a multiset {{B3n, C3n,D3n}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈

cod(ϕ)}}.

Proposition 9. C4n(1) = {{E4n+1, p, yes, no}} holds.

Proof. By the rules r44 and r45, at step 3n + 1, the objects y and y′ are moved to
the environment. Henceforth the cell with label 1 will not get any more y or y′,
because the objects y or y′ are traded into cells with label 2 from the environment
against the object An, and no Ai will appear in cells with label 2 after step
3n− 2. By the rule r41,i, the subscript of E3n+1 grows to E4n+1. These are all the
operations related to the cell with label 1 from step 3n + 1 to step 4n. Therefore,
C4n(1) = {{E4n+1, p, yes, no}} holds.

Proposition 10. For each assignment σj, there exists only one cell with label
2 in C4n that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}. In configuration
C4n, each cell with label 2 contains a multiset {{B2n

4n , C3n,D4n}} ∪ {{zi,j , xi,j |
xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset {{B2n

4n , C3n,D4n}} ∪
{{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.

Proof. Based on Proposition 8, we prove Proposition 10 holds.
From step 3n+1 to step 4n, the objects in multiset {{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪

{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} and multiset {{z′i,j , x
′
i,j | xi,j ∈ cod(ϕ)}}∪{{z′i,j , x̄

′
i,j |

x̄i,j ∈ cod(ϕ)}} keep unchanged because no rules can be applied to them.
By the rules r54,i and r55,i, the subscripts of objects B3n and D3n in C3n

increase, until reaching the value 4n at step 4n. At each step from step 3n + 1
to step at step 4n, the number of object Bi is doubled by the rule r54,i, so in
configuration C4n, there are 2n copies of Bi.

For an assignment σj , we consider the only cell with label 2 in C3n that contains
multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}. From the definition of functions ψ and γ,
we can see that Ti, T ′

i and ti correspond to the value true which the valuable xi
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assumes; Fi, F ′
i and fi correspond to the value false which the valuable xi assumes.

Both multisets {{ψ(σj(xi)) | i = 1, 2, · · · , n}} and {{γ(σj(xi)) | i = 1, 2, · · · , n}}
are associated with the same assignment σj . By the rules r50,i – r53,i, with the
object C3n, the objects Ti or T ′

i introduce the objects ti, and the objects Fi or F ′
i

introduce the objects fi. Because there is only one copy of C3n, it takes n steps to
introduce all the objects in multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}.

Therefore Proposition 10 holds.

Proposition 11. C4n+m(1) = {{E4n+m+1, p, yes, no}} holds.

Proof. By the rule r41,i, the subscript of object E4n+1 in C4n(1) grows to the value
4n + m + 1 at step 4n + m. The objects p, yes, no keeps unchanged. Therefore,
Proposition 11 holds.

Proposition 12. For each assignment σj, there exists only one cell with label 2
in C4n+m that contains multiset (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) = ti, and xi,jl

∈
cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}) ∪ (∪n

i=1{{rj1rj2 · · · rjk
|

γ(σj(xi)) = fi, and x̄i,jl
∈ cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · <

jk ≤ n}}). In configuration C4n+m, each cell with label 2 contains a multiset
{{B2n

4n , C3n,D4n+m}}.

Proof. By Proposition 10, for each assignment σj , there exists only one cell with
label 2 in C4n that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}; and each cell
with label 2 contains a multiset {{B4n, C3n,D4n}}∪{{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪
{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset {{B4n, C3n,D4n}} ∪ {{z′i,j , x

′
i,j | xi,j ∈

cod(ϕ)}} ∪ {{z′i,j , x̄
′
i,j | x̄i,j ∈ cod(ϕ)}}. In the following, we consider this unique

cell with label 2 that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}.
The objects C3n keep unchanged, and the subscript of D4n reaches 4n + m at

step 4n + m by the rule r64,i .
With the presence of B4n in C4n (not appearing in Ci (i < 4n)), the rules

r56,i,j – r63,i,j can be applied. We start to check which clauses are satisfied. If
σj((xi)) = ti and xi,j ∈ cod(ϕ), then rule r56,i,j or r58,i,j is applied, and an object
rj is introduced into the corresponding cell with label 2. If σj((xi)) = ti and x̄i,j ∈
cod(ϕ), then rule r57,i,j or r59,i,j is applied, and the object x̄i,j or x̄′

i,j is removed
from the corresponding cell with label 2. Similarly, if σj((xi)) = fi and x̄i,j ∈
cod(ϕ), then rule r60,i,j or r62,i,j is applied, and an object rj is introduced into the
corresponding cell with label 2. If σj((xi)) = fi and xi,j ∈ cod(ϕ), then rule r61,i,j

