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Summary. In this paper we continue previous studies on the computational efficiency
of spiking neural P systems, under the assumption that some pre-computed resources of
exponential size are given in advance. Specifically, we give a deterministic solution for
each of two well known PSPACE-complete problems: QSAT and Q3SAT. In the case of
QSAT, the answer to any instance of the problem is computed in a time which is linear
with respect to both the number n of Boolean variables and the number m of clauses
that compose the instance. As for Q3SAT, the answer is computed in a time which is at
most cubic in the number n of Boolean variables.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [7] in the
framework of Membrane Computing [15] as a new class of computing devices
which are inspired by the neurophysiological behavior of neurons sending electrical
impulses (spikes) along axons to other neurons. Since then, many computational
properties of SN P systems have been studied; for example, it has been proved
? Corresponding author. Tel.: +86-27-87556070. Fax: +86-27-87543130.
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that they are Turing-complete when considered as number computing devices [7],
when used as language generators [4, 2] and also when computing functions [13].

Investigations related to the possibility to solve computationally hard problems
by using SN P systems were first proposed in [3]. The idea was to encode the
instances of decision problems in a number of spikes, to be placed in an (arbitrarily
large) pre-computed system at the beginning of the computation. It was shown
that the resulting SN P systems are able to solve the NP-complete problem SAT
(the satisfiability of propositional formulas expressed in conjunctive normal form)
in a constant time. Slightly different solutions to SAT and 3-SAT by using SN P
systems with pre-computed resources were considered in [8]; here the encoding of
an instance of the given problem is introduced into the pre-computed resources in
a polynomial number of steps, while the truth values are assigned to the Boolean
variables of the formula and the satisfiability of the clauses is checked. The answer
associated to the instance of the problem is thus computed in a polynomial time.
Finally, very simple semi-uniform and uniform solutions to the numerical NP-
complete problem Subset Sum — by using SN P systems with exponential size
pre-computed resources — have been presented in [9]. All the systems constructed
above work in a deterministic way.

A different idea of constructing SN P systems for solving NP-complete prob-
lems was given in [11, 12], where the Subset Sum and SAT problems were consid-
ered. In these papers, the solutions are obtained in a semi-uniform or uniform way
by using nondeterministic devices but without pre-computed resources. However,
several ingredients are also added to SN P systems such as extended rules, the
possibility to have a choice between spiking rules and forgetting rules, etc. An
alternative to the constructions of [11, 12] was given in [10], where only standard
SN P systems without delaying rules, and having a uniform construction, are used.
However, it should be noted that the systems described in [10] either have an ex-
ponential size, or their computations last an exponential number of steps. Indeed,
it has been proved in [12] that a deterministic SN P system of polynomial size can-
not solve an NP-complete problem in a polynomial time unless P=NP. Hence,
under the assumption that P 6= NP, efficient solutions to NP-complete problems
cannot be obtained without introducing features which enhance the efficiency of
the system (pre-computed resources, ways to exponentially grow the workspace
during the computation, nondeterminism, and so on).

The present paper deals with QSAT (the satisfiability of fully quantified propo-
sitional formulas expressed in conjunctive normal form) and with Q3SAT (where
the clauses that compose the propositional formulas have exactly three literals),
two well known PSPACE-complete problems. For QSAT we provide a family
{ΠQSAT (2n,m)}n,m∈N of SN P systems with pre-computed resources such that
for all n,m ∈ N the system ΠQSAT (2n,m) solves all the instances of QSAT which
are built using 2n Boolean variables and m clauses. Each system ΠQSAT (2n,m)
is deterministic, and computes the solution in a time which is linear with respect
to both n and m; however, the size of ΠQSAT (2n,m) is exponential with respect
to the size of the instances of the problem. As for Q3SAT, we provide a family
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{ΠQ3SAT (2n)}n∈N of SN P systems with pre-computed resources, such that for all
n ∈ N the system ΠQ3SAT (2n) solves all possible instances of Q3SAT which can be
built using 2n Boolean variables. Also in this case the systems ΠQ3SAT (2n) are
deterministic and have an exponential size with respect to n. Given an instance of
Q3SAT, the corresponding answer is computed in a time which is at most cubic in
n.

An important observation is that we will not specify how our pre-computed
systems could be built. However, we require that such systems have a regular struc-
ture, and that they do not contain neither “hidden information” that simplify the
solution of specific instances, nor an encoding of all possible solutions (that is, an
exponential amount of information that allows to cheat while solving the instances
of the problem). These requirements were inspired by open problem Q27 in [15].
Let us note in passing that the regularity of the structure of the system is related
to the concept of uniformity, that in some sense measures the difficulty of con-
structing the systems. Usually, when considering families {C(n)}n∈N of Boolean
circuits, or other computing devices whose number of inputs depends upon an inte-
ger parameter n ≥ 1, it is required that for each n ∈ N a “reasonable” description
(see [1] for a discussion on the meaning of the term “reasonable” in this context) of
C(n), the circuit of the family which has n inputs, can be produced in polynomial
time and logarithmic space (with respect to n) by a deterministic Turing machine
whose input is 1n, the unary representation of n. In this paper we will not delve
further into the details concerning uniformity; we just rely on reader’s intuition,
by stating that it should be possible to build the entire structure of the system in a
polynomial time, using only a polynomial amount of information and a controlled
replication mechanism, as it already happens in P systems with cell division. We
will thus say that our solutions are exp-uniform (instead of uniform), since the
systems ΠQSAT (2n,m) and ΠQ3SAT (2n) have an exponential size.

The paper is organized as follows. In section 2 we recall the formal definition of
SN P systems, as well as some mathematical preliminaries that will be used in the
following. In section 3 we provide an exp-uniform family {ΠQSAT (2n,m)}n,m∈N of
SN P systems with pre-computed resources such that for all n,m ∈ N the system
ΠQSAT (2n,m) solves all possible instances of QSAT containing 2n Boolean variables
and m clauses. In section 4 we present an exp-uniform family {ΠQ3SAT (2n)}n∈N
of SN P systems with pre-computed resources such that for all n ∈ N the system
ΠQ3SAT (2n) solves all the instances of Q3SAT which can be built using 2n Boolean
variables. Section 5 concludes the paper and suggests some possible directions for
future work.

2 Preliminaries

We assume the reader to be familiar with formal language theory [16], computa-
tional complexity theory [5] as well as membrane computing [15]. We mention here
only a few notions and notations which are used throughout the paper.
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For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we simply write a∗ and a+ instead of {a}∗,
{a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

For a string str = y1y2 . . . y2n, where y2k−1 ∈ {0, 1}, y2k ∈ {0, 1, x2k}, 1 ≤
k ≤ n, we denote by str|i the ith symbol of the string str, 1 ≤ i ≤ 2n. For given
1 ≤ i ≤ n, if str such that the 2jth symbol is x2j for all j ≤ i and the 2j′th
symbol equals to 1 or 0 for all j′ ≥ i, then we denote by str|2i ← x a string which
is obtained by replacing the 2ith symbol of str with x2i. In particular, for a binary
string bin ∈ {0, 1}2n, bin|i and bin|2 ← x2 are defined as the ith bit of bin and
the string obtained by replacing the second bit of bin with x2, respectively.

