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Summary. In this paper we consider insertion-deletion P systems with priority of dele-
tion over the insertion. We show that such systems with one symbol context-free insertion
and deletion rules are able to generate PsRE. If one-symbol one-sided context is added
to insertion or deletion rules but no priority is considered, then all recursively enumer-
able languages can be generated. The same result holds if a deletion of two symbols is
permitted. We also show that the priority relation is very important and in its absence
the corresponding class of P systems is strictly included in MAT .

1 Introduction

The operations of insertion and deletion are fundamental in formal language the-
ory, and generative mechanisms based on them were considered (with linguistic
motivation) for some time, see [14] and [6]. Related formal language investigations
can be found in several places; we mention only [8], [10], [16], [19]. In the last
years, the study of these operations has received a new motivation from molecular
computing, see [3], [9], [21], [23], [15].

In general form, an insertion operation means adding a substring to a given
string in a specified (left and right) context, while a deletion operation means
removing a substring of a given string from a specified (left and right) context.
A finite set of insertion-deletion rules, together with a set of axioms provide a
language generating device: starting from the set of initial strings and iterating
insertion-deletion operations as defined by the given rules we get a language. The
number of axioms, the length of the inserted or deleted strings, as well as the



10 A. Alhazov et al.

length of the contexts where these operations take place are natural descriptional
complexity measures in this framework. As expected, insertion and deletion op-
erations with context dependence are very powerful, leading to characterizations
of recursively enumerable languages. Most of the papers mentioned above contain
such results, in many cases improving the complexity of insertion-deletion systems
previously available in the literature.

Some combinations of parameters lead to systems which are not computa-
tionally complete [17], [11] or even decidable [24]. However, if these systems are
combined with the distributed computing framework of P systems [20], then their
computational power may strictly increase, see [12], [13].

In this paper we study P systems with insertion and deletion rules of one
symbol without context. We show that this family is strictly included in MAT ,
however some non-context-free languages may be generated. If Parikh vectors are
considered, then the corresponding family equals to PsMAT . When a priority of
deletion over insertion is introduced, PsRE can be characterized, but in terms
of language generation such systems cannot generate a lot of languages because
there is no control on the position of an inserted symbol. If one-sided contextual
insertion or deletion rules are used, then this can be controlled and all recursively
enumerable languages can be generated. The same result holds if a context-free
deletion of two symbols is allowed.

2 Definitions

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area – for
instance, [22] – for the unexplained details.

We denote by |w| the length of a word w and by |w|a the number of occurrences
of symbol a in w. For a word w ∈ V ∗ we denote by ∆(w) all words w′ having the
same number of letters as w, ∆(w) = {w′ |, |w′|a = |w|a for all a ∈ V } and we
denote by t⊥ the binary shuffle operation. By card(V ) we denote the cardinality
of the set V .

An InsDel system is a construct ID = (V, T, A, I,D), where V is an alphabet,
T ⊆ V , A is a finite language over V , and I,D are finite sets of triples of the form
(u, α, v), α 6= λ, where u and v are strings over V and λ denotes the empty string.
The elements of T are terminal symbols (in contrast, those of V − T are called
nonterminals), those of A are axioms, the triples in I are insertion rules, and those
from D are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the string
α can be inserted in between u and v, while a deletion rule (u, α, v) ∈ D indicates
that α can be removed from the context (u, v). As stated otherwise, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds to the
rewriting rule uαv → uv. We refer by =⇒ to the relation defined by an insertion
or deletion rule.

The language L(ID) generated by ID is defined as {w ∈ T ∗ | A 3 x =⇒∗ w}.
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The complexity of an InsDel system ID = (V, T,A, I,D) is described by the
vector (n,m, m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

We also denote by INSm,m′
n DELq,q′

p corresponding families of languages. Tradi-
tionally, in the literature, instead of pairs m/m′ and q/q′ the maximum of both
numbers is used. However, such a complexity measure is not accurate and it can-
not distinguish between universality and non-universality cases, see [24] and [11].
If some of the parameters n, m,m′, p, q, q′ is not specified, then we write symbol ∗
instead. For example, INS0,0

∗ DEL0,0
∗ denotes the family of languages generated

by context-free InsDel systems. InsDel systems of a “sufficiently large” size char-
acterize RE, the family of recursively enumerable languages.

