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Summary. It is well known that any irreducible and aperiodic Markov chain has exactly
one stationary distribution, and for any arbitrary initial distribution, the sequence of
distributions at time n converges to the stationary distribution, that is, the Markov
chain is approaching equilibrium as n → ∞.

In this paper, a characterization of the aperiodicity in existential terms of some state
is given. At the same time, a P system with external output is associated with any
irreducible Markov chain. The designed system provides the aperiodicity of that Markov
chain and spends a polynomial amount of resources with respect to the size of the input.
A formal verification of this solution is presented and a comparative analysis with respect
to another known solution is described.

1 Introduction

A discrete-time Markov chain is a stochastic process such that the past time is
irrelevant to predict the future, given knowledge of the present time. That is, given
the present time, the future does not depend on the past time: the result of each
event depends only on the result of the previous event.

In order to study the evolution in time of a Markov chain as well as the existence
of the stationary distribution, it is suitable to classify its states. This classification
depends on the path structure of the chain.

One of the central issues in Markov Theory is the study of the asymptotic
behavior of Markov chains. It is well known that for any irreducible and aperi-
odic Markov chain: (a) there exists at least one stationary distribution (that is, a
probability distribution on the state space which is an invariant for the transition
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matrix associated with the chain), and (b) for any initial distribution, µ(0) and for
any stationary distribution π for the Markov chain, the sequence (µ(n))n∈N con-
verges to π in total variation as n → ∞ (that is, the Markov chain is approaching
equilibrium as n → ∞).

In the paper [2], a classification of states of a finite and homogeneous Markov
chain is provided by using P systems. Moreover, the period was calculated for
recurrent classes. The design of the P systems was inspired in properties used in
classic algorithms that deal with the problem of the classification. Especially, this
solution allows us to decide whether an irreducible Markov chain is aperiodic or
not.

The main goal of this paper is to design a P system associated with an irre-
ducible Markov chain which provides an answer to the aperiodicity of the chain.
If the answer is negative, then the system provides the period of the chain. The
solution presented is based on a characterization of the aperiodicity in existen-
tial terms of some state and a natural number, and it is semi–uniform, in the
sense that for each Markov chain, a P system associated with it is constructed.
Besides, the solution spends a polynomial amount of resources in the sense of the
computational complexity theory in Membrane Computing.

The solution presented in the paper improves the solution obtained in [2],
because less computational resources are used.

The paper is organized as follows. In the following section, we recall some basic
notions and results that we use in the paper. In Section 3, a P system associated
with an irreducible Markov chain is designed in order to study the periodicity
of that class. Section 4 shows a formal verification of the designed P system. In
Section 5, the solution presented is compared with another solution obtained from
[2]. Finally some conclusions are presented.

2 Preliminaries

A discrete Markov chain is a sequence {Xt | t ∈ N} of random variables whose
values are called states, that verifies the following property:

P (Xt+1 = j/X0 = i0,X1 = i1, . . . ,Xt = it) = P (Xt+1 = j/Xt = it)

Without loss of generality, we can suppose that the state space is the set of non-
negative integers.

The value of variable Xt is interpreted as the state of the process at instant t. In
this paper we work with Markov chains having a finite state space S = {s1, . . . , sk}.

A discrete Markov chain is characterized by the transition probability

pij(t) = P (Xt = sj/Xt−1 = si), ∀t ≥ 1

where pij(t) provides the transition from state si to state sj at time t − 1.
The matrix of transition probabilities
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P (t) = (pij(t))1≤i,j≤k

is a stochastic matrix, that is, is nonnegative for all t and the sum of each arrow
is equal to 1,

∑k

j=1 pij(t) = 1.
We say that the chain is time homogeneous or stationary if pij(t) = pij for each

t and it verifies the Kolmogorov-Chapman equation:

p
(1)
ij = pij , p

(2)
ij =

k∑

l=1

pilplj , . . . , p
(n)
ij =

k∑

l=1

pilp
(n−1)
lj ,

where p
(n)
ij is the transition probability of state si to state sj at time n.

We denote the initial distribution by means of the vector

µ(0) = (µ
(0)
1 , . . . , µ

(0)
k ) = (P (X0 = s1), P (X0 = s2), . . . , P (X0 = sk))

and the distribution of the Markov chain at time n is

µ(n) = (µ
(n)
1 , . . . , µ

(n)
k ) = (P (Xn = s1), P (Xn = s2), . . . , P (Xn = sk))

Then, µ(n) = µ(0) · P (n), where P = (pij) is the transition matrix of the homoge-
neous Markov chain.

Next, we introduce some concepts and results related to the states of a homo-
geneous Markov chain.