QSAT is a well known PSPACE-complete decision problem (see for exam-
ple [5, pages 261–262], where some variants of the problem Quantified Boolean
Formulas are defined). It asks whether or not a given fully quantified Boolean
formula, expressed in the conjunctive normal form (CNF), evaluates to true or
false. Formally, an instance of QSAT with n variables and m clauses is a formula
γn,m = Q1x1Q2x2 · · ·Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm) where each Qi, 1 ≤ i ≤ n, is
either ∀ or ∃, and each clause Cj , 1 ≤ j ≤ m, is a disjunction of the form
Cj = y1∨y2∨. . .∨yrj , with each literal yk, 1 ≤ k ≤ rj , being either a propositional
variable xs or its negation ¬xs, 1 ≤ s ≤ n. For example, the propositional formula
β = Q1x1Q2x2[(x1 ∨ x2)∧ (¬x1 ∨¬x2)] is true when Q1 = ∀ and Q2 = ∃, whereas
it is false when Q1 = ∃ and Q2 = ∀. The decision problem Q3SAT is defined ex-
actly as QSAT, the only difference being that all the clauses now contain exactly
three literals. It is known that even under this restriction the problem remains
PSPACE-complete (see, for example, [5, page 262]).

In what follows we require that no repetitions of the same literal may occur
in any clause. Without loss of generality we can also avoid the clauses in which
both the literals xs and ¬xs, for any 1 ≤ s ≤ n, occur. Further, we will focus our
attention on the instances of QSAT and Q3SAT in which all the variables having
an even index (that is, x2, x4, . . .) are universally quantified, and all the variables
with an odd index (x1, x3, . . .) are existentially quantified. We will say that such
instances are expressed in normal form. This may be done without loss of gener-
ality. In fact, for any instance γn,m = Q1x1Q2x2 · · ·Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm)
of QSAT having n variables and m clauses there exists an equivalent instance
γ′2n,m = ∃x′1∀x′2 . . . ∃x′2n−1∀x′2n(C ′1 ∧ C ′2 ∧ . . . ∧ C ′m) with 2n variables, where
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each clause C ′j is obtained from Cj by replacing every variable xi by x′2i−1 if
Qi = ∃, or by x′2i if Qi = ∀. Note that this transformation may require to intro-
duce some “dummy” variables, that is, variables which are quantified in γ′2n,m to
guarantee the alternance of even-numbered and odd-numbered variables, but that
nonetheless do not appear in any clause. For example, for the propositional formula
β1 = ∀x1∃x2[(x1∨x2)∧ (¬x1∨¬x2)] the normal form is β′1 = ∃x′1∀x′2∃x′3∀x′4[(x′2∨
x′3)∧(¬x′2∨¬x′3)]; for the propositional formula β2 = ∃x1∀x2[(x1∨x2)∧(¬x1∨¬x2)]
we have the normal form β′2 = ∃x′1∀x′2∃x′3∀x′4[(x′1 ∨ x′4) ∧ (¬x′1 ∨ ¬x′4)]. The same
transformation may be applied on any instance of Q3SAT defined on n Boolean
variables; in this case the result will be another instance of Q3SAT, defined on 2n
variables. From now on we will denote by QSAT (2n, m) the set of all possible
instances of QSAT, expressed in the above normal form, which are built using 2n
Boolean variables and m clauses. Similarly, we will denote by Q3SAT (2n) the set
of all possible instances of Q3SAT, expressed in normal form, which can be built
using 2n Boolean variables.

2.1 Spiking neural P systems

As stated in the Introduction, SN P systems have been introduced in [7], in the
framework of Membrane Computing. They can be considered as an evolution of P
systems, corresponding to a shift from cell-like to neural-like architectures.

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consists of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one
of such rules must be used. If two or more rules could be applied, then only one
of them is nondeterministically chosen. Thus, the rules are used in the sequential
manner in each neuron, but neurons function in parallel with each other. Note
that, as usually happens in Membrane Computing, a global clock is assumed,
marking the time for the whole system, and hence the functioning of the system
is synchronized. When a cell sends out spikes it becomes “closed” (inactive) for a
specified period of time, that reflects the refractory period of biological neurons.
During this period, the neuron does not accept new inputs and cannot “fire” (that
is, emit spikes). Another important feature of biological neurons is that the length
of the axon may cause a time delay before a spike arrives at the target. In SN
P systems this delay is modeled by associating a delay parameter to each rule
which occurs in the system. If no firing rule can be applied in a neuron, then there
may be the possibility to apply a forgetting rule, that removes from the neuron a
predefined number of spikes.

Formally, a spiking neural membrane system (SN P system, for short) of degree
m ≥ 1, as defined in [7], is a construct of the form
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Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the form E/ac → ap; d, where E is a regular

expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction c ≥ p;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the

directed graph of synapses between neurons;
4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

A rule E/ac → ap; d with p ≥ 1 is an extended firing (we also say spiking) rule;
a rule E/ac → ap with p = 0 is written in the form E/ac → λ and is called an
extended forgetting rule. Rules of the types E/ac → a; d and ac → λ are said to be
standard.

If a rule E/ac → ap; d has E = ac, then we will write it in the simplified form
ac → ap; d; similarly, if a rule E/ac → ap; d has d = 0, then we can simply write
it as E/ac → ap; hence, if a rule E/ac → ap; d has E = ac and d = 0, then we can
write ac → ap.

The rules are applied as follows. If the neuron σi contains k spikes, and ak ∈
L(E), k ≥ c, then the rule E/ac → ap; d is enabled and can be applied. This means
consuming (removing) c spikes (thus only k − c spikes remain in neuron σi); the
neuron is fired, and it produces p spikes after d time units. If d = 0, then the spikes
are emitted immediately; if d = 1, then the spikes are emitted in the next step, etc.
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed (this corresponds to the refractory period from neurobiology), so
that it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then that particular spike is lost). In the step t + d,
the neuron spikes and becomes open again, so that it can receive spikes (which
can be used starting with the step t + d + 1, when the neuron can again apply
rules). Once emitted from neuron σi, the p spikes reach immediately all neurons
σj such that (i, j) ∈ syn and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form E/ac → λ, then, when it is applied, c ≥ 1 spikes are
removed.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2 can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in
a neuron; in such a case, only one of them is chosen in a nondeterministic way.
However it is assumed that if a firing rule is applicable then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in each
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neuron (at most one in each step), but neurons work in parallel with each other.
It is important to note that the applicability of a rule is established depending on
the total number of spikes contained in the neuron.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and the state of the neuron, that is, the number of steps
to count down until it becomes open again (this number is zero if the neuron is
already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neuron σi con-
tains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps, for i = 1, 2, . . . ,m; with
this notation, the initial configuration of the system is C0 = 〈n1/0, . . . , nm/0〉.
Using the rules as described above, one can define transitions among configura-
tions. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used.

