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Summary. P systems provide a computational model based on the structure and in-
teraction of living cells [9]. A P system consists of a hierarchical nesting of cell-like
membranes, which can be visualized as a rooted tree.

Although the P systems are computationally complete, many real world models, e.g.,
from socio-economic systems, databases, operating systems, distributed systems, seem to
require more expressive power than provided by tree structures. Many such systems have a
primary tree-like structure completed with shared or secondary communication channels.
Modeling these as tree-based systems, while theoretically possible, is not very appealing,
because it typically needs artificial extensions that introduce additional complexities,
nonexistent in the originals.

In this paper we propose and define a new model that combines structure and flex-
ibility, called hyperdag P systems, in short, hP systems, which extend the definition of
conventional P systems, by allowing dags, interpreted as hypergraphs, instead of trees,
as models for the membrane structure.

We investigate the relation between our hP systems and neural P systems. Despite
using an apparently less powerful structure, i.e., a dag instead of a general graph, we
argue that hP systems have essentially the same computational power as tissue and neural
P systems. We argue that hP systems offer a structured approach to membrane-based
modeling that is often closer to the behavior and underlying structure of the modeled
objects.

Additionally, we enable dynamical changes of the rewriting modes (e.g., to alternate
between determinism and parallelism) and of the transfer modes (e.g., the switch be-
tween unicast or broadcast). In contrast, classical P systems, both tree and graph based
P systems, seem to focus on a statical approach.

We support our view with a simple but realistic example, inspired from computer
networking, modeled as a hP system with a shared communication line (broadcast chan-
nel). In Part B of this paper we will explore this model further and support it with a
more extensive set of examples.
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1 Introduction

P systems provide a distributed computational model, based on the structure and
interaction of living cells, first introduced by G. Păun in 1998 [8]. The model was
initially based on transition rules, but was later expanded into a large family of
related models. Essentially, all versions of P systems have a structure consisting
of cell-like membranes and a set of rules that govern their evolution over time.

Many of the “classical” versions use a structure where membranes correspond to
nodes in a rooted tree. Such a structure is often visualized as Venn diagram where
nesting denotes a parent/child relationship. For example, Figure 1 [10] shows the
same P system structure with 9 membranes, labeled as 1, . . . , 9, both as a rooted
tree and as a Venn diagram.
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Fig. 1. A P system structure represented as a tree and as a Venn diagram.

More, recently, tissue P systems [7] and neural P systems [9], here abbreviated
as tP and nP systems, respectively, have been introduced, partially to overcome
the limitations of the tree model. Essentially, these systems organize their cells in
an arbitrary digraph. For example, ignoring for the moment the actual contents
of cells (states, objects, rules), Figure 2 illustrates the membrane structure of a
simple tP or nP system, consisting of 3 cells, σ1, σ2, σ3, where cell σ1 is designated
as the output cell.

A large variety of rules have been used to describe the operational behavior
of P systems, the main ones being: multiset rewriting rules, communication rules
and membrane handling rules. Essentially, transition P systems and nP systems
use multiset rewriting rules, P systems with symport/antiport operate by commu-
nicating immutable objects, P systems with active membranes combine all three
type rules. For a comprehensive overview and more details, we refer the reader to
[9, 10].
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Fig. 2. A tP/nP system structure represented as a digraph.

Besides theoretical computer science and biology, P systems have been applied
to a variety of other domains, ranging from linguistics [5] to theoretically efficient
solutions of NP-complete problems [14], or to model distributed algorithms [3, 6].
The underlying tree structure provides good support for reasoning and formal ver-
ification, good potential for efficient implementation on multi-core architectures,
and an excellent visualization, very appealing to practitioners.

Although the P systems are computationally complete, many real world models
seem to require more expressive power, essentially trees augmented by shared or
secondary communication channels. For example, the notion of a processing node
having an unique parent is not true for (a) computer networks where a computer
could simultaneously be attached to several subnets (e.g., to an Ethernet bus and to
a wireless cell), (b) living organisms may be the result of multiple inheritance (e.g.,
the evolutionary “tree” is not really a tree, because of lateral gene transfer [4]) and
(c) socio-economic scenarios where a player is often connected to and influenced
by more than one factors [11, 12, 13].

Modeling these as tree-based systems, while theoretically possible, is not very
appealing. Simulating shared or secondary channels requires artificial mechanisms
that will ripple data up and down the tree, via a common ancestor. This could of
course limit the merits of using a formal model. Tissue and neural P systems have
been introduced to model such cases [7, 9]; details on neural P systems, in short,
nP systems, are given in Section 3. However, these extensions are based on general
graphs and, while allowing any direct communications, they also tend to obscure
the structures already present in the modeled objects, limiting the advantages that
a more structured approach could provide. Verification is more difficult without a
clear modularization of concerns, practical parallel implementation could be less
efficient, if the locality of reference is not enforced, and visualizations are not very
meaningful, unless the primary structure is clearly emphasized.

We do not think that we have to choose between structure and flexibility. We
propose a solution that seems to combine both, i.e., flexibility without sacrificing
the advantages of a structured approach.
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Our main contribution in this paper is to propose a new model for P sys-
tems, called hyperdag P systems, in short, hP systems, that allows more flexible
communications than tree-based models, while preserving a strong hierarchical
structure. This model, defined in Section 4, (a) extends the tree structure of clas-
sical P systems to directed acyclic graphs (dags), (b) augments the operational
rules of nP systems with broadcast facilities (via a go-sibling transfer tag), and
(c) enables dynamical changes of the rewriting modes (e.g., to alternate between
determinism and parallelism) and of the transfer modes (e.g., to switch between
unicast or broadcast). In contrast, classical P systems, both tree and graph based
P systems, seem to focus on a statical approach.