We say that a state sj communicates with another state si (and we denote it

by si → sj), if there exists a natural number n > 0 such that p
(n)
ij > 0 (that is, if

the chain has a positive probability of ever reaching sj when we start from si. We
say that the states si and sj intercommunicate (and we denote it by si ↔ sj) if
si → sj and sj → si.

In the finite state space S = {s1, . . . , sk} of a Markov chain, the relation ↔
is an equivalence relation and we can consider the corresponding quotient set
{s1, . . . , sk}/ ↔ whose elements are the classes of equivalence by ↔.

A Markov chain with state space S = {s1, . . . , sk} is said to be irreducible if
there exists only one class of equivalence by ↔; that is, if for all si, sj ∈ E we have
si ↔ sj . Otherwise, the chain is said to be reducible.

We say that a state si is recurrent or essential if for each natural number m

and for each state sj verifying p
(m)
ij > 0 there exists a natural number n such

that p
(n)
ji > 0. Otherwise, the state is said to be transient. A recurrent class is the

equivalence class determined by a recurrent state.
It is easy to prove that from a recurrent state, only recurrent states belonging

to the same class are reachable.
A recurrence time of si is a natural number n > 0 such that p

(n)
ii > 0. The

period of a state si is defined as d(i) = g.c.d. {n ≥ 1 | p
(n)
ii > 0}, that is, it is

the greatest common divisor of the recurrence times associated with it. All states
belonging to the same class have the same period.

Then, we can define the period of a class of a given Markov chain in a natural
manner: it is the period of any state of the class (see [3] and [4] for more details).
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Definition 1. A Markov chain is said to be aperiodic if all its states are aperiodic;
that is, their periods are equal to 1. Otherwise, the chain is said to be periodic.

Next, we provide a method to compute the period of a recurrent class and a
characterization of the periodicity of a class.

Theorem 1. Let A = {s1, . . . , sr} be a recurrent class. The period of A is

d = g.c.d. {n | p
(n)
ii > 0; 1 ≤ i, n ≤ r}.

That is, the period of A is the greatest common divisor of all times of recurrences
of the states of that class, smaller than or equal to r.

Proof. By definition, given a state si (1 ≤ i ≤ r) its period is

d(i) = g.c.d. {n ≥ 1 | p
(n)
ii > 0}.

As all states have the same period d, we have

d = d(1) = d(2) = . . . = d(r) = g.c.d. {n ≥ 1 | p
(n)
ii > 0; 1 ≤ i ≤ r}.

Let d′ = g.c.d.{n| p
(n)
ii > 0; 1 ≤ i, n ≤ r}. Let us see that d = d′. For that, we

will check that any trajectory from a state si ∈ A to itself, with the length bigger
than r, is the composition of trajectories with length smaller than or equal to r
between the same states.

Let n > r be a time of recurrence associated with a state si ∈ A, that is,

p
(n)
ii > 0. There exists a state si0 such that p

(n)
ii ≥ p

(n′)
ii0

· p
(n0)
i0i0

· p
(n′′)
i0i > 0, being

n = n′ + n0 + n′′. Thus, n0 and n′ + n′′ are also times of recurrence.
If n0 > r or n′ + n′′ > r, then we repeat the process until we obtain a decom-

position

p
(n)
ii ≥ p

(n′)
ii0

· p
(n0)
i0i0

· p
(n1)
i1i1

. . . p
(nr)
irir

· p
(n′′)
iri > 0

with 1 ≤ i1, . . . , ir ≤ r, n = n′ + n1 + . . . + nr + n′′ verifying n′ + n′′ ≤ r and
n1, . . . , nr ≤ r.

Finally, let us notice that substituting p
(n)
ii , with n > k, by a suitable sequence

of p
(m)
ii , with m ≤ k, the g.c.d. is the same. ¤

Lemma 1. Let A = {a1, · · · , ar} be a set of natural numbers. Let us suppose g.c.d.
{a1, · · · , ar} = 1. Let us denote by A+ the set of all positive linear combinations

λ1a1 + · · · , λrar, with λi ∈ Z+, 1 ≤ i ≤ r.

Then, there exists a natural number N such that n ∈ A+ for all n ≥ N .

Proof. See, e.g., the appendix of [1] ¤

Next, we characterize the aperiodicity of a recurrent class of a finite Markov
chain through the existence of a state sj reachable from each state si.
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Theorem 2. Let {Xt | t ∈ N} be a Markov chain with state space S = {s1, . . . , sk}
and transition matrix P = (pij).

(1) If {Xt | t ∈ N} is aperiodic, then there exists a natural number N such that

p
(n)
ii > 0, for all i (1 ≤ i ≤ k) and all n ≥ N .

(2) If {Xt | t ∈ N} is irreducible and aperiodic, then there exists a natural number

M such that p
(n)
ij > 0, for all i, j (1 ≤ i, j ≤ k) and all n ≥ M .