Since in SN P systems the alphabet contains only one symbol (denoted by a),
the input information is sometimes encoded as a sequence of “virtual” symbols, λ
or ai, i ≥ 1, where λ represents no spike and ai represents a multiset of i spikes.
The input sequence is then introduced in the input neuron one virtual symbol at
one time unite, starting from the leftmost symbol of the sequence. For instance,
the sequence a2λa3 is composed of three virtual symbols: a2, λ and a3. When
providing this sequence as input to an SN P system, the virtual symbol a2 (that
is, two spikes) is introduced at the first computation step, followed by λ (0 spikes)
at the next step, and finally by a3 (three spikes) at the third step.

Another useful extension to the model defined above, already considered in
[10, 12, 11, 8], is to use several input neurons, so that the introduction of the
encoding of an instance of the problem to be solved can be done in a faster way,
introducing parts of the code in parallel in various input neurons. Formally, we
can define an SN P system of degree (m, `), with m ≥ 1 and 0 ≤ ` ≤ m, just like a
standard SN P system of degree m, the only difference being that now there are `
input neurons denoted by in1, . . . , in`. A valid input for an SN P system of degree
(m, `) is a set of ` binary sequences (where each element of the sequence denotes
the presence or the absence of a spike), that collectively encode an instance of a
problem.

Spiking neural P systems can be used to solve decision problems, both in a
semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q we build in a polynomial time
(with respect to the size of I) an SN P system ΠQ,I , whose structure and initial
configuration depend upon I, that halts (or emits a specified number of spikes in
a given interval of time) if and only if I is a positive instance of Q. On the other
hand, a uniform solution of Q consists of a family {ΠQ(n)}n∈N of SN P systems
such that, when having an instance I ∈ Q of size n, we introduce a polynomial
(in n) number of spikes in a designated (set of) input neuron(s) of ΠQ(n) and the
computation halts (or, alternatively, a specified number of spikes is emitted in a
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given interval of time) if and only if I is a positive instance. The preference for
uniform solutions over semi–uniform ones is given by the fact that they are more
strictly related to the structure of the problem, rather than to specific instances.
Indeed, in the semi–uniform setting we do not even need any input neuron, as
the instance of the problem is embedded into the structure (number of spikes,
graph of neurons and synapses, rules) from the very beginning. If the instances
of a problem Q depend upon two parameters (as is the case of QSAT, where n is
the number of variables and m the number of clauses in a given formula), then
we will denote the family of SN P systems that solves Q by {ΠQ(n,m)}n,m∈N.
Alternatively, if one does not want to make the family of SN P systems depend
upon two parameters, it is possible to define it as {ΠQ(〈n,m〉)}n,m∈N, where 〈n,m〉
indicates the positive integer number obtained by applying an appropriate bijection
(for example, Cantor’s pairing) from N2 to N.

In the above definitions it is assumed that the uniform (resp., semi-uniform)
construction of ΠQ(n) (resp., ΠQ,I) is performed by using a deterministic Turing
machine, working in a polynomial time. As stated in the Introduction, the SN P
systems we will describe will solve all the instances of QSAT and Q3SAT of a given
size, just like in the uniform setting. However, such systems will have an exponen-
tial size. Since a deterministic Turing machine cannot produce (the description of)
an exponential size object in a polynomial time, we will say that our solutions are
exp-uniform.

3 An exp-Uniform Solution to QSAT

In this section we build an exp-uniform family {ΠQSAT (2n,m)}n,m∈N of SN P sys-
tems such that for all n,m ∈ N the system ΠQSAT (2n,m) solves all the instances
of QSAT (2n,m) in a polynomial number of steps with respect to n and m, in a
deterministic way.

The instances of QSAT (2n,m) to be given as input to the system
ΠQSAT (2n,m) are encoded as sequences of virtual symbols, as follows. For any
given instance γ2n,m = ∃x1∀x2 . . . ∃x2n−1∀x2n(C1∧C2∧. . .∧Cm) of QSAT (2n,m),
let code(γ2n,m) = α11α12 · · ·α12nα21α22 · · ·α22n · · ·αm1αm2 · · ·αm2n, where each
αij , for 1 ≤ i ≤ m and 1 ≤ j ≤ 2n, is a spike variable whose value is an amount
of spikes (a virtual symbol), assigned as follows:

αij =





a, if xj occurs in Ci;
a2, if ¬xj occurs in Ci;
λ, otherwise.

In this way the sequence αi1αi2 · · ·αi2n of spike variables represents the clause
Ci, and the representation of γ2n,m is just the concatenation of the repre-
sentations of the single clauses. As an example, the representation of γ2,2 =
∃x1∀x2[(x1 ∨ ¬x2) ∧ (¬x2)] is aa2λa2. The set of all the encoding sequences of
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all possible instances of QSAT (2n,m) is denoted by code(QSAT (2n,m)). For in-
stance, QSAT (2, 1) contains the following nine formulas (the existential and the
universal quantifiers are here omitted for the sake of readability): γ1

2,1 = no vari-
able appears in the clause, γ2

2,1 = x2, γ3
2,1 = ¬x2, γ4

2,1 = x1, γ5
2,1 = x1 ∨ x2,

γ6
2,1 = x1 ∨ ¬x2, γ7

2,1 = ¬x1, γ8
2,1 = ¬x1 ∨ x2, γ9

2,1 = ¬x1 ∨ ¬x2. Therefore,
code(QSAT (2, 1)) = {λλ, λa, λa2, aλ, aa, aa2, a2λ, a2a, a2a2}.

The structure of the pre-computed SN P system that solves all possible in-
stances of QSAT (2n,m) is illustrated in a schematic way in Figures 1 and 2. The
system is a structure of the form Π

(2n,m)
QSAT = (ΠQSAT (2n,m), code(QSAT (2n,m)))

with:

• ΠQSAT (2n,m) = (O, µ, in, out), where:
1. O = {a} is the singleton alphabet;
2. µ = (H,

⋃
i∈H{mi},

⋃
j∈H Rj , syn) is the structure of the SN P system,

where:
– H = H0 ∪H1 ∪H2 ∪H3 is a finite set of neuron labels, with

H0 = {in, out, d} ∪ {di | 0 ≤ i ≤ 2n},
H1 = {Cxi, Cxi1, Cxi0 | 1 ≤ i ≤ 2n},
H2 = {bin, Cbin | bin ∈ {0, 1}2n},
H3 = {y1y2 . . . y2n−1y2n | yi ∈ {0, 1} when i is odd and yi ∈ {0, 1, xi} when
i is even, and there exists at least one k ∈ {1, 2, . . . , n} such that y2k =
x2k} (we recall that even values of i correspond to universally quantified
variables).
All the neurons are injectively labeled with elements from H;