We investigate the relation between our hP systems and neural P systems.
Despite using an apparently less powerful structure, we show in Section 5 that our
simple dag model has the same computational power as graph-based tissue and
neural P systems.

We argue that hP systems offer a structured approach to membrane-based
modeling that is often closer to the behavior and underlying structure of the mod-
eled objects. Because our extensions address the membrane topology, not the rules
model, they can be applied to a variety of P system flavors, including transition
systems and symport/antiport systems.

We support our view with a realistic example (see Examples 8 and 9), inspired
from computer networking, modeled as a hP system with a shared communication
line (broadcast channel).

Classical P systems allow a “nice” planar visualization, where the parent/child
relationships between membranes are represented by Venn-like diagrams. We show
in Section 6 that the extended membrane structure of hP systems can still be
visualized by hierarchically nested planar regions.

In this article we will restrict ourselves to P systems based on multiset rewriting
rules, such as used by transition P systems and nP systems. However, because
our extensions address the membrane topology, not the rules model, they can be
applied to a variety of other P system flavors.

2 Preliminaries

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A digraph (directed graph) G is a pair (X,A), where X is a finite set of el-
ements called nodes (or vertices), and A is a binary relation A ⊆ X × X, of
elements called arcs. For an arc (x, y) ∈ A, x is a predecessor of y and y is a suc-
cessor of x. A length n − 1 path is a sequence of n distinct nodes x1, . . . , xn,
such that {(x1, x2), . . . , (xn−1, xn)} ⊆ A. A cycle is a path x1, . . . , xn, where
n ≥ 1 and (xn, x1) ∈ A.

A dag (directed acyclic graph) is a digraph (X,A) without cycles. For x ∈
X, A−1(x) = A−1({x}) are x’s parents, A(x) = A({x}) are x’s children, and
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A(A−1(x))\{x} = A(A−1({x}))\{x} are x’s siblings (siblings defines a symmetric
relation). A node x ∈ X is a source iff |A−1(x)| = 0, and x ∈ X is a sink iff
|A(x)| = 0. The height of a node x is the maximum length of all paths from x to a
sink node. An arc (x, y) is transitive if there exists a path x1, . . . , xn, with x1 = x,
xn = y and n > 2. dags without transitive arcs are here called canonical.

A (rooted unordered) tree is a dag with exactly one source, called root, and all
other nodes have exactly one parent (predecessor). Sinks in a tree are also called
leaves. A topological order of a dag is a linear reordering of vertices, in which each
vertex x comes before all its children vertices A(x).

Dags and trees are typically represented with parent-child arcs on the top-down
axis, i.e., sources/roots up and sinks/leaves down. Figure 3 shows a simple dag.

Fig. 3. A simple dag. The parent-child axis is up-down. Here, plain lines indicate parent-
child relations and dashed lines indicate siblings.

We consider a variant hypergraph definition, based on multisets, as an exten-
sion of the classical definition [1], which is based on sets. A hypergraph is here a
pair (X,E), where X is a finite set of elements called nodes (or vertices), and E is
a finite multiset of subsets of X, i.e., e ∈ E ⇔ e ⊆ X. By using a multiset of edges,
instead of a more conventional set of edges, we introduce an intensional element,
where two extensionally equivalent hyperedges (i.e., hyperedges containing the
same nodes) are not necessarily equal. A graph is a set based hypergraph where hy-
peredges are known as edges and contain exactly two nodes. Alternatively, a graph
(X,E) can be interpreted as a digraph (X,A), where A = {(x, y) | {x, y} ∈ E}.
Hypergraphs (set or multiset based) can be represented by planar diagrams, where
hyperedges are represented as regions delimited by images of Jordan curves (simple
closed curves) [2].

With the above hypergraph definition, a height 1 dag (X,A) can be interpreted
as a hypergraph (X,E), where E is the multiset E = {A(x) | |A−1(x)| = 0}.
For example, Figure 4 represents, side by side, the dag D = ({a, b, c, d, e, f},
{(d, a), (d, b), (d, c), (e, b), (e, c), (f, b), (f, c)}) and its corresponding hypergraph
H = ({a, b, c}, {d, e, f}), where d = {a, b, c}, e = {b, c}, f = {b, c}. Note that the
apparently empty differences of regions are needed in the case of multiset based
hypergraphs, to support the intensional (as opposed to the extensional) aspect:
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here e 6= f , despite containing the same nodes, b and c, and neither e nor f is
included in d.
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Fig. 4. A simple height 1 dag and its corresponding hypergraph representation.

Generalizing the above hypergraph definition, a height n generalized hyper-
graph is a system (X,E), recursively built via a sequence of n hypergraphs
(X1, E1), . . . , (Xn, En) where X1 = X, Xi ∩ Ei = ∅, Xi+1 = Xi ∪ Ei, e ∩ Ei 6=
∅ for ∀e ∈ Ei+1 and E =

⋃
i∈{1,...,n}Ei. An arbitrary height n dag can be repre-

sented by a height n generalized hypergraph, where the hypergraph nodes corre-
spond to dag sinks, and height i hyperedges correspond to height i dag nodes, for
i ∈ {1, . . . , n}.