Proof. See, e.g., Chapter 4 from [3] ¤

Theorem 3. Let A = {s1, . . . , sr} be a recurrent class of a finite Markov chain.
The following are equivalent:

(1)Class A is aperiodic.

(2)There exists a state sj ∈ A and a natural number m0 ∈ N such that p
(m0)
ij > 0

for all state si ∈ A.

Proof. Let us suppose that class A is aperiodic. Then all states in A have the
same period d = 1. From Theorem 2 there exists a natural number N such that

p
(n)
ii > 0, for all i (1 ≤ i ≤ r) and all n ≥ N . Given j (1 ≤ j ≤ r), we define

ni(j) = min{n | p
(n)
ij > 0}, for each si ∈ A, n(j) = max{n1(j), . . . , nr(j)}, and

m0 = N + n(j). Let us see that p
(m0)
ij > 0, for each i (1 ≤ i ≤ r). We have

p
(m0)
ij ≥ p

(ni(j))
ij p

(m0−ni(j))
jj > 0 because of p

(ni(j))
ij > 0 by definition of ni(j), and

p
(m0−ni(j))
jj > 0 by Theorem 2.

Conversely, let us suppose that there exists m0 ≥ 1 and a state sj ∈ A such

that ∀ si ∈ A we have p
(m0)
ij > 0. In particular, p

(m0)
jj > 0 so m0 is a recurrence

time. On the one hand, if d is the period of the class, then m0 is a multiple of d. On

the other hand, if si ∈ A is a state such that pji > 0, then 0 < p
(m0)
ij pji ≤ p

(m0+1)
ii ,

so m0 + 1 is a multiple of d. Hence, d = 1. ¤

3 A P System Associated with an Irreducible Markov Chain

The goal of this paper is to study the aperiodicity of an irreducible Markov chain
with state space S = {s1, . . . , sk}, k ≥ 2, by using P systems. In the affirmative
case, the answer of the system is Y ES, on the contrary, the system sends an object
encoding the period of the class to the environment.

3.1 The Design of the P System

Let Pk = (pij)1≤i,j≤k be a Boolean matrix associated with a class with a finite
and homogeneous Markov chain of order k such that pij = 1 if the transition from
si to sj is possible, and pij = 0 otherwise; that is, Pk is the adjacency matrix of
the directed graph associated with the recurrent class.
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The solution presented in this paper is a semi–uniform one in the following
sense: we give a family Π = {Π(Pk) | k ∈ N}, associating with Pk a P system
with external output, such that:

• There exists a deterministic Turing machine working in polynomial time which
constructs the system Π(Pk) from Pk.

• The output of the P system Π(Pk) provides the classification of the recurrent
class of the Markov chain as well as the period of the states.

We associate with the matrix Pk the P system of degree 4 with external output,

Π(Pk) = (Γ (Pk), µ(Pk),M1,M2,M3,M4, R)

defined as follows:

• Working alphabet:

Γ (Pk) = {sij , tij , τij | 1 ≤ i, j ≤ k} ∪ {sijr | 1 ≤ i, j, r ≤ k} ∪
{Tr | 0 ≤ r ≤ k} ∪ {βl | 0 ≤ l ≤ k − 1} ∪ {bi | 1 ≤ i ≤ k} ∪
{pr | 1 ≤ r ≤ k} ∪ {ci, di | 0 ≤ i ≤ α} ∪ {yes, Y ES, σ, }

where α = 3k + ⌈k
2 ⌉.

In the working alphabet the objects:
– sii represents (at the initial configuration) the state si of the chain.
– tij and τij represent the elements pij of the Boolean matrix associated with

the transition matrix of the Markov chain.
– sijr represents the existence of a path of length r from the state si to state

sj .
– Tr and pr represent the existence of a recurrence time equal to r in different

configurations.
– τij represents that the state sj is reachable from state si.

• Membrane structure: µ(Pk) = [ [ [ [ ]1 ]2 ]3]4.
• Initial multisets:

M1 = {t
pij

ij | 1 ≤ i, j ≤ k} ∪ {β0}
M2 = {sii | 1 ≤ i ≤ k}
M3 = {bi | 1 ≤ i ≤ k} ∪ {d0}
M4 = ∅