– md0 = 2, md = 1 and mi = 0 (i ∈ H, i 6= d0, d) are the numbers of spikes
that occur in the initial configuration of the system;

– Rk, k ∈ H, is a finite set of rules associated with neuron σk, where:
Rin = {a → a, a2 → a2}, Rd = {a → a; 2mn + n + 6},
Rdi = {a2 → a2}, for i ∈ {0, 1, . . . , 2n−1}, and Rd2n = {a2 → a2, a3 → λ},
RCxi = {a → λ, a2 → λ, a3 → a3; 2n − i, a4 → a4; 2n − i}, for i ∈
{1, 2, . . . , 2n},
RCxi1 = {a3 → a2, a4 → λ} and RCxi0 = {a3 → λ, a4 → a2}, for

i ∈ {1, 2, . . . , 2n},
RCbin = {(a2)+/a → a} ∪ {a2k−1 → λ | k = 1, 2, . . . , 2n}, for bin ∈
{0, 1}2n,
Rbin = {am → a}, for bin ∈ {0, 1}2n,
Rstr = {a2 → a}, where str ∈ H3 and there exists at least one i ∈
{1, 2, . . . , n} such that str|2i 6= x2i,
Rstr′ = {a2 → a2}, where str′ ∈ H3 and str′|2k = x2k, for all 1 ≤ k ≤ n,
Rout = {(a2)+/a → a};

– syn is the set of all the synapses between the neurons. The following
synapses are used in the input module (see Figure 1): (in, Cxi), (di−1, di),
(di, Cxi), (Cxi, Cxi1) and (Cxi, Cxi0), for all 1 ≤ i ≤ 2n, as well as
(d2n, d1) and (d, d2n).
The synapses connecting the other neurons are illustrated in Figure 2:
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(Cxij, Cbin), where bin ∈ {0, 1}2n and bin|i = j, 1 ≤ i ≤ 2n, j ∈ {0, 1},
(Cbin, bin), where bin ∈ {0, 1}2n,
(bin, str), where bin ∈ {0, 1}2n, str ∈ H3, and str = (bin|i ← x2),
(strj1 , strj2), where strj1 , strj2 ∈ H3 and strj2 = (strj1 |2i ← x2i), 2 ≤ i ≤
n,
(str, out), where str ∈ H3 and str|2k = x2k, for all 1 ≤ k ≤ n;

3. in, out indicate the input and output neurons, respectively;
• code(QSAT (2n, m)) is the set of all the encoding sequences for all the possible

instances of QSAT (2n,m), as defined above.

Fig. 1. The input module of ΠQSAT (2n, m)

The system is composed of four modules: input, satisfiability checking, quanti-
fier checking, and output. To simplify the description of the system and its working,
the neurons in the system are arranged in n + 7 layers in Figures 1 and 2. The
input module has three layers (the first layer contains three neurons σd0 , σd and
σin; the second layer contains 2n neurons σdi , 1 ≤ i ≤ 2n; the third layer contains
2n neurons σCxi , 1 ≤ i ≤ 2n). The satisfiability checking module has also three
layers (the fourth layer contains 4n neurons σCxij , 1 ≤ i ≤ 2n, j = 0, 1; the fifth
layer contains 22n neurons σCbin, bin ∈ {0, 1}2n; the sixth layer contains 22n neu-
rons σbin, bin ∈ {0, 1}2n). The quantifier checking module is composed of n layers,
from the 7th to the (n + 6)th layer, where a total of 22n − 2n neurons are used.
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Fig. 2. Structure of the SN P system ΠQSAT (2n, m)

The output module only contains one neuron σout, which appears in the last layer.
In what follows we provide a more detailed description of each module, as well as
its working when solving a given instance γ2n,m ∈ QSAT (2n,m).

• Input: The input module consists of 4n + 3 neurons, contained in the layers 1
– 3 as illustrated in Figure 1; σin is the unique input neuron. The values of the
spike variables of the encoding sequence code(γ2n,m) are introduced into σin
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one by one, starting from the beginning of the computation. At the first step of
the computation, the value of the first spike variable α11, which is the virtual
symbol that represents the occurrence of the first variable in the first clause,
enters into neuron σin; in the meanwhile, neuron σd1 receives two auxiliary
spikes from neuron σd0 . At this step, the firing rule in neuron σd is applied; as
a result, neuron σd will send one spike to neuron σd2n

after 2mn + n + 6 steps
(this is done in order to halt the computation after the answer to the instance
given as input has been determined). In the next step, the value of the spike
variable α11 is replicated and sent to neurons σCxi

, for all i ∈ {1, 2, . . . , 2n};
the two auxiliary spikes contained in σd1 are also sent to neurons σCx1 and
σd2 . Hence, neuron σCx1 will contain 2, 3 or 4 spikes: if x1 occurs in C1, then
neuron σCx1 collects 3 spikes; if ¬x1 occurs in C1, then it collects 4 spikes;
if neither x1 nor ¬x1 occur in C1, then it collects two spikes. Moreover, if
neuron σCx1 has received 3 or 4 spikes, then it will be closed for 2n− 1 steps,
according to the delay associated with the rules in it; on the other hand, if
2 spikes are received, then they are deleted and the neuron remains open. At
the third step, the value of the second spike variable α12 from neuron σin is
distributed to neurons σCxi , 2 ≤ i ≤ 2n, where the spikes corresponding to α11

are deleted. At the same time, the two auxiliary spikes are duplicated and one
copy of them enters into neurons σCx2 and σd3 , respectively. The neuron σCx2

will be closed for 2n − 2 steps only if it contains 3 or 4 spikes, which means
that this neuron will not receive any spike during this period. In neurons σCxi ,
3 ≤ i ≤ 2n, the spikes represented by α12 are forgotten in the next step.
In this way, the values of the spike variables are introduced and delayed in the
corresponding neurons until the value of the spike variable α12n of the first
clause and the two auxiliary spikes enter together into neuron σCx2n at step
2n + 1. At that moment, the representation of the first clause of γ2n,m has
been entirely introduced in the system, and the second clause starts to enter
into the input module. The entire sequence code(γ2n,m) is introduced in the
system in 2mn + 1 steps.