or r63,i,j is applied, and the object xi,j or x′
i,j is removed from the corresponding

cell with label 2. The sizes of both cod(ϕ) and {{x′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄′

i,j |
x̄i,j ∈ cod(ϕ)}} are nm, and each cell with label 2 contains multiset cod(ϕ) or
{{x′

i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄′
i,j | x̄i,j ∈ cod(ϕ)}}. We have 2n copies of B4n,

n objects ti and fi from the multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}, so it takes
m steps to check which clauses are satisfied. In total, all the introduced objects
ri form the multiset (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) = ti, and xi,jl

∈ cod(ϕ), l =
1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}) ∪ (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) =

fi, and x̄i,jl
∈ cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}).
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Proposition 13. C4n+2m(1) = {{E4n+2m+1, p, yes, no}} holds.

Proof. By the rule r41,i, the subscript of object E4n+m+1 in C4n+m(1) grows to
the value 4n + 2m + 1 at step 4n + 2m. The objects p, yes, no keeps unchanged.
Therefore, Proposition 13 holds.

Proposition 14. Let C be an arbitrary computation of the system, then

• If σj is an assignment that does not satisfy the formula ϕ, then there exists
only one cell with label 2 in C4n+2m associated with σj, and whose associated
multiset contains an object D4n+m+α, where 0 ≤ α < m such that the clauses
M1, · · · ,Mα are satisfied by the assignment f , but Mα+1 is not satisfied by the
assignment σj.

• If σj is an assignment that satisfies the formula ϕ, then there exists only one
cell 2 in C4n+2m associated with σj, and whose associated multiset contains one
copy of object D4n+2m.

Proof. From the configuration C4n+m, we start to check whether or not all clauses
are satisfied by the corresponding assignment. Such checking is simultaneous in all
2n cells with label 2.

Let us consider an assignment σj . By Proposition 12, with the presence of
object D4n+m, the rule r65,i can be applied. The clauses are checked in the order
from M1 to Mm. For each clause which is satisfied (that is, the corresponding
object ri appears), we increase by one the subscript of Di, hence the subscript
of Di reaches the value 4n + 2m if and only if all clauses are satisfied. If the
clauses M1, · · · ,Mα (0 ≤ α < m) are satisfied, but Mα+1 is not satisfied (that is,
r1, · · · , rα appear, but rα+1 does not appear), then the subscript of Di can only
reach the value 4n + m + α.

Therefore, Proposition 14 holds.

Proposition 15. Let C be an arbitrary computation of the system, Let us suppose
that there exists an assignment that satisfies the formula ϕ. Then
(a) C4n+2m+1(1) = {{E4n+2m+2,D

β
4n+2m, p, yes, no}},

(b) C4n+2m+2(1) = {{E4n+2m+3,D
β−1
4n+2m, no}},

where β is the number of assignments that satisfy the formula ϕ. Furthermore, the
object yes appears in C4n+2m+2(0).

Proof. The configuration of item (a) is obtained by the application of rules r41,i and
r66 to the previous configuration C4n+2m. By the rule r41,i, the object E4n+2m+1

in C4n+2m(1) grows by one its subscript at step 4n+2m+1. By Proposition 14, for
each assignment that satisfies the formula ϕ, there exists exactly one associated
cell with label 2 in C4n+2m whose multiset contains an object D4n+2m. The object
D4n+2m is moved to the cell with label 1 by the rule r66. If there are β assignments
that satisfy the formula ϕ, then the cell 1 gets β copies of object D4n+2m.

The configuration of item (b) is obtained by the application of rules r41,i and r67

to the previous configuration C4n+2m+1(1). By the rule r41,i, the object E4n+2m+2
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in C4n+2m+1(1) grows by one its subscript at step 4n + 2m + 2. By the rule r67,
the object yes together with objects D4n+2m and p leaves the system into the
environment, signaling the formula ϕ is satisfiable. The one copy of object p is
consumed by the rule r67, so the rule r68 cannot be applied. The object no cannot
exit into the environment.

Proposition 16. Let C be an arbitrary computation of the system, Let us suppose
that there does not exist any assignment that satisfies the formula ϕ. Then
(a) C4n+2m+1(1) = {{E4n+2m+2, p, yes, no}},
(b) C4n+2m+2(1) = {{E4n+2m+3, p, yes, no}},
(c) C4n+2m+3(1) = {{yes}}.
Furthermore, the object no appears in C4n+2m+3(0).