• The set R of evolution rules consists of the following rules:

r1(ij) ≡ [tij → τijt
k
ij ]1, 1 ≤ i, j ≤ k

r2(i) ≡ [βi → βi+1]1, 0 ≤ i ≤ k − 2

r3 ≡ [βk−1]1 → ck
0

r4(rij) ≡ [crsijτ
pj1

j1 . . . τ
pjk

jk ]2 → [s
pj1

i1 . . . s
pjk

ik c
γj

r+1]2s
pj1

i1r+1 . . . s
pjk

ikr+1T
pji

r+1,

1 ≤ i, j ≤ k, 0 ≤ r ≤ α − 1, γj =
∑k

l=1 pjl
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r5 ≡ [σ]2 → σ
r6(jr) ≡ [s1jr . . . skjr]3 → [σ]2 yes, 1 ≤ j ≤ k, 1 ≤ r ≤ α

r7(r) ≡ [Trbr → pr]3, 1 ≤ r ≤ k

r8(il) ≡ [pipi+l → pipl]3, 1 ≤ i ≤ k, 1 ≤ l ≤ k − i

r9(i) ≡ [p2
i → pi]3, 1 ≤ i ≤ k

r10(i) ≡ [di → di+1]3, 0 ≤ i ≤ α − 1

r11(r) ≡ [dαpr]3 → pr[ ]3, 2 ≤ r ≤ k

r12 ≡ [dαp1]3 → yes[ ]3

r13 ≡ [yes]4 → Y ES[ ]4

r14(r) ≡ [pr]4 → pr[ ]4, 1 ≤ r ≤ k

3.2 An Overview of Computations

Initially, membrane 1 contains objects tij that codify the elements pij of the
Boolean matrix associated with the transition matrix of the Markov chain, to-
gether with the counter β0. This counter allows us to dissolve membrane 1 at a
certain instant. Membrane 2 contains initially objects sii that codify the states si

of the chain. Membrane 3 contains objects bi that will be used in order to avoid
that repeated recurrence times smaller than or equal to k appear. The counter d
in membrane 2 will be used to trigger the answer at the suitable instant.

The design of the P system Π(Pk) implements a process that is structured by
stages. The first one consists of k steps which allow the production of sufficiently
many new copies τij of objects tij . This is done by applying rules of type r1 and
r2 in membrane 1 at k − 1 first steps and applying at step k rule r3 that dissolves
membrane 1.

At the second stage, all paths between states with length at most k, as well
as recurrence times smaller than or equal to k, are generated. This stage starts
at step k + 1 and it spends at most k steps. First, rules of type r4 are applied
producing objects sijr in membrane 3 that codify the existence of a path with
length r from state si to state sj , as well as the objects Tr codifying the existence
of a recurrence time equal to r. Simultaneously, it is checked if there exists a state

sj and a natural number m0 such that p
(m0)
ij > 0, for all states si. In that case, an

object σ is produced in membrane 2 and the system expels an object Y ES to the
environment.

The third stage is only applied if an object Y ES has not been expelled to
the environment. At this stage, the period of the class is computed and it takes
k + ⌈k

2 ⌉ steps. By applying rules of type r7, objects pr encoding recurrence times
smaller than or equal to k, are obtained. Such recurrence times are different from
each other. By applying rules of types r8 and r9, the greatest common divisor of
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these times is computed. If the period of the class is equal to 1, then the system
sends an object Y ES to the environment, otherwise, the system expels an object
pn that encodes the period of the class to the environment.

4 Formal Verification

Given a computation C of the P system Π(Pk), for each m ∈ N we denote by
Cm the configuration of the system obtained after the execution of m steps. For
each label l ∈ {1, 2, 3}, we denote by Cm(l) the multiset of objects contained in
membrane l in the configuration Cm. Besides, we denote by Cm(env) the content
of the environment of the system in the configuration Cm.

Proposition 1. (First stage) We have the following:

(1) For each m, 1 ≤ m ≤ k − 1, we denote ψm = 1 + k + k2 + . . . + km =
(km+1 − 1)/(k − 1). Then

Cm(1) = {βm t
km·pij

ij τ
ψm−1·pij

ij }.

(2) Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij , t
(kk)·pij

ij | 1 ≤ i, j ≤ k}

Proof. (1) By induction on m.
Let us see the result for m = 1. First, we notice that rule r2(0) is applicable to
configuration C0, so β1 ∈ C1(1). Rule r1(ij) is applicable to configuration C0 if

and only if pij = 1. Hence, C1(1) = {β1 t
k·pij

ij τ
pij

ij }.

Let m be such that 1 ≤ m < k − 1 and Cm(1) = {βm t
km·pij

ij τ
ψm−1·pij

ij }. Then,
rule r2(m) is applicable to configuration Cm, so βm+1 ∈ Cm+1(1). Rule r1(ij)
is applicable to configuration Cm if and only if pij = 1. Hence, Cm+1(1) =

{βm+1 t
km·k·pij

ij τ
(ψm−1+km)·pij

ij }.