• Satisfiability checking: Once all the values of spike variables α1i (1 ≤ i ≤ 2n),
representing the first clause, have appeared in their corresponding neurons
σCxi in layer 3, together with a copy of the two auxiliary spikes, all the spikes
contained in σCxi are duplicated and sent simultaneously to the pair of neurons
σCxi1 and σCxi0, for i ∈ {1, 2, . . . , 2n}, at the (2n + 2)nd computation step.
In this way, each neuron σCxi1 and σCxi0 receives 3 or 4 spikes when xi or
¬xi occurs in C1, respectively, whereas it receives no spikes when neither xi

or ¬xi occurs in C1. In general, if neuron σCxi1 receives 3 spikes, then the
literal xi occurs in the current clause (say Cj), and thus the clause is satisfied
by all those assignments in which xi is true. Neuron σCxi0 will also receive
3 spikes, but it will delete them during the next computation step. On the
other hand, if neuron σCxi1 receives 4 spikes, then the literal ¬xi occurs in
Cj , and the clause is satisfied by those assignments in which xi is false. Since
neuron σCxi1 is designed to process the case in which xi occurs in Cj , it will
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delete its 4 spikes. However, also neuron σCxi0 will have received 4 spikes,
and this time it will send two spikes to those neurons which are bijectively
associated with the assignments for which xi is false. Note that all possible
22n truth assignments to x1, x2, . . . , x2n are represented by the neurons’ labels
Cbin in layer 5, where bin is generated from {0, 1}2n; precisely, we read bin,
where bin|i = j, j ∈ {0, 1}, as a truth assignment whose value for xi is j. In
the next step, those neurons σCbin that received at least two spikes send one
spike to the corresponding neurons σbin in layer 6 (the rest of the spikes will
be forgotten), with the meaning that the clause is satisfied by the assignment
bin. This occurs in the (2n + 4)th computation step. Thus, the check for the
satisfiability of the first clause has been performed; in a similar way, the check
for the remaining clauses can proceed. All the clauses can thus be checked to
see whether there exist assignments that satisfy all of them.
If there exist some assignments that satisfy all the clauses of γ2n,m, then the
neurons labeled with the values of bin ∈ {0, 1}2n that correspond to these
assignments succeed to accumulate m spikes. Thus, the rule am → a can
be applied in these neurons. The satisfiability checking module completes its
process in 2mn + 5 steps.

• Quantifier checking: The universal and existential quantifiers of the fully quan-
tified formula γ2n,m are checked starting from step 2mn + 6.
Since all the instances of QSAT (2n,m) are in the normal form, it is not difficult
to see that we need only to check the universal quantifiers associated to even-
numbered variables (x2, x4, . . .). These universal quantifiers are checked one
by one, and thus the quantifier checking module needs n steps to complete
its process. The module starts by checking the universal quantifier associated
with x2, which is performed as follows. For any two binary sequences bin1 and
bin2 with bin1|i = bin2|i for all i 6= 2 and bin1|2 = 1, bin2|2 = 0, if both
neurons σbin1 and σbin2 contain m spikes, then neuron σstr will receive two
spikes from them at step 2mn + 5, where str = (bin1|2 ← x2). This implies
that, no matter whether x2 = 1 or x2 = 0, if we assign each variable xj with
the value str|j , j 6= 2, 1 ≤ j ≤ 2n, then all the clauses of γ2n,m are satisfied.
As shown in Figure 2, in this way the system can check, in the 7th layer, the
satisfiability of the universal quantifier associated to variable x2. The system
is then ready to check the universal quantifier associated with variable x4,
which is performed in a similar way as follows. For any two sequences str1 and
str2 with str1|i = str2|i ∈ {0, 1}, for all i 6= 2, 4, and str1|2 = str2|2 = x2,
str1|4 = 1, str2|4 = 0, if both neurons σstr1 and σstr2 contain two spikes, then
σstr3 will receive two spikes, where str3 is obtained by replacing the fourth
symbol of str1 with x4 (i.e., str3 = (str1|4 ← x4)). In this way, we check
the (simultaneous) satisfiability of the universal quantifiers associated to the
two variables x2 and x4. Similarly, the system can check the satisfiability of
the universal quantifier associated with variable x6 by using the neurons in
the ninth layer. Therefore, after n steps (in the (n + 6)th layer) the system
has checked the satisfiability of all the universal quantifiers associated with



14 T.-O. Ishdorj et al.

the variables x2, x4, . . . , x2n. If a neuron σstr accumulates two spikes, where
str|2k = x2k for all 1 ≤ k ≤ n, then we conclude that this assignment not only
makes all the clauses satisfied, but also satifies all the quantifiers. Therefore,
the neurons which accumulate two spikes will send two spikes to the output
neuron, thus indicating that the instance of the problem given as input is
positive.

• Output: From the construction of the system, it is not difficult to see that the
output neuron sends exactly one spike to the environment at the (2mn+n+6)th
computation step if and only if γ2n,m is true. At this moment, neuron σd will
also send a spike to the auxiliary neuron σd2n (the rule is applied in the first
computation step). This spike stays in neuron σd2n

until two further spikes
arrive from neuron σd2n−1 ; when this happens, all three spikes are forgotten
by using the rule a3 → λ in neuron σd2n . Hence, the system eventually halts
after a few steps since the output neuron fires.

Note that the number m of clauses appearing in a QSAT (2n,m) problem may
be very large (e.g., exponential) with respect to n: every variable can occur negated
or non-negated in a clause, or not occur at all, and hence the number of all possible
clauses is 32n. This means that the running time of the system may be exponential
with respect to n, and also the rules am → a in some neurons of the system are
required to work on a possibly very large number of spikes. As we will see in the
next section, these “problems” (if one considers them as problems) do not occur
when considering Q3SAT, since each clause in the formula contains exactly three
literals, and thus the number of possible clauses is at most cubic in n.

3.1 An example

Let us present a simple example which shows how the system solves the instances
of QSAT (2n,m), for specified values of n and m, in an exp-uniform way. Let
us consider the following fully quantified propositional formula, which has two
variables and two clauses (i.e., n = 1,m = 2):

γ2,2 = ∃x1∀x2(x1 ∨ ¬x2) ∧ x1

Such a formula is encoded as the sequence code(γ2,2) = aa2aλ of virtual symbols.
The structure of the SN P system which is used to solve all the instances

of QSAT (2, 2) is pre-computed as illustrated in Figure 3. It is composed of 22
neurons; its computations are performed as follows.

Input: Initially, neuron σd0 contains two spikes and neuron σd contains one
spike, whereas the other neurons in the system contain no spikes. The computation
starts by inserting the leftmost symbol of the encoding sequence code(γ2,2) =
aa2aλ into the input neuron σin. When this symbol (a) enters into the system,
neuron σd0 emits its two spikes to neuron σd1 . At this moment, the rule occurring
in neuron σd also fires; as a result, it will send one spike to neuron σd2 after 11
steps. At the next step, two spikes from σd1 are sent to neurons σd2 and σCx1 ,
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while the symbol a is sent by σin to neurons σCx1 and σCx2 . At the same time,
the value a2 of the second spike variable α12 of code(γ2,2) is introduced into σin.

Neuron σCx1 has accumulated three spikes and thus the rule a3 → a2; 1 can be
applied in it, while the spike in neuron σCx2 is forgotten by using the rule a → λ
at the third computation step. Simultaneously, the value a2 of the second spike
variable α12 from σin and two spikes from σd2 enter together into σCx2 ; neuron
σCx1 does not receive any spike, as it has been closed for this step. Thus, at the
third computation step the representation of the first clause aa2 has appeared in
the input module. At this step, the value a of the first spike variable α21 of the
second clause also enters the input neuron, while neuron σd1 receives two spikes
again, which triggers the introduction of the representation of the second clause
(aλ) in the input module.