We will later see that any generalized hypergraph that corresponds to a non-
transitive dag can also be represented by hierarchically nested planar regions delim-
ited by Jordan curves, where arcs are represented by direct nesting. For example,
Figure 5 shows a height 2 dag and its corresponding height 2 hypergraph (X,E),
where X = X1 = {a, b, c, d, e}, E1 = {f, g, h}, E2 = {i}, E = {f, g, h, i}.
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Fig. 5. A height 2 dag and its corresponding height 2 hypergraph.

An alphabet O is a finite non-empty sets of objects. We will assume that these
alphabets are implicitly ordered. Multisets over an alphabet O are represented as
strings over O, such as on1

1 . . . onk

k , where oi ∈ O, ni ≥ 0, and, in the canonical
form, letters appear in sorted order, i.e., o1 < · · · < ok, and ni ≥ 1. The set of all
multisets is denoted by O∗. For this representation, two strings are equivalent if
they become equal after sorting, e.g., a2cbd0a and a3bc are equivalent representa-
tions of the same multiset {a, a, a, b, c}. Under this convention, the empty string λ
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represents the empty multiset, and string concatenation represents multiset union,
e.g., (a2c) · (ab) = a3bc.

3 Neural P Systems

In this paper we present the definition of neural P systems as given in [9], that
coincide with an early definition of tissue P systems as given in [7]. We define the
following sets of tagged objects: Ogo = {(a, go) | a ∈ O}, Oout = {(a, out) | a ∈
O}, and we set Otot = O ∪ Ogo ∪ Oout. For simplicity, we will use subscripts for
these tagged objects, such as ago for (a, go) and aout for (a, out). We also define
projection homomorphisms, here denoted in postfix notation: |O, |go, |out : O∗

tot →
O∗, by o|O = o, ogo|go = o, oout|out = o for o ∈ O, and otherwise λ. For example,
a2a3

gob
4bgo|go = a3b.

Definition 1 (Neural P systems [9, 7]). A neural P system (of degree m ≥ 1)
is a system: Π = (O, σ1, . . . , σm, syn, iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewriting rules of the form sx → s′x′ygozout,

where s, s′ ∈ Qi, x, x′ ∈ O∗, ygo ∈ O∗
go and zout ∈ O∗

out, with the restriction
that zout = λ for all i ∈ {1, . . . ,m}\{iout}.

3. syn is a set of digraph arcs on {1, . . . ,m}, i.e., syn ⊆ {1, . . . ,m}×{1, . . . ,m},
representing unidirectional communication channels between cells, known as
synapses;

4. iout ∈ {1, . . . ,m} indicates the output cell, the only cell allowed to send objects
to the “environment”.

Example 1. To illustrate the operational behavior of nP systems, consider again the
example of Figure 2, expanded now with states, rules and objects, see Figure 6.
For simplicity, in this example only cell σ1 provides rules. More formally, this
nP system can be defined as the system Π1 = (O, σ1, σ2, σ3, syn, iout), where:

• O = {a, b, c, d};
• σ1 = ({s, t}, s, a2, {sa→ sdbgocgo, sa→ sd, s→ t, td→ tdout});
• σ2 = ({s}, s, λ, ∅);
• σ3 = ({s}, s, λ, ∅);
• syn = {(1, 2), (1, 3), (2, 3), (3, 1)};
• iout = 1.



92 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

sa→ sdbgocgo

s, aa

s→ t

σ1

σ2

s, λ s, λ

σ3

sa→ sd

td→ tdout

Fig. 6. Π1, a simple nP system with states, objects and rules.

Neural P systems operate as indicated by multiset rewriting rules. A rewriting
rule takes the existing state and objects and generates a new state and new objects,
where some of the generated objects are tagged for communication, i.e., for transfer
to neighboring cells along existing synapses. Objects that need to be transferred
to a neighboring cell are tagged with go and objects that need to be output in the
environment are tagged with out (in this definition, this is only possible from the
iout node).

Definition 2 (Configurations [9, 7]). A configuration of the nP system Π is an
m-tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ O∗, for 1 ≤ i ≤ m.
The m-tuple (s1,0w1,0, . . . , sm,0wm,0) is the initial configuration of Π.

Example 2. For example, the initial configuration of the nP system Π1 in Figure 6,
is C0 = (saa, sλ, sλ).

Definition 3 (Rewrite and transfer modes [9, 7]). Neural P systems have
three modes of rewriting objects, inside a cell, min (minimum), par (parallel),
max (maximum), and three modes of transferring objects, from a given cell to
another cell, repl (replicate), one, spread. For each nP system, the rewriting and
transfer modes are fixed from start and apply to all rewriting and transition steps,
as defined below.

Definition 4 (Rewriting steps [9, 7]). For each cell σi with s, s′ ∈ Qi, x ∈ O∗,
y ∈ O∗

tot, we define a rewriting step, denoted by ⇒α, where α ∈ {min, par,max}:

• sx⇒min s
′y iff sw → s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′;
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• sx ⇒par s
′y iff sw → s′w′ ∈ Pi, wk ⊆ x, wk+1 * x, for some k ≥ 1, and

y = (x− wk) ∪ w′k;
• sx ⇒max s′y iff sw1 → s′w′

1, . . . , swk → s′w′
k ∈ Pi, k ≥ 1, such that

w1 . . . wk ⊆ x, y = (x−w1 . . . wk) ∪w′
1 . . . w

′
k, and there is no sw → s′w′ ∈ Pi,

such that w1 . . . wkw ⊆ x (note that rules selected arbitrarily can be combined
only if they start from the same state s and end in the same state s′).