(2) From (1), we have Ck−1(1) = {βk−1 t
kk−1·pij

ij τ
ψk−2·pij

ij }. Next, rule r1(ij) pro-
duces k objects tij and an object τij for each object tij ∈ Ck−1(1). Moreover,
rule r3 produces k copies of c0 dissolving membrane 1. ¤

Remark: Let us notice that condition τij ∈ Cr(1), 1 ≤ r ≤ k − 1, means that state
sj is reachable from state si.

Lemma 2. For each i, j, r (1 ≤ i, j, r ≤ k) we have the following:

• The sum of the multiplicities of objects s1j . . . skj in Ck+r(2) is, at most, kr.
• There exists, at most, kr+1 objects cr in Ck+r(2).

• τ
(ψk−1−ψr−1)·pij

ij ∈ Ck+r(2).
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Proof. By induction on r.
Let us suppose that r = 1, Let i, j be such that 1 ≤ i, j ≤ k. From (2)

in Proposition 1 we have Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij } ⊆ Ck(2). Then, rules
r4(0, 1, 1), . . . , r4(0, k, k) must be applied.

If pij = 1, then an object sij (resp. an object τij) is produced (resp. is con-
sumed) by the application of rule r4(0, i, i) (besides, these objects can only be
spent/produced by the application of that rules). Hence, the sum of multiplicities
of objects s1j , . . . , skj will be p1j + . . . + pkj ≤ k, there exists at most k2 objects

c1 in Ck+1(2), and τ
(ψk−1−1)
ij ∈ Ck+1(2).

Let r ≥ 1, r < k, and let us suppose that the result holds for r. Let i, j be
such that 1 ≤ i, j ≤ k. By the induction hypothesis the sum of the multiplicities
of objects s1i, . . . , ski in Ck+r(2) is, at most, kr, there exists, at most, kr+1 objects

cr in Ck+r(2), and τ
(ψk−1−ψr−1)·pij

ij ∈ Ck+r(2). For each i (1 ≤ i ≤ k) the rules
r4(r1i), . . . , r4(rki) will be applied to configuration Ck+r(2) at most kr times, so
at most kr objects τij will be spent and kr ·k objects cr+1 will be produced. Then,

there exists at most kr+2 objects cr+1 in Ck+r+1(2), and τ
(ψk−1−ψr−1−kr)·pij

ij ∈
Ck+r+1(2).

Moreover, each object siq (1 ≤ q ≤ k) produces, at most, an object sij in
Ck+r+1(2). Hence, the sum of multiplicities of s1j , . . . , skj in Ck+r+1(2) will be, at
most, kr + . . . + kr = k · kr = kr+1. ¤

Proposition 2. (Second stage) For each i, j, r (1 ≤ i, j, r ≤ k) we have:

(1)Objects sij and cr belong to Ck+r(2) if and only if there exists a trajectory from
state si to state sj with a length r.

(2)A state s of the Markov chain has a recurrence time r if and only if Tr ∈
Ck+r(3).

Proof. (1) By induction on r.
Let us suppose that r = 1. If sij , c1 ∈ Ck+1(2), then rule r4(0, i, i) must be
applied by using objects c0, sii, τij ∈ Ck(2). Then, pij = 1, otherwise pij = 0 ⇒
τij /∈ Ck(2) (from Proposition 1).
Let i0, j0 (1 ≤ i0, j0 ≤ k) and let us suppose that there exists a trajectory
from state si0 to state sj0 with a length 1. Then, pi0j0 = 1. From Proposition

1 we deduce that Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij , t
(kk)·pij

ij | 1 ≤ i, j ≤ k}, so for
each i (1 ≤ i ≤ k) rule r4(0ii) is applied once to configuration Ck(2). Then,
{c1, si0j0} ⊆ Ck+1(2).
Let r ≥ 1, r < k, and let us suppose that the result holds for r. Let i, j (1 ≤
i, j ≤ k) be such that sij , cr+1 ∈ Ck+r+1(2). On the one hand, rule r4(ril) has
been applied, at least once, to configuration Ck+r by using objects cr, sil, τlj

(for some l, 1 ≤ l ≤ k). So, plj = 1. On the other hand, cr, sil ∈ Ck+r(2).
Then, by induction hypothesis we deduce that there exists a trajectory with
a length r from state si to state sl. Hence, there exists a trajectory with the
length r + 1 from state si to state sj .
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Let i0, j0 (1 ≤ i0, j0 ≤ k) and let us suppose that there exists a trajectory from
state si0 to state sj0 with a length r + 1. Then, there exists a trajectory from
state si0 to state sn0

with a length r (for some n0, 1 ≤ n0 ≤ k) such that
pn0j0 = 1. From the induction hypothesis we have si0n0

, cr ∈ Ck+r(2), and
from Lemma 2 we deduce that

{τ
(ψk−1−ψr−1)·pn0j

n0j | 1 ≤ j ≤ k} ⊆ Ck+r(2)

Then, by applying rule r4(r, i0, n0) once, we obtain {cr+1, s
pn0j

i0j : 1 ≤ j ≤
k} ⊆ Ck+r+1(2). Hence, si0j0 ∈ Ck+r+1(2) because of pn0j0 = 1.