Satisfiability checking: Now, neuron σCx1 is open and fires, sending three spikes
to neurons σCx11 and σCx10. The three spikes in neuron σCx11 denote that literal
x1 occurs in the current clause (C1), and thus the clause is satisfied by all those
assignments in which x1 = 1. And, in fact, σCx11 sends two spikes to neurons σC11

and σC10, to indicate that the first clause is satisfied by the assignments bin whose
first value is 1. The three spikes in neuron σCx10 denote that the current clause
(C1) does not contain the literal ¬x1. Hence, no spike is emitted from neuron
σCx10; its three spikes are forgotten instead. Similarly, the presence of four spikes
in neuron σCx21 (resp., in σCx20) denotes the fact that literal x2 (resp., ¬x2)
does not occur (resp., occurs) in clause C1. Hence, the spikes in neuron σCx21 are
forgotten, whereas neuron σCx20 sends two spikes to neurons σC10 and σC00 to
denote that clause C1 is satisfied by those assignments in which x2 = 0.

At step 5, the configuration of the system is as follows. Three spikes occur
in neuron σCx1 , since literal x1 occurs in the second clause; no spikes occur in
σCx2 , as the clause does not contain variable x2; the two auxiliary spikes appear
alternately in neurons σd1 and σd2 in the input module. At the same time, neurons
σC11 and σC00 contain two spikes each, whereas neuron σC10 contains four spikes.

In the next step, neuron σCx1 sends three spikes to its two target neurons σCx11

and σCx10, while each of the neurons σC11, σC00 and σC10 sends one spike towards
their related neurons in the next layer, thus confirming that the first clause is
satisfied by the corresponding assignments. The rest of spikes in these neurons
will be forgotten in the following step. At step 7, neuron σCx11 sends two spikes
to neurons σC11 and σC10 by using the rule a3 → a2, whereas the three spikes in
neuron σCx10 are forgotten. Note that the spike in neurons σ11, σ10 and σ00, which
is received from their related neurons σC11, σC00 and σC10, remains unused until
one more spike is received. At step 8, neuron σC11 sends one spike to its related
neuron σ11 and neuron σC10 sends one spike to its related neuron σ10, while the
rest of spikes are forgotten. In this way, neurons σ11 and σ10 succeed to accumulate
a sufficient number (two) of spikes to fire. On the other hand, neuron σ00 fails to
accumulate the desired number of spikes (it obtains only one spike), thus the rule
in it cannot be activated.
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Quantifier checking: We now pass to the module which checks the universal and
existential quantifiers associated to the variables. At step 9 neuron σ1x2 receives
two spikes, one from σ11 and another one from σ10, which means that the formula
γ2,2 is satisfied when x1 = 1, no matter whether x2 = 0 or x2 = 1. On the other
hand, neuron σ0x2 does not contain any spike. At step 10 the rule a2 → a2 is
applied in neuron σ1x2 , making neuron σout receive two spikes.

Output: The rule occurring in neuron σout is activated and one spike is sent
to the environment, indicating that the instance of the problem given as input is
positive (that is, γ2,2 is true). At this step, as neuron σd2 will receive a “trap”
spike from neuron σd, the two auxiliary spikes circulating in the input module are
deleted as soon as they arrive in it, because of the rule a3 → λ. Thus, the system
halts after 13 computation steps since it has been started.

In order to illustrate how the system from Figure 3 evolves in detail, its tran-
sition diagram (generated with the software tool developed in [6]) is also given in
Figure 4. In this figure, 〈r1/t1, . . . , r21/t21, r22/t22〉 is the configuration in which
neurons σd, σd0 , σd1 , σd2 , σin, σCx1 , σCx2 , σCx11, σCx10, σCx21, σCx20, σC11, σC10,
σC01, σC00, σ11, σ10, σ01, σ00, σ1x2 , σ0x2 and σout contain r1, r2, . . . , r22 spikes,
respectively, and will be open after t1, t2, . . . , t22 steps, respectively. Between two
configurations we draw an arrow if and only if a direct transition is possible be-
tween them. For simplicity, the rules are indicated only when they are used, while
unused rules are omitted. When neuron σk spikes after being closed for s ≥ 0 steps,
we write rk,s. We omit to indicate s when it is zero. Finally, we have highlighted
the firing of σout by writing rout in bold.

4 Solving Q3SAT

As stated in section 2, the instances of Q3SAT are defined like those of QSAT, with
the additional constraint that each clause contains exactly three literals. In what
follows, by Q3SAT (2n) we will denote the set of all instances of Q3SAT which
can be built using 2n Boolean variables x1, x2, . . . , x2n, with the following three
restrictions: (1) no repetitions of the same literal may occur in any clause, (2)
no clause contains both the literals xs and ¬xs, for any s ∈ {1, 2, . . . , 2n}, and
(3) the instance is expressed in the normal form described in section 2 (all even-
numbered and odd-numbered variables are universally and existentially quantified,
respectively).

As stated in the previous section, the number m of possible clauses that may
appear in a formula γn,m ∈ QSAT (n,m) is exponential with respect to n. On the
contrary, the number of possible 3-clauses which can be built using 2n Boolean
variables is 4n · (4n− 2) · (4n− 4) = Θ(n3), a polynomial quantity with respect to
n. This quantity, that we denote by Cl(2n), is obtained by looking at a 3-clause
as a triple, and observing that each component of the triple may contain one of
the 4n possible literals, with the constraints that we do not allow the repetition
of literals in the clauses, or the use of the same variable two or three times in a
clause.
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r d 1
, r Cx1 , s , rCx2 ,2 r C11, 1 , rC10 ,1 , rC00 ,1

r d 2 ,1 , r Cx1 , 2 , rCx 11,1 r Cx1 0,1 , r C11, 3 , rC10 , 2 , rC00 , 3

r d 1
, r Cx2 , 2 , r C11 , 1 , rC10 , 1

r d 2 ,1 , r Cx1 , 2 r C11, 3 , rC10 , 3 , r11 , r10

r d 1
, r Cx2 , 2 , r 1x2

r d , 11s , rd 1
, rCx2 ,2

r d 2 ,2 , rCx1 , 2

r d 2 ,1 , r Cx1 , 2 , r out

Fig. 4. The transition diagram of the system illustrated in Figure 3
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Fig. 5. Sketch of a deterministic SN P system that solves all possible instances of
Q3SAT (2n)
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Figure 5 outlines an SN P system which can be used to solve any instance
γ2n,m of Q3SAT (2n). The input to this system is once again the instance of
Q3SAT we want to solve, but this time such an instance is given by specifying
— among all the possible clauses that can be built using n Boolean variables —
which clauses occur in the instance. The selection is performed by putting (in
parallel, in the initial configuration of the system) one spike in each of the input
neurons sel1, sel2, . . . , selCl(2n) that correspond to the selected clauses.