Proof. If there does not exist any assignment that satisfies the formula ϕ, by
Proposition 14, all cells with label 2 do not contain object D4n+2m. Of course, the
cell with label 1 cannot get object D4n+2m.

The configurations of items (a) an (b) are obtained by the application of rules
r41,i to the previous configuration C4n+2m.

The configuration of item (c) is obtained by the application of rules r68 to the
previous configuration.

6.3 Main Results

The system constructed to solution of SAT in Section 6 has communication rules
with length at most 6. From the discussion in the previous sections and according
to the definition of solvability given in Section 4, we have the following result:

Theorem 2. SAT ∈ PMCTSC(6).

Corollary 1. NP ∪ co − NP ⊆ PMCTS(6).

Proof. It suffices to make the following observations: the SAT problem is NP-
complete, SAT∈ PMCTS(6) and this complexity class is closed under polynomial-
time reduction and under complement.

7 Discussion

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The space-time tradeoff method is used to efficiently solve NP-
complete problems in the framework of cell-like P systems. Membrane division,
membrane creation, and membrane separation are three efficient ways to obtain
exponential workspace in polynomial time. Membrane division is introduced into
tissue P systems, and a linear time solution for SAT problem by tissue P systems
with cell division is given [22]. In this research, membrane separation is introduced
into tissue P systems, and a polynomial time solution for SAT problem by tissue
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P systems with cell separation and communication rules of lengths at most 6 is
presented. We also prove that tissue P systems with cell separation and communi-
cation rules of length 1 can only solve tractable problems. Hence, in the framework
of recognizer tissue P systems with cell separation, the lengths of the communica-
tion rules provide a borderline between efficiency and non-efficiency. Specifically,
a frontier is there when we pass from length 1 to length 6. The role of the lengths
of communication rules is worth further investigation. That is, what happens if we
consider tissue P systems with communication rules of length k, k ∈ {2, 3, 4, 5}?

In the framework of tissue P systems, when cell division is used to generate
exponential workspace in polynomial time, there is an advantage: all the other
objects in the cell are duplicated except the object that activate the cell division
operation. But both cell creation and cell separation have no such duplication
function. In this sense, the solution for SAT problem presented in this paper gives
some hint for answering the following open problem: how to efficiently solve NP-
complete problems by tissue P systems with cell creation.

Although SAT problem is NP-complete (the other NP problems can be re-
duced to SAT problem in polynomial-time), we would like to stress that up to
now there does not exist a methodology to compute the reduction process by P
systems. The solution to SAT problem by tissue P systems with cell separation can
be used as a scheme for designing solutions to other NP–complete problems such
as the vertex–cover problem, the clique problem, the Hamiltonian path problem,
etc.

Recently, a new kind of P system model, called spiking neural P systems, was
introduced [7], which has neural-like architectures. It was proved that spiking neu-
ral P systems are Turing complete [7]. About the efficiency of spiking neural P
systems to solve computationally hard problems, there is an interesting result: an
SN P system of polynomial size cannot solve in a deterministic way in a polynomial
time an NP-complete problem (unless P=NP) [11]. Hence, under the assumption
that P 6= NP, efficient solutions to NP-complete problems cannot be obtained
without introducing features which enhance the efficiency. One of possible features
is some ways to exponentially grow the workspace during the computation. Cell
division, cell creation and cell separation are candidates to be introduced into
spiking neural P systems for exponential workspace generation. Although the ar-
chitectures of spiking neural P systems are similar to the architectures of tissue P
systems, it is not a trivial work to introduce cell division, cell creation and cell sep-
aration into spiking neural P systems and give efficient solutions to NP-complete
problems by new variants of spiking neural P systems.

In general, it is expected that the research of efficiency and complexity on P
systems can provide insight on unconventional parallel computing models, and also
help us in clarifying the relations between classic complexity classes.
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Pérez-Jiménez was supported by Project TIN2006-13452 of the Ministerio de Edu-
cación y Ciencia of Spain and Project of Excellence with Investigador de Recono-
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In A. Alhazov, C. Mart́ın-Vide and Gh. Păun (eds.). Preproceedings of the Workshop
on Membrane Computing, Tarragona, Report RGML 28/03, (2003), 356–364.

27. Zandron, C., Ferretti, C. and Mauri, G. Solving NP-Complete Problems Using P
Systems with Active Membranes. In I. Antoniou, C.S. Calude and M.J. Dinneen
(eds.). Unconventional Models of Computation, UMC’2K, Springer-Verlag, (2000),
289–301.

28. ISI web page http://esi-topics.com/erf/october2003.html

29. P systems web page http://ppage.psystems.eu/