Example 3. As an example, considering cell 1 from the nP system Π1, illustrated
in Figure 6, the following rewriting steps are possible:

• sandk ⇒min sa
n−1bgocgod

k

• sandk ⇒min sa
n−1dk+1

• sandk ⇒min ta
ndk

• tandk ⇒min ta
ndk−1dout

• sandk ⇒par sb
n
goc

n
god

k+n

• sandk ⇒par sd
k+n

• sandk ⇒par ta
ndk

• tandk ⇒par ta
ndk

out

• sandk ⇒max sb
l
goc

l
god

k+n with 0 ≤ l ≤ n

• sandk ⇒max ta
ndk

• tandk ⇒max ta
ndk

out

We now define a transition step between two configurations, denoted by ⇒α,β ,
where α is an object processing mode and β is an object transfer mode. Essentially,
for a transition step we apply a rewriting step in each cell and we send to the
neighbors all objects tagged for transfer.

Definition 5 (Transition steps, adapted from [9, 7]). Given two configura-
tions C1 = (s1w1, . . . , smwm) and C2 = (s′1w

′′
1 , . . . , s

′
mw

′′
m), we write C1 ⇒α,β C2,

for α ∈ {min, par, max}, β ∈ {repl, one, spread}, if the conditions below are met.
First, we apply rewriting steps (as defined in Definition 4) on each cell, i.e.,

siwi ⇒α s
′
iw

′
i, 1 ≤ i ≤ m.

Secondly, we define zj,k, the outgoing object multisets from j to k, where j ∈
{1, . . . ,m} and k ∈ syn(j):

• If β = repl, then
◦ zj,k = w′

j |go, for k ∈ syn(j);
• If β = one, then

◦ zj,kj
= w′

j |go, for an arbitrary kj ∈ syn(j), and zj,k = λ for k ∈
syn(j)\{kj};

• If β = spread, then
◦ {zj,k}k∈syn(j) is an arbitrary multiset partition of w′

j |go.

Finally, we set w′′
i = w′

i|O ∪
⋃

j∈syn−1(i)

zj,i, for i ∈ {1, . . . ,m}.
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Example 4. As an illustration, considering again the nP system Π1, given in Fig-
ure 6, the following are examples of possible transfer steps:

• (sandk, s, s) ⇒min,repl (san−1dk+1, sbc, sbc)
• (sandk, s, s) ⇒min,repl (san−1dk+1, s, s)
• (sandk, s, s) ⇒min,one (san−1dk+1, sbc, s)
• (sandk, s, s) ⇒min,one (san−1dk+1, s, sbc)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sbc, s)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sb, sc)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sc, sb)
• (sandk, s, s) ⇒min,spread (san−1dk+1, s, sbc)

Definition 6 (Halting and results [9, 7]). If no more transitions are possible,
the nP system halts. For halted nP system Π, the computational result is the multi-
set that was cumulatively sent out (to the “environment”) from the output cell iout.
The numerical result is the vector Nα,β(Π) consisting of the object multiplicities
in the multiset result, where α ∈ {min, par,max} and β ∈ {repl, one, spread}.

Example 5. For example, if a nP system Π, over the alphabet {a, b, c, d}, sends out
the multiset a2cd3 and then halts, then its numerical result is vector Nα,β(Π) =
(2, 0, 1, 3).

Example 6. We replicate here another, perhaps more interesting example, orig-
inally given in [7]. Consider the following nP system, see Figure 7, Π2 =
(O, σ1, σ2, σ3, syn, iout), where:

• O = {a};
• σ1 = ({s}, s, a, {sa→ sago, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sago});
• σ3 = ({s}, s, λ, {sa→ sago});
• syn = {(1, 2), (1, 3), (2, 1), (3, 1)};
• iout = 1.

The following results are straightforward:

Nmin,repl(Π2) = {(n) | n ≥ 1},
Nmin,β(Π2) = {(1)}, for β ∈ {one, spread},

Npar,repl(Π2) = {(2n) | n ≥ 0},
Npar,β(Π2) = {(1)}, for β ∈ {one, spread},

Nmax,repl(Π2) = {(n) | n ≥ 1},
Nmax,β(Π2) = {(1)}, for β ∈ {one, spread}.
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s, a
sa→ sago

sa→ saout

s, λ

sa→ sago

s, λ

sa→ sago

σ1

σ2 σ3

Fig. 7. Π2, another simple nP system.

4 Hyperdag P Systems

We define hP systems as essentially nP systems (see Section 3), where the under-
lying digraph is a dag, with several adjustments. Besides the existing go, out tags,
we consider three other object tags:

1. go-parent, abbreviated by the symbol ↑, indicating objects that will be sent to
parents;

2. go-child, abbreviated by the symbol ↓, indicating objects that will be sent to
children;

3. go-sibling, abbreviated by the symbol ↔, indicating objects that will be sent
to siblings;

The precise semantics of these tags will be explained below when we detail the
hP object transfer modes. In fact, we could also discard the go tag, as it corre-
sponds to the union of these news tags (go-parent, go-child, go-sibling); however,
we will keep it here, for its concise expressive power. We use similar notation as
nP systems for these new tags O↑, O↓, O↔, and postfix projections |↑, |↓, |↔.

Other extension tags, including addressing mechanisms (such as from/to/via
tags) are possible, and indeed seem natural, but this is beyond the scope of this
article.