(2) Let r (1 ≤ r ≤ k) be the recurrence time of a state si. From (1), we deduce
that sii, cr ∈ Ck+r(2). Therefore, rule r4(rij) has been applied to configuration
Ck+r−1, for some j, 1 ≤ j ≤ k, such that pji = 1, and some object cr−1 ∈
Ck+r−1(2). Then, T

pji
r = Tr ∈ Ck+r(3).

Let r (1 ≤ r ≤ k) such that Tr ∈ Ck+r(3). Then rule r4(r − 1, i, j) has been
applied to configuration Ck+r−1, for some objects sij , cr−1 such that pji = 1.
From (1) there exists a trajectory with a length r− 1 from state si to state sj .
Hence, there exists a trajectory with a length r from state si to state si. ¤

Theorem 4. (Output of the system)
Let S be an irreducible homogeneous Markov chain of order k. Let α = 3k + ⌈k

2 ⌉.
We have the following:

(1)The class S is aperiodic if and only if there exists r (1 ≤ r ≤ α − k) such that
configuration Ck+r+2 of Π(Pk) is a halting configuration and Ck+r+2(env) =
{Y ES}.

(2)The class S is periodic with period equal to n > 1 if and only if configuration
Cα+2 of Π(Pk) is a halting configuration and Cα+2(env) = {pn}.

Proof. Let S be an irreducible homogeneous Markov chain.

(1) Let us suppose that S is aperiodic. From Theorem 3, there exists a state sj0

and a natural number q > 0 such that ∀i (1 ≤ i ≤ k ⇒ p
(q)
ij0

> 0). Then, for
each i, 1 ≤ i ≤ k, there exists a trajectory with a length q from state si to
state sj0 .
- If q ≤ k, from (1) Proposition 2 we deduce that s1j0 , . . . , skj0 , cq ∈

Ck+q(2). These objects have been produced by the application of rules
r4(q−1, 1, j1), . . . , r4(q−1, k, jk) to configuration Ck+q−1, for some j1, . . . , jk

such that pj1,j0 = · · · = pjk,j0 = 1. So, s1j0q, . . . , skj0q ∈ Ck+q(3). So, by ap-
plying the rule r6(j0, q) to configuration Ck+q, we have {yes} ∈ Ck+q+1(4)
and σ ∈ Ck+q+1(2). At the next step, rules r5 and r13 are applied. Then,
Ck+q+2(env) = {Y ES}, membrane 2 is dissolved and the system halts.

- If q > k, then any rule of the type r6 is not applicable. From Proposition
2 we have encoded the recurrence times (smaller than or equal to k) in
membrane 3 by objects T . Then, some rule of the type r7 produces objects
p corresponding to objects T . Next, by applying suitable rules r8 and r9
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we compute the greatest common divisor of these recurrence times (from
Theorem 1 we know that g.c.d. is equal to the period of the class). From
the aperiodicity of the class S, we deduce that object p1 belongs to Cα(3).
Then, the rule r12 produces an object yes in Cα+1(4), and we obtain that
Cα+2(env) = {Y ES} by applying the rule r13. Then, the system halts.

Let us suppose that there exists r (1 ≤ r ≤ α − k) such that configuration
Ck+r+2 is a halting configuration and Ck+r+2(env) = {Y ES}. Then, rule r13

has been applied to configuration Ck+r+1(4), and yes ∈ Ck+r+1(4).

- If r ≤ k, then the rule r6(jr) (for some j, 1 ≤ j ≤ k) has been applied
to configuration Ck+r, with s1jr, . . . , skjr ∈ Ck+r(3), and s1j , . . . , skj , cr ∈
Ck+r(2). From (1) in Proposition 2, there exists a trajectory with a length
r from state si to state sj , for each i (1 ≤ i ≤ k). From Theorem 3 we
conclude that class S is aperiodic.

- If r > k, object yes has been sent to membrane 4 by applying the rule r12

using objects dα and p1. But object p1 has been produced by the iterated
application of rules r8 and r9. As these rules compute the greatest common
divisor of recurrence times, we deduce that the period of S is equal to 1.

(2) Now, let us suppose that the period of S is n > 1. From Theorem 3 we deduce
that for each j, 1 ≤ j ≤ k, and for each n′ > 0 there exists i, 1 ≤ i ≤ k,

such that p
(n′)
ij = 0. From (1) in Proposition 2 we have {sij , cn′} * Ck+n′(2).