The system is a simple modification of the one used in [8] to uniformly solve
all the instances of the NP-complete problem 3-SAT of a given size. To see how it
works, let us consider the family {M (2n)}n∈N of Boolean matrices, where M (2n) has
22n rows — one for each possible assignment to the variables x1, x2, . . . , x2n — and
one column for each possible 3-clause that can be built using the same variables.
As stated above, the number of columns is Cl(2n) ∈ Θ(n3), a polynomial quantity
in n. In order to make the construction of the matrix M (2n) as regular as possible,
we could choose to list all the 3-clauses in a predefined order; however, our result is
independent of any such particular ordering, and hence we will not bother further
with this detail. For every j ∈ {1, 2, 3, . . . , 22n} and i ∈ {1, 2, . . . , Cl(2n)}, the

x1 x2 x3 x4 · · · x1 ∨ x2 ∨ ¬x4 · · · ¬x1 ∨ ¬x2 ∨ x3 · · ·
0 0 0 0 · · · 1 · · · 1 · · ·
0 0 0 1 · · · 0 · · · 1 · · ·
0 0 1 0 · · · 1 · · · 1 · · ·
0 0 1 1 · · · 0 · · · 1 · · ·
0 1 0 0 · · · 1 · · · 1 · · ·
0 1 0 1 · · · 1 · · · 1 · · ·
0 1 1 0 · · · 1 · · · 1 · · ·
0 1 1 1 · · · 1 · · · 1 · · ·
1 0 0 0 · · · 1 · · · 1 · · ·
1 0 0 1 · · · 1 · · · 1 · · ·
1 0 1 0 · · · 1 · · · 1 · · ·
1 0 1 1 · · · 1 · · · 1 · · ·
1 1 0 0 · · · 1 · · · 0 · · ·
1 1 0 1 · · · 1 · · · 0 · · ·
1 1 1 0 · · · 1 · · · 1 · · ·
1 1 1 1 · · · 1 · · · 1 · · ·
Assignments Clauses

Fig. 6. An excerpt of matrix M (4). On the left we can see the assignments which are
associated to the corresponding rows of the matrix. Only the columns corresponding to
the clauses x1 ∨ x2 ∨ ¬x4 and ¬x1 ∨ ¬x2 ∨ x3 are detailed

element M
(2n)
ji is equal to 1 if and only if the assignment associated with row j

satisfies the clause associated with column i. Figure 6 shows an excerpt of matrix
M (4), where each row has been labelled with the corresponding clause; only the
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Check Satisfiability(M (2n))

res ← [1 1 · · · 1] // 22n elements
for all columns C in M (2n)

do if C corresponds to a selected clause
then res ← res ∧ C // bit-wise and

return res

Fig. 7. Pseudocode of the algorithm used to select the assignments that satisfy all the
clauses of γ2n,m ∈ Q3SAT (2n)

columns that correspond to clauses x1 ∨ x2 ∨ ¬x4 and ¬x1 ∨ ¬x2 ∨ x3 are shown
in details.

Let us now consider the algorithm given in pseudocode in Figure 7. The variable
res is a vector of length 22n, whose components — which are initialized to 1
— are bijectively associated with all the possible assignments of x1, x2, . . . , x2n.
The components of res are treated as flags: when a component is equal to 1, it
indicates that the corresponding assignment satisfies all the clauses which have
been examined so far. Initially we assume that all the flags are 1, since we do not
have examined any clause yet. The algorithm then considers all the columns of
M (2n), one by one. If the column under consideration does not correspond to a
selected clause, then it is simply ignored. If, on the other hand, it corresponds to a
clause which has been selected as part of the instance, then the components of res
are updated, putting to 0 those flags that correspond to the assignments which
do not satisfy the clause. At the end of this operation, which can be performed in
parallel on all the components, only those assignments that satisfy all the clauses
previously examined, as well as the clause currently under consideration, survive
the filtering process. After the last column of M (2n) has been processed, we have
that the components of vector res indicate those assignments that satisfy all the
clauses of the instance γ2n,m of Q3SAT given as input. Stated otherwise, res is
the output column of the truth table of the unquantified propositional formula
contained in γ2n,m.

This algorithm can be easily transformed into an exponential size Boolean
circuit, that mimics the operations performed on the matrix M (2n), described by
the pseudocode given in Figure 7. Such a circuit can then be easily simulated using
the SN P system that we have outlined in Figure 5 (precisely, the left side of the
system, until the column of neurons that contain the final value of vector res).
This part of the system is composed of three layers for each possible 3-clause that
can be built using 2n Boolean variables. Two of these layers are used to store
the intermediate values of vector res and the values contained in the columns of
M (2n), respectively. The third layer, represented by the boxes marked with Filter
in Figure 5, transforms the current value of res to the value obtained by applying
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the corresponding iteration of the algorithm given in Figure 7. This layer is in turn
composed by three layers of neurons, as we will see in a moment.

The last part of the system is used to check the satisfiability of the universal and
existential quantifiers associated with the variables x1, x2, . . . , x2n. The neurons in
this part of the system compose a binary tree of depth 2n; the first layer of neurons
corresponds to the bottom of the tree, and checks the satisfiability of the quantifier
∀x2n; the second layer checks the satisfiability of ∃x2n−1 and so on, until the last
layer, whose only neuron is σout (the output neuron), that checks the satisfiability
of ∃x1. To see how the check is performed, let us consider the fully quantified

Fig. 8. Example of a quantified Boolean formula formed by one clause, built using two
Boolean variables. On the left, its truth table is reported with an indication of the truth
assignments that make the formula true. On the right, the tree which is used to check
the satisfaction of the quantifiers ∀ and ∃ is depicted

formula ∃x1∀x2(¬x1 ∨ x2). This formula is composed of a single 2-clause (hence it
is not a valid instance of Q3SAT), built using two Boolean variables. In Figure 8 we
can see the truth table of the clause, and an AND/OR Boolean circuit that can be
used to check whether the quantifiers associated with x1 and x2 are satisfied. This
circuit is a binary tree whose nodes are either AND or OR gates. Each layer of
nodes is associated with a Boolean variable: precisely, the output layer is associated
to x1, the next layer to x2, and so on until the input layer, which is associated
to xn. If Qi = ∀ then the nodes in the layer associated with xi are AND gates;
on the contrary, if Qi = ∃ then the nodes in such a layer are OR gates. The
input lines of the circuit are bijectively associated to the set of all possible truth
assignments. It is not difficult to see that when these input lines are fed with the
values contained in the output column of clause’s truth table, the output of the
circuit is 1 if and only if the fully quantified formula is true. Since in the first
part of the system we have computed the output column of the truth table of the
unquantified propositional formula contained in γ2n,m, we just have to feed these
values to an SN P system that simulates the above AND/OR Boolean circuit to
see whether γ2n,m is true or not. Implementing such a Boolean circuit by means
of an SN P system is trivial: to see how this can be done, just compare the last
two layers of the circuits illustrated in Figures 10 and 11.
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The overall system then works as follows. During the computation, spikes move
from the leftmost to the rightmost layer. One spike is expelled to the environment
by neuron σout if and only if γ2n,m is true. In the initial configuration, every
neuron in the first layer (which is bijectively associated with one of the 22n possible
assignments to the Boolean variables x1, x2, . . . , x2n) contains one spike, whereas
neurons sel1, sel2, . . . , selCl(2n) contain one or zero spikes, depending upon whether
or not the corresponding clause is part of the instance γ2n,m given as input. Stated
otherwise, the user must provide one spike — in the initial configuration of the
system — to every input neuron seli that corresponds to a clause that has to be
selected. In order to deliver these spikes at the correct moment to all the filters
that correspond to the ith iteration of the algorithm, every neuron seli contains
the rule a → a; 4(i− 1), whose delay is proportional to i. In order to synchronize
the execution of the system, also the neurons that correspond to the ith column
of M (2n) deliver their spikes simultaneously with those distributed by neurons
seli, using the same rules. An alternative possibility is to provide the input to the
system in a sequential way, for example as a bit string of length Cl(2n), where a
1 (resp., 0) in a given position indicates that the corresponding clause has to be
selected (resp., ignored). In this case we should use a sort of delaying subsystem,
that delivers — every four time steps — the received spike to all the neurons
that correspond to the column of M (2n) currently under consideration. Since the
execution time of our algorithm is proportional to the number Cl(2n) of all possible
clauses containing 2n Boolean variables, this modification keeps the computation
time of the entire system cubic with respect to n.