Definition 7 (Hyperdag P systems). A hP system (of degree m) is a system:
Π = (O, σ1, . . . , σm, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
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• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewriting rules of the form sx →

s′x′u↑v↓w↔ygozout, where s, s′ ∈ Qi, x, x′ ∈ O∗, u↑ ∈ O∗
↑ , v↓ ∈ O∗

↓ ,
w↔ ∈ O∗

↔ , ygo ∈ O∗
go and zout ∈ O∗

out, with the restriction that zout = λ
for all i ∈ {1, . . . ,m}\Iout,

3. δ is a set of dag parent/child arcs on {1, . . . ,m}, i.e., δ ⊆ {1, . . . ,m} ×
{1, . . . ,m}, representing bidirectional communication channels between cells;

4. Iout ⊆ {1, . . . ,m} indicates the output cells, the only cells allowed to send
objects to the “environment”.

The essential novelty of our proposal is to replace the arbitrary arc set syn
by a more structured arcs set δ (dag), or, otherwise interpreted, as a generalized
multiset-based hypergraph. This interpretation has actually suggested the name
of our proposal, hyperdag P systems, and their abbreviation hP.

The changes in the rules format are mostly adaptations needed by the new
topological structure. Here we have reused and enhanced the rewriting rules used
by nP systems [9]. However, we could adopt and adapt any other rule set, from
other variants or extensions of P systems, such as, rewriting, antiport/symport or
boundary rules [10].

Definitions of configurations, transitions, computations and results of compu-
tations in hP systems are similar to definitions used for nP systems (Section 3),
with the following essential additions/differences, here informally stated:

• The rewrite mode α and transfer mode β could but need not be fixed from the
start—they may vary, for each cell σi and state s ∈ Qi.

• If object transfer mode is repl (this is a deterministic step):
◦ the objects tagged with ↑ will be sent to all the parents, replicated as

necessary
◦ the objects tagged with ↓ will be sent to all the children, replicated as

necessary
◦ the objects tagged with ↔ will be sent to all the siblings, of all sibling

groups, replicated as necessary
• If object transfer mode is one (this is a nondeterministic step):

◦ the objects tagged with ↑ will be sent to one of the parents, arbitrarily
chosen

◦ the objects tagged with ↓ will be sent to one of the children, arbitrarily
chosen

◦ the objects tagged with ↔ will be sent to one of the siblings, of one of the
sibling groups, arbitrarily chosen

• If object transfer mode is spread (this is a nondeterministic step):
◦ the objects tagged with ↑ will be split into submultisets and distributed

among the parents, in an arbitrary way
◦ the objects tagged with ↓ will be split into submultisets and distributed

among the children, in an arbitrary way
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◦ the objects tagged with ↔ will be split into submultisets and distributed
among the siblings and sibling groups, in an arbitrary way

Figure 8 schematically shows the possible transfers of objects from a membrane
i, having two children, two parents, hence two sibling groups, with one sibling in
the first group and two siblings in the other. The above mentioned transfer modes
will select one, some or all the illustrated transfer targets, deterministically (repl)
or nondeterministically (one, spread).

go-parent (↑) go-parent (↑)

go-sibling (↔)

go-child (↓) go-child (↓)

go-sibling (↔)

go-sibling (↔)

i

Fig. 8. Transfer modes in a hP system. The parent-child axis is top-down. Plain lines
indicate parent-child relations and dashed lines indicate siblings. Arrows at the end of
long thick lines, plain or dashed, indicate possible transfer directions from node i.

More formal definitions follow.

Definition 8 (Configurations). A configuration of the hP system Π is an m-
tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ O∗, for 1 ≤ i ≤ m.
The m-tuple (s1,0w1,0, . . . , sm,0wm,0) is the initial configuration of Π.

Definition 9 (Rewrite and transfer modes). For a hP system of degree m,

• the object rewriting mode is a function

α :
⋃

i∈{1,...,m}

{i} ×Qi → {min, par,max} .

• the object transfer mode is a function

β :
⋃

i∈{1,...,m}

{i} ×Qi → {repl, one, spread} .

Definition 10 (Rewriting steps). For each cell σi with s, s′ ∈ Qi, x ∈ O∗,
y ∈ O∗

tot, we define a rewriting step, denoted by ⇒α, where α = α(i, s) ∈
{min, par,max}.
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• sx⇒min s
′y iff sw → s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′;

• sx ⇒par s
′y iff sw → s′w′ ∈ Pi, wk ⊆ x, wk+1 * x, for some k ≥ 1, and

y = (x− wk) ∪ w′k;
• sx ⇒max s′y iff sw1 → s′w′

1, . . . , swk → s′w′
k ∈ Pi, k ≥ 1, such that

w1 . . . wk ⊆ x, y = (x−w1 . . . wk) ∪w′
1 . . . w

′
k, and there is no sw → s′w′ ∈ Pi,

such that w1 . . . wkw ⊆ x (note that rules can be combined only if they start
from the same state s and end in the same state s′).

Definition 11 (Transition steps). Given two configurations C1 = (s1w1, . . . ,
smwm) and C2 = (s′1w

′′
1 , . . . , s

′
mw

′′
m), we write C1 ⇒α,β C2, for α and β (as

defined in Definition 9) if the conditions below are met.
First, we apply rewriting steps (as defined in Definition 10) on each cell, i.e.,

siwi ⇒α(i,si) s
′
iw

′
i, 1 ≤ i ≤ m.