So, sijn′ /∈ Ck+n′(3) and any rule of the type r6 is applicable to configuration
Ck+n′+1. Next, rules of type r7, r8, r9 compute the g.c.d. of the recurrence times.
Finally, object pn is sent to the environment after α+2 steps by applying rules
r11 and r14. Then, the system halts.
Let us suppose that configuration Cα+2 is a halting configuration and
Cα+2(env) = {pn}. Then, any rule of the type r6 will not be applied, so rules
r7, r8, and r9 will be applied computing the g.c.d of the recurrence times
(smaller than or equal to k) of states si. Hence, class S is periodic and its
period is equal to n. ¤

5 Results and Discussions

In [2] a P system was constructed which allows us to classify the states of a Markov
chain. Thus, that P system can be adapted to characterize the aperiodicity of such
a chain. Specifically, if Pk = (pij)1≤i,j≤k is the Boolean matrix associated with the
states of a recurrent class of a finite and homogeneous Markov chain of order k,
then we define the system

Π ′(Pk) = (Γ ′(Pk), µ′(Pk),M′
1,M

′
2,M

′
3,M

′
4, R

′, ρ′)

as follows:

• Working alphabet:
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Γ ′(Pk) = {dij , tij | 1 ≤ i, j ≤ k, } ∪ {cr | 0 ≤ r ≤ 2k + 2} ∪
{tijur | 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ k} ∪ {βi | 0 ≤ i ≤ α + 1} ∪
{sijr | 1 ≤ i, j ≤ k, 0 ≤ r ≤ k} ∪ {Ai1, Rij | 1 ≤ i, j ≤ k}

where γ = 2k + 4 + ⌈lg2k⌉ + (k−1)(k+2)
2 .

• Membrane structure: µ′(Pk) = [ [ [ [ ]4 ]3 ]2 ]1.
• Initial multisets:

M′
1 = ∅; M′

2 = {β0}; M
′
3 = {c0};

M′
4 = {sii0 t

pij(k−1)
ij | 1 ≤ i, j ≤ k}.

• The set R of evolution rules consists of the following rules:

– Rules in the skin membrane labeled by 1:
r1 = {dip → (Rip, out) | 1 ≤ i ≤ k, 1 < p ≤ k}
r2 = {di1 → (Ai1, out) | 1 ≤ i ≤ k}

– Rules in the membrane labeled by 2:
r3 = {βi → βi+1 | 0 ≤ i ≤ γ} ∪ {βγ+1 → λ}.
r4 = {d2

j → dj | 1 ≤ j ≤ k}
r5 = {djdj+l → djdl | 1 ≤ j ≤ k, 2 ≤ j + l ≤ k}

– Rules in the membrane labeled by 3:
r6 = {tijur → (tijsuj(r+1), in4) | pij = 1, u 6= j, 1 ≤ i, j, u ≤ k, 0 ≤ r <
3(k − 1)}
r7 = {tiju(3k−3) → (tij , in4) | pij = 1, u 6= j, 1 ≤ i, j, u ≤ k}
r8 = {tijjr → (tij , in4) dr+1 | pij = 1, 1 ≤ i, j ≤ k, 0 ≤ r < 3(k − 1)}
r9 = {tijj(3k−3) → (tij , in4) | pij = 1, 1 ≤ i, j ≤ k}
r10 = {cr → cr+1 | 0 ≤ r ≤ 6(k − 1) + 1} ∪ {c6(k−1)+2 → λ}

– Rules in the membrane labeled by 4:
r11 = {suirt

pi1
i1 . . . t

pik

ik → (tpi1
i1ur . . . t

pik

ikur, out) | 1 ≤ u, i ≤ k, 0 ≤ r ≤ 3(k − 1)}.

• The partial order relation ρ′ over R′ consists of the following relations on the
rules of R′:

– Priority relation in the skin membrane: ∅.
– Priority relation in the membrane labeled by 2: {r4 > r5}
– Priority relation in the membranes labeled by 3: ∅.
– Priority relation in membrane 4: ∅.

In order to study the efficiency of the P system Π(Pk) constructed in this
work, we will compare the results with those obtained by the P system Π ′(Pk)
described above. For that purpose, a comparative analysis of the computational
resources required in both P systems is given firstly. Secondly, an analysis of the
times of execution obtained on designed simulators for both P systems with some
case studies is presented.

5.1 Computational Resources Required

The resources required initially to construct the systems Π(Pk) and Π ′(Pk), and
the number of steps taken for the systems, are the following:
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Π(Pk) Π ′(Pk)

Size of the alphabet Θ(k3) Θ(k4)

Initial number of membranes 4 4

Sum of the sizes of initial multisets Θ(k2) Θ(k4)

Number of rules Θ(k3) Θ(k4)

Maximal length of a rule Θ(k) Θ(k)

Number of priority relations 0 Θ(k2)

Number of steps Θ(k) Θ(k)

In the previous table, let us notice that the amount of resources requested
by Π(Pk) is smaller than the ones requested by Π ′(Pk). Indeed, the size of the
alphabet and the number of rules pass from power 3 to power 4, and the system
Π(Pk) has no priority relation. The number of steps is of the same asymptotic
order.