Now we present a definition of insertion-deletion P systems. The insertion-
deletion tissue P systems are defined in an analogous manner.

An insertion-deletion P system is a construct

Π = (O, T, µ,M1, · · · ,Mn, R1, · · · , Rn), where
• O is a finite alphabet,
• T ⊆ O is the terminal alphabet,
• µ is the membrane (tree) structure of the system which has n membranes

(nodes) and it can be represented by a word over the alphabet of correctly
nested marked parentheses,

• Mi, for each 1 ≤ i ≤ n, is a finite language associated to the membrane i,
• Ri, for each 1 ≤ i ≤ n, is a set of insertion and deletion rules with target

indicators associated to region i, of the following forms: (u, x, v; tar)a, where
(u, x, v) is an insertion rule, and (u, x, v; tar)e, where (u, x, v) is a deletion rule,
and the target indicator tar is from the set {here, inj , out | 1 ≤ j ≤ n}.

An n-tuple (N1, · · · , Nn) of finite languages over O is called a configuration of Π.
The transition between the configurations consists in applying the insertion and
deletion rules in parallel to all possible strings, non-deterministically, and following
the target indications associated with the rules.

A sequence of transitions between configurations of a given insertion-deletion
P system Π starting from the initial configuration is called a computation with
respect to Π. We say that Π generates L(Π), the result of its computations. It
consists of all strings over T ever sent out of the system during its computations.

We denote by ELSPk(insm,m′
p , delq,q′

p ) the family of languages L(Π) generated
by insertion-deletion P systems with at most k ≥ 1 membranes and insertion and
deletion rules of size at most (n,m, m′; p, q, q′). We omit the letter E if T =
O. In this paper we also consider insertion-deletion P systems where deletion
rules have a priority over insertion rules; the corresponding class is denoted as
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(E)LSPk(insm,m′
p < delq,q′

p ). Letter ”t” is inserted before P to denote classes for
the tissue case, e.g., ELStPk(insm,m′

p , delq,q′
p ).

A register machine (introduced in [18], see also [4]) is a construct

M = (d,Q, q0, h, P ), where
• d is the number of registers,
• Q is a finite set of bijective labels of instructions of P ,
• q0 ∈ Q is the initial label,
• h ∈ Q is the halting label, and
• P is the set of instructions of the following forms:

1. p : (ADD(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“increment” -instruction). Add
1 to register k and go to one of the instructions with labels q, s.

2. p : (SUB(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“decrement” -instruction).
Subtract 1 from the positive value of register k and go to the instruction with
label q, otherwise (if it is zero) go to the instruction with label s.

3. h : HALT (the halt instruction). Stop the computation of the machine.

For generating languages over T , we use the model of a register machine with
output tape (introduced in [18], see also [1]), which also uses a tape operation:

4. p : (WRITE(A), q), with p, q ∈ Q, A ∈ T .

The configuration of a register machine is (q, n1, · · · , nd), where q ∈ Q, ni ≥ 0,
1 ≤ i ≤ d. A register machine generates an m-dimensional vector as follows:
let the first m registers be output registers, and the computation starts from
(q0, 0, · · · , 0); if the configuration (h, n1, · · · , nd) is reached, then the resulting
vector is (n1, · · · , nm). Without restricting generality we assume (nm+1, · · · , nd)
= (0, · · · , 0). The set of all vectors generated in this way by M is denoted by
Ps(M). It is known (e.g., see [18], [25]) that register machines generate PsRE. If
the WRITE instruction is used, then RE can be generated.

In the case when a register machine cannot check whether a register is empty
we say that it is partially blind; the second type of instructions is then written as
p : (SUB(k), q) and the transition is undefined if register k is zero.

The word “partially” stands for an implicit test for zero at the end of a (suc-
cessful) computation: counters m + 1, · · · , d should be empty. It is known, [4],
that partially blind register machines generate exactly PsMAT (Parikh sets of
languages of matrix grammars without appearance checking).

3 Minimal Context-free Insertion-Deletion P Systems

It has been shown, [24], that systems in INS0,0
1 DEL0,0

∗ only generate strings
obtained by inserting any number of specific symbols anywhere in words of a finite
language; this is included in the regular languages family; strictly as, e.g., for
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L = {a∗b∗} the system has no control on the place of insertion or deletion in the
string and the initial language is finite. Therefore, INS0,0

1 DEL0,0
1 ⊂ REG.

When a membrane structure is added to minimal insertion-deletion systems
without context, their computational power is increased.