Secondly, we define z↑j,k, z
↓
j,k, z

↔
j,k, the outgoing multisets from j to k, where

j ∈ {1, . . . ,m} and, respectively, k ∈ δ−1(j), k ∈ δ(j), k ∈ δ(δ−1(j))\{j}:

• If β(j, sj) = repl, then
◦ z↑j,k = w′

j |↑, for k ∈ δ−1(j);
◦ z↓j,k = w′

j |↓, for k ∈ δ(j);
◦ z↔j,k = w′

j |↔, for k ∈ δ(δ−1(j))\{j}.
• If β(j, sj) = one, then

◦ z↑j,kj
= w′

j |↑, for an arbitrary kj ∈ δ−1(j), and z↑j,k = λ for k ∈ δ−1(j)\{kj};
◦ z↓j,kj

= w′
j |↓, for an arbitrary kj ∈ δ(j), and z↓j,k = λ for k ∈ δ(j)\{kj};

◦ z↔j,kj
= w′

j |↔, for an arbitrary kj ∈ δ(δ−1(j))\{j}, and z↔j,k = λ for k ∈
δ(δ−1(j))\{j, kj}.

• If β(j, sj) = spread, then
◦ {z↑j,k}k∈δ−1(j) is an arbitrary multiset partition of w′

j |↑;
◦ {z↓j,k}k∈δ(j) is an arbitrary multiset partition of w′

j |↓;
◦ {z↔j,k}k∈δ(δ−1(j))\{j} is an arbitrary multiset partition of w′

j |↔.

Finally, we set w′′
i = w′

i|O ∪
⋃

j∈δ−1(i)

z↑j,i ∪
⋃

j∈δ(i)

z↓j,i ∪
⋃

j∈δ(δ−1(i))\{i}

z↔j,i, for i ∈

{1, . . . ,m}.

Definition 12 (Halting and results). If no more transitions are possible, the
hP system halts. For halted hP system, the computational result is the multiset
that was cumulatively sent out (to the “environment”) from the output cells Iout.
The numerical result is the set of vectors consisting of the object multiplicities in
the multiset result.

Example 7. As examples, consider two hP systems, Π3 and Π4, both functional
equivalent a functional equivalent of the earlier Π2 nP system.

Π3 = (O, σ1, σ2, σ3, δ, Iout), see Figure 9, where:
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• O = {a};
• σ1 = ({s}, s, a, {sa→ sa↓, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sa↑});
• σ3 = ({s}, s, λ, {sa→ sa↑});
• δ = {(1, 2), (1, 3)};
• Iout = {1}.

s, a
sa→ sa↓
sa→ saout

s, λ

sa→ sa↑

s, λ

sa→ sa↑

σ1

σ2 σ3

Fig. 9. Π3, a simple hP system (equivalent to the Π2 nP system of Figure 7).

Π4 = (O, σ1, σ2, σ3, σ4, σ5, δ, Iout), see Figure 10, where:

• O = {a};
• σ1 = ({s}, s, a, {sa→ sa↔, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sa↔});
• σ3 = ({s}, s, λ, {sa→ sa↔});
• σ4 = ({s}, s, λ, ∅);
• σ5 = ({s}, s, λ, ∅);
• δ = {(4, 1), (4, 2), (5, 1), (5, 3)};
• Iout = {1}.

5 Relations Between P Systems, Neural P Systems and
Hyperdag P Systems

Theorem 1 (Hyperdag P systems include non-dissolving P systems).
Any non-dissolving transition P system can be simulated by a hP system, with the
same number of steps and object transfers.
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s, a
sa→ sa↔
sa→ saout

s, λ

sa→ sa↔

s, λ

sa→ sa↔

σ1σ2 σ3

σ4 σ5

s, λ s, λ

Fig. 10. Π4, another simple hP system (equivalent to the Π2 nP system of Figure 7).

Proof. Given a non-dissolving, transition P system Π [10], we build a functionally
equivalent hP system H by the following transformation f . Essentially, we use the
same elements, with minor adjustments. As the underlying structure, we can reuse
the rooted tree structure of the P systems, because any rooted tree is a dag.

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, io), f(Π) = (O′, σ′1, . . . , σ
′
m, δ, Iout).

• O′ = O;
• σ′i = (Q′

i, s
′
i,0, w

′
i,0, P

′
i ), 1 ≤ i ≤ m, where:

◦ Q′
i = {s}, where s is any symbol /∈ O;

◦ s′i,0 = s;
◦ w′

i,0 = wi;
◦ P ′

i = {su→ sv′ | u→ v ∈ Ri}, where v′ is a translation of v by the following
homomorphism: (O ∪ O × Tar)∗ → O∗, such that a → a, (a, here) → a,
(a, out) → a↑, (a, in) → a↓;

• δ = µ;
• Iout = {io};
• The object rewrite mode is the max constant function, i.e., α(i, s) = max, for

i ∈ {1, . . . ,m}, s ∈ Qi;
• The object transfer mode is the spread constant function, i.e., β(i, s) = spread,

for i ∈ {1, . . . ,m}, s ∈ Qi.

Tags go-child(↓), go-parent(↑) correspond to P system target indications
in, out, respectively. An empty tag corresponds to P system target indication here.
Object rewrite and transfer modes of hP systems are a superset of object rewrite
and transfer mode of P systems.

We omit here the rest of the proof which is now straightforward but lengthy.

Remark 1. We leave open the case of dissolving P systems, which can be simulated,
but not properly subsumed by hP systems.