5.2 Case Studies

We have designed a simulator for each system Π(Pk) and Π ′(Pk). These simulators
have been written in C++ language and they have been executed on a Pentium 4
computer with 512 Mb RAM and 3.20 GHz.

In both simulators objects tij have been represented by means of arrays of
dimension 2; objects sij have been represented by vectors of dimension 2 and
recurrent times have been represented by one-dimensional vectors.

The simulator of the system Π(Pk) generates the trajectories with a length at
most 3k+⌈k/2⌉ in a sequential way, keeping the times of recurrence smaller than or
equal to k. If assertion (2) in Theorem 3 is fulfilled, the simulator halts displaying
the time of execution and the aperiodicity of the Markov chain. Otherwise the
simulator computes the g.c.d. of the recurrence times obtained where all of them
are different.

Similarly, a simulator for the system Π ′(Pk) has been implemented. The main
difference with respect to the previously mentioned one is that it can keep more
than a copy of the times of recurrence. All trajectories of the Markov chain with a
length smaller than or equal to 3(k − 1) and their recurrence time are computed.
Then the g.c.d. of these times is obtained.

When the Markov chain is aperiodic, the P system Π(Pk) can finish before
all trajectories with a length 3k + ⌈k/2⌉ are computed. In case it is necessary to
calculate the period, bearing in mind that all recurrence times are different, system
Π(Pk) is faster than Π ′(Pk) in computing the g.c.d. of these times.

When the Markov chain is periodic the length of the trajectories computed
by Π(Pk) are longer than those computed by Π ′(Pk). Nonetheless, in order to
compute the period, recurrence times used in Π(Pk) are all different.

The simulators designed have been executed on eight recurrent Markov chains
with 100 states. Four of these Markov chains are periodic and the others are
aperiodic. Table 1 shows the values equal to 1 of the adjacency matrix of the graph
associated with the recurrent Markov chains. The execution times are described
in Table 2.
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Example

1 pi,i+1 = 1 1 ≤ i ≤ 99
p100,1 = 1

2 pi,i+1 = 1 1 ≤ i ≤ 99
pi,1 = 1 1 ≤ i ≤ 100

3 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1

4 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1
p1,1 = 1

5 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1
p2,2 = 1

6 p5j+i,5j+i+1 = 1 1 ≤ i ≤ 4 0 ≤ j ≤ 19
p5j,5j−4 = 1 1 ≤ j ≤ 20
p5j+1,5j+6 = 1 0 ≤ j ≤ 18
p96,1 = 1

7 pi,i+1 = 1 1 ≤ i ≤ 100
pi+1,i = 1 1 ≤ i ≤ 100
p1+3i,4+3i = 1 0 ≤ i ≤ 32

8 pi,i+1 = 1 1 ≤ i ≤ 100
pi+1,i = 1 1 ≤ i ≤ 100
p1+3i,4+3i = 1 0 ≤ i ≤ 32
p1,1 = 1

Table 1. Adjacency values of the examples

6 Conclusions

Markov chains have applications in different fields such as physics, economics,
biology, statistics, social sciences. . . In these applications it is important to know
whether the Markov chain associated with the process is convergent or not. When
the Markov chain is aperiodic, the transition matrix converges and the process
becomes stable. In other cases, the process does not reach an equilibrium.

In this work, a characterization of the aperiodicity of a Markov chain has been
given in terms of the existence of a state reachable from any other state. Based
on this property, a computational P system has been constructed that allows us
to know whether the Markov chain is aperiodic and calculate its period if not.
A formal verification of P system using the methodology based on the search of
invariant formulae has been presented.
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Example period Previous New

1 100 0 0

2 1 146 0

3 10 0 0

4 1 122 35

5 1 1 2

6 5 11 20

7 2 381 169

8 1 1101 104

Table 2. Observed run times

In [2], every finite and homogeneous Markov chain has associated a P system
that provides a classification of its recurrent classes. That P system can be adapted
to study the aperiodicity of a Markov chain and then its period can be calculated.
The solution presented in this work improves the solution derived from the P
system described in [2]. For that purpose, simulators have been constructed for
these P systems and the respective times of execution on eight examples have been
analyzed.

For the computational study of the aperiodicity of a Markov chain it would
be interesting to design new P systems that incorporate additional features such
as electrical charges, active membranes, etc. and that improve quantitatively the
amount of computational resources used.
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