In the first computation step, all the inputs going into the first layer of filters are
ready to be processed. As the name suggests, these filters put to 0 those flags which
correspond to the assignments that do not satisfy the first clause (corresponding
to the first column of M (2n)). This occurs only if the clause has been selected as
part of the instance γ2n,m ∈ Q3SAT (2n) given as input, otherwise all the flags are
kept unchanged, ready to be processed by the next layer of filters. In either case,
when the resulting flags have been computed they enter into the second layer of
filters together with the values of the second column of M (2n), and the input sel2
that indicates whether this column is selected or not as being part of the instance.
The computation proceeds in this way until all the columns of M (2n) have been
considered, and the resulting flags (corresponding to the final value of vector res
in the pseudocode of Figure 7) have been computed.

Before looking at how the system checks the satisfiability of the universal and
existential quantifiers ∃x1,∀x2, . . . , ∀x2n, let us describe in detail how the filtering
process works. This process is performed in parallel on all the flags: if the clause
Ci has been selected then an and is performed between the value M

(2n)
ji (that

indicates whether the jth assignment satisfies Ci) and the current value of the
flag resj (the jth component of res); as a result, resj is 1 if and only if the jth
assignment satisfies all the selected clauses which have been considered up to now.
On the other hand, if the clause Ci has not been selected then the old value of
resj is kept unaltered. This filtering process can be summarized by the pseudocode
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Filter(seli, resj , Ci)

if seli = 0 then return resj

else return resj ∧ Ci

Fig. 9. Pseudocode of the Boolean function computed by the blocks marked with Filter
in Figure 5

given in Figure 9, which is equivalent to the following Boolean function:

(¬seli ∧ resj) ∨ (seli ∧ resj ∧ Ci)

Such a function can be computed by the Boolean circuit depicted in Figure 10,
that in turn can be simulated by the SN P system illustrated in Figure 11. Note
the system represented in this latter figure is a generic module which is used many
times in the whole system outlined in Figure 5, hence we have not indicated the
delays which are needed in neurons seli and Ci. Also neuron 1, which is used to
negate the value emitted by neuron seli, must be activated together with seli, that
is, after 4(i−1) steps after the beginning of the computation. The spike it contains
can be reused in the namesake neuron that occurs in the next layer of filters.

Fig. 10. The Boolean circuit that computes the function Filter whose pseudocode is
given in Figure 9

The last part of the system illustrated in Figure 5 is devoted to check the sat-
isfiability of the universal and existential quantifiers ∃x1, ∀x2, . . . , ∀x2n associated
to the Boolean variables x1, x2, . . . , x2n. As we have seen, the final values of vector
res represent the output column of the truth table of the unquantified proposi-
tional formula contained in γ2n,m. Hence, to check whether all the universal and
existential quantifiers are satisfied, it suffices to feed these values as input to an
SN P system that simulates a depth 2n AND/OR Boolean circuit that operates
as described in Figure 8. Each gate is simply realized as a neuron that contains
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Fig. 11. An SN P system that computes the function Filter given in Figure 9, simulating
the Boolean circuit of Figure 10

two rules, as depicted in the last two layers of Figure 11. At each computation
step, one quantifier is checked; when the check terminates, one spike is emitted
to the environment by the output neuron σout if and only if the fully quantified
formula γ2n,m ∈ Q3SAT (2n) given as input to the entire system is true. The total
computation time of the system is proportional to the number Cl(2n) of columns
of M (2n), that is, Θ(n3).

As we can see, the structure of the system that uniformly solves all the instances
of Q3SAT (2n) is very regular, and does not contain “hidden information”. For the
sake of regularity we have also omitted some possible optimizations, that we briefly
mention here. The first column of neurons in Figure 5 corresponds to the initial
value of vector res in the pseudocode given in Figure 7. Since this value is fixed, we
can pre-compute part of the result of the first step of computation, and remove the
entire column of neurons from the system. In a similar way we can also remove the
subsequent columns that correspond to the intermediate values of res, and send
these values directly to the next filtering layer. A further optimization concerns
the values M

(2n)
ji , which are contained in the neurons labelled with Ci. Since these

values are given as input to and gates, when they are equal to 1 they can be
removed since they do not affect the result; on the other hand, when they are
equal to 0 also the result is 0, and thus we can remove the entire and gate.

5 Conclusions and Remarks

In this paper we have shown that QSAT, a well known PSPACE-complete problem,
can be deterministically solved in linear time with respect to the number n of
variables and the number m of clauses by an exp-uniform family of SN P systems
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with pre-computed resources. We have also considered Q3SAT, a restricted (but still
PSPACE-complete) version of QSAT in which all the clauses of the instances have
exactly three literals; we have shown that in this case the problem can be solved
in a time which is at most cubic in n, independent of m. Each pre-computed SN
P system of the family can be used to solve all the instances of QSAT (or Q3SAT),
expressed in a normalized form, of a given size.

Note that using pre-computed resources in spiking neural P systems is a pow-
erful technique, that simplifies the solution of computationally hard problems. The
pre-computed SN P systems presented in this paper have an exponential size with
respect to n but, on the other hand, have a regular structure. It still remains open
whether such pre-computed resources can be constructed in a regular way by using
appropriate computation devices that, for example, use a sort of controlled dupli-
cation mechanism to produce an exponential size structure in a polynomial number
of steps. A related interesting problem is to consider whether alternative features
can be introduced in SN P systems to uniformly solve PSPACE-complete prob-
lems. Nondeterminism is the first feature that comes to mind, but this is usually
considered too powerful in the Theory of Computation.
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