Proving that hP systems also cover nP systems appears more daunting. How-
ever, here we will use a natural interpretation of hP systems, where the bulk of
the computing will be done by the sink nodes, and the upper nodes (parents) will
function mostly as communication channels.
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Remark 2. The combination of go-sibling (↔) with repl object transfer mode en-
able the efficient modeling of a communication bus, using only one hyperedge or,
in the corresponding dag, n arcs. In contrast, any formal systems that use graph
edges (or digraph arcs) to model 1:1 communication channels will need n(n − 1)
separate edges (or 2n(n − 1) arcs) to model the associated complete subgraph
(clique). It is expected that this modeling improvement will also translate into a
complexity advantage, if we use the number of messages measure. In hP systems,
a local broadcast needs only one message to siblings, while needing n−1 messages
in graph/digraph based systems.

Example 8. Figure 11 shows the structure of an hP system that models a com-
puter network. Four computers are connected to “Ethernet Bus 1”, the other four
computers are connected to “Ethernet Bus 2”, while two of the first group and
two of the second group are at the same time connected to a wireless cell. In this
figure we also suggest that “Ethernet Bus 1” and “Ethernet Bus 2” are themselves
connected to a higher level communication hub, in a generalized hypergraph.

Example 9. Figure 12 shows the computer network of Figure 11, modeled as a
graph (if we omit arrows) or as a digraph (if we consider the arrows). Note that
the graph/digraph models, such as nP, do not support the grouping concept, i.e.,
there is no direct way to mark the nodes a, b, c, d as being part of the “Ethernet
Bus 1”, etc.

We can now sketch the proof of the theorem comparing hP systems and nP sys-
tems.

Theorem 2 (Hyperdag P systems can simulate bidirectional nP sys-
tems).
Any bidirectional nP system can be simulated by a hP system, with the same num-
ber of steps and object transfers.

Proof. Given a bidirectional nP system Π, we build a functionally equivalent
hP system H by the following transformation f . As the underlying structure,
we use a dag of height 1, where the cells are sink nodes, and the syn arcs are
reified as height 1 nodes.

Without loss of generality, we assume that in the nP systems synapses are
distinct from cells.

Π = (O, σ1, . . . , σm, syn, iout), f(Π) = (O′, σ′1, . . . , σ
′
m+|syn|, δ, Iout).

• O′ = O;
• σ′i = f(σi), for i ∈ {1, . . . ,m}, where:

◦ Q′
i = Qi;

◦ s′i,0 = si,0;
◦ w′

i,0 = wi,0;
◦ P ′

i = {u→ v′ | u→ v ∈ Pi}, where v′ is a translation of v by the following
homomorphism: O∗

tot → O∗, such that a→ a, ago → a↔, aout → aout ;
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Ethernet Bus 1 Ethernet Bus 2

Wireless Bus

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Bus

Fig. 11. A computer network and its corresponding hP/hypergraph representation.

a b c d e f g h

(Ethernet Bus 1) (Ethernet Bus 2)(Wireless Bus)

Fig. 12. The graph/digraph representations of the computer network of Figure 11.

• σ′m+1, . . . , σ
′
m+|syn| is an arbitrary ordering of elements in syn;

• δ = {(e, u), (e, v) | e = (u, v) ∈ syn};
• Iout = {iout};
• The object rewrite mode is a constant function, i.e., α(i, s) = α0, for i ∈

{1, . . . ,m+ |syn|}, s ∈ Qi, where α0 ∈ {min, par,max};
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• The object transfer mode is a constant function, i.e., β(i, s) = β0, for i ∈
{1, . . . ,m+ |syn|}, s ∈ Qi, where β0 ∈ {repl, one, spread}.

Here the nodes corresponding to synapses are inactive as they just link neigh-
boring cells.

Essentially, the cells keep their original nP rules, with minor adjustments. A
go tag in nP rules corresponds to a sibling(↔) tag in hP rules. Object rewrite and
transfer modes of hP systems are a superset of object rewrite and transfer modes
of nP systems.

We omit here the rest of the proof which is now straightforward but lengthy.

Remark 3. We leave open the case of non-bidirectional nP systems, which can be
simulated, but not properly subsumed by hP systems.

6 Planar Representation of hP Systems

Classical tree-based P systems allow a “nice” planar representation, where the par-
ent/child relationships between membranes are represented by Venn-like diagrams.
Can we extend this representation to cover our dag-based hP systems?

In this section we will show that any hP system structurally based on a canon-
ical dag can still be intensionally represented by hierarchically nested planar re-
gions, delimited by Jordan curves (simple closed curves). Conversely, we also show
that any set of hierarchically nested planar regions delimited by Jordan curves can
be interpreted as a canonical dag, which can form the structural basis of a number
of hP systems.

We will first show how to represent a canonical dag as a set of hierarchically
nested planar regions.

Algorithm 3 (Algorithm for visually representing a canonical dag)
Without loss of generality, we consider a canonical dag (V, δ) of order n, where

vertices are topologically ordered according to the order implied by the arcs, by
considering parents before the children, i.e., V = {vi | i ∈ {1, . . . , n}}, where
(vi, vi+1) ∈ δ. Figure 13 shows side by side a simple height 1 canonical dag and
its corresponding hypergraph representation. Note the intensional representation
(as opposed to the extensional one): v2 is not totally included in v1, although all
vertices included in v2, i.e., v4 and v5, are also included in v1. A possible topological
order is v1, v2, v3, v4, v5.

For each vertex vi, we associate a distance ψi = 1
2(n−i+1) , for i ∈ {1, . . . , n}.

For Figure 13, ψi = 1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , for i ∈ {1, . . . , n}.

We process the vertices in reverse topological order vn, . . . , v1, at each step i
representing the current vertex vi by a planar region Ri.

First, we set parallel horizontal axisXo andXp, vertically separated by distance
3(n − 1). Secondly, we set points o1, . . . , on on Xo, such that oi and oi+1 are
separated by distance 3, for 1 ≤ i ≤ n− 1. We define oi as the origin point of vi,
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v3 v4 v5

v1

v2

1 2

3 4 5

Fig. 13. A simple canonical dag and its corresponding hypergraph representation.

and write oi = origin(vi). Finally, we set points p1, . . . , pn on Xp, such that pi and
pi+1 are separated by distance 3, for 1 ≤ i ≤ n − 1. We define pi as the corridor
point of vi.

Figure 14 shows the construction of Xo, Xp, oi and pi, for the dag of Figure 13,
where n = 5.

o3 o4 o5o1 o2

p1 p2 p3 p4 p5

Xo

Xp

Fig. 14. Construction of Xo, Xc, oi and pi, for the dag of Figure 13, where n = 5.

If the current vertex vi is a sink, then Ri is a circle with with radius 1
2 centered

at oi.
If the current vertex vi is a non-sink, then Ri is constructed as follows: Assume

that the children of vi are w1, . . . , wni
, and their (already created) regions are

S1, . . . , Sni
. Consider line segments l0, l1, . . . , lni

, where l0 is bounded by oi and
pi, and lj is bounded by pi and origin(wj), for j ∈ {1, . . . , ni}. Let L0, L1, . . . , Lni

,
T1, . . . , Tni be the regions enclosed by Jordan curves around l0, l1, . . . , lni ,
S1, . . . , Sni , at a distance ψi, and let R′

i = L0 ∪
⋃

j=1,...,ni
Lj ∪

⋃
j=1,...,ni

Tj . We
define Ri as the external contour of R′

i. This definition will discard all internal
holes, if any, without introducing any additional containment relations between
our regions. The details of our construction guarantee that no internal hole will
ever contain an origin point.ut

Figure 15 shows an intermediate step (left) and the final step (right) of ap-
plying Algorithm 3 on Figure 13. The representation of Figure 15 is topologically
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equivalent to the hypergraph representation of Figure 13 (right). Figure 16 shows
the side by side, another dag and its corresponding planar region representation;
internal holes are represented by dotted lines. Our objective here was not to cre-
ate “nice” visualizations, but to prove that it is possible to represent an arbitrary
canonical dag, i.e., an arbitrary hP system structurally based on a canonical dag,
by hierarchically nested planar regions.

Xo

Xp

R1 R2 R3 R4 R5

Xo

Xp

R2 R3 R4 R5

Fig. 15. An intermediate step and the final step of applying Algorithm 3 on Figure 13.

1

2 3

4

R1 R2 R3 R4

Xo

Xp

Fig. 16. A height two dag and its corresponding representation, built by Algorithm 3.

We will next show that, for any finite set of hierarchically nested planar regions,
we can build a corresponding canonical dag (i.e., the underlying structure of a
hP system).



106 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Algorithm 4 (Algorithm for building a canonical dag from finite set of
hierarchically nested planar regions)

Assume that we have n hierarchically nested planar regions,

1. Label each planar region by Ri, i ∈ {1, . . . , n},
2. If Ri directly nests Rj then draw an arc from a vertex vi to a vertex vj ,
i, j ∈ {1, . . . , n}, i 6= j.

ut
We now show that a canonical graph produced from Algorithm 4 does not

contain any cycles. Our proof is by contradiction. Let us assume a directed graph
G produced from Algorithm 4 contains a cycle vi, . . . , vk, . . . , vi. Then every vertex
in a cycle has an incoming arc. If vertex vk is a maximal element in a cycle, with
respect to direct nesting, then its corresponding planar region Rk have the largest
region area among planar regions in a cycle. Since no other planar region in a cycle
can contain Rk, there are no arc incident to vertex vk. Hence, there is no cycle in
G.

Remark 4. We leave open the problem of representing dags (that is hP systems)
that contain transitive arcs.

7 Summary

We have proposed a new model, as an extension of P systems, that provides a better
communication structure and we believe is often more convenient for modeling real-
world applications based on tree structures augmented with secondary or shared
communication channels.

We have shown that hP systems functionally extends the basic functionality of
transition P systems and neural P systems, even though the underlying structure
of hP systems is different. In the dag/hypergraph model of hP systems we can
have a natural separation of computing cells (sinks) from communication cells
(hyperedges). This model also allows us to easily represent multiple inheritance
and/or to distribute computational results (as specified by a dag) amongst several
different parts of a membrane structure.

We note that the operational behavior of hP systems is separate from the topo-
logical structure of a membrane system. In this paper, we illustrated hP systems
using the computational rules of nP systems, where multisets of objects are re-
peatedly changed within cells, by using a fixed set of multiset rewriting rules, or
transferred between cells, using several possible transfer modes.

Finally, we provided a intuitive visualization of hP systems, by showing that
any set of hierarchically nested planar regions (which represents any set of cells
ordered by containment) is equivalent to, or modeled by, a dag without transitive
arcs. We provided simple algorithms to translate between these two interpretations.

Part B of this paper will explore this model further and support it with a more
extensive set of examples.
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