Theorem 1. PsStP∗(ins0,0
1 , del0,0

1 ) = PsMAT .

Proof. It is not difficult to see that dropping the requirement of the uniqueness of
the instructions with the same label, the power of partially blind register machines
does not change, see, e.g., [4]. We use this fact for the proof.

The inclusion PsStP∗(ins0,0
1 , del0,0

1 ) ⊆ PsMAT follows from the simulation
of minimal context-free insertion-deletion P systems by partially blind regis-
ter machines, which are known to characterize PsMAT [4]. Indeed, any rule
(λ, a, λ; q)a ∈ Rp is simulated by instructions p : (ADD(a), q). Similarly, rule
(λ, a, λ; q)e ∈ Rp is simulated by instructions p : (SUB(a), q).

The output region i0 is associated to the final state, while the halting is rep-
resented by absence of the corresponding symbols (final zero-test) as follows. We
assume that Ri0 has no insertion rules (∅ can be generated by a trivial partially
blind register machine), and the output registers correspond to those symbols that
cannot be deleted by rules from Ri0 .

The converse inclusion follows from the simulation of partially blind register
machines by P systems. Indeed, with every instruction p of the register machine we
associate a cell. Instruction p : (ADD(Ak), q) is simulated by rule (λ,Ak, λ; q)a ∈
Rp, and instruction p : (SUB(Ak), q) by (λ,Ak, λ; q)e ∈ Rp. Final zero-tests: rules
(λ,Ak, λ; #)e ∈ Rh, k ≥ m, should be inapplicable (R# = ∅).
As the membrane structure is a tree, one-way inclusion follows.

Corollary 1. PsSP∗(ins0,0
1 , del0,0

1 ) ⊆ PsMAT .

In terms of the generated language the above systems are not too powerful, even
with priorities. Like in the case of insertion-deletion systems there is no control
on the position of insertion. Hence, the language L = {a∗b∗} cannot be generated,
for insertion strings of any size. Hence we obtain:

Theorem 2. REG\LStP∗(ins0,0
n < del0,0

1 ) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be generated by such P
systems (even without priorities and deletion).

Theorem 3. LStP∗(ins0,0
1 , del0,0

0 ) \ CF 6= ∅.
Proof. It is easy to see that the language {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c} is
generated by such a system with 3 nodes, inserting consecutively a, b and c.

For the tree case the language {w ∈ {a, b}∗ | |w|a = |w|b} can be generated in a
similar manner.

We show a more general inclusion:
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Theorem 4. ELStP∗(ins0,0
n , del0,0

1 ) ⊂ MAT , for any n > 0.

Proof. As in [11] we can suppose that there are no deletions of terminal symbols.
We also suppose that there is only one initial string in the system, because there is
no interaction between different evolving strings and the result matches the union
of results for the systems with only one string. Consider a tissue P system Π with
alphabet O, terminal symbols T , the set H of unique cell labels and the initial
string w in cell labeled p0. Such a system can be simulated by the following matrix
grammar G = (O ∪H,T, S, P ).

For insertion instruction (λ, a1 · · · an, λ; q)a in cell p, the matrix (p → q,D →
Da1D · · ·DanD) ∈ P . For any deletion instruction (λ,A, λ; q)e in cell p, the matrix
(p → q, A → λ) ∈ P . Three additional matrices (h → λ), (D → λ) and (S →
q0Da1D · · ·DamD) (w = a1 · · · am) shall be also added to P .

The above construction correctly simulates the system Π. Indeed, symbols
D represent placeholders for all possible insertions. The first rule in the matrix
permits simulates the navigation between cells.

Nevertheless, minimal context-free insertion-deletion systems with priorities do
generate PsRE. This is especially clear for the tissue P systems: jumping to an
instruction corresponds to sending a string to the associated region, and the en-
tire construction is a composition of graphs shown in Figure 1. The decrement
instruction works correctly because of priority of deletion over insertion.

/.-,()*+
p

(λ,Ak,λ;q)a //

(λ,Ak,λ;r)a

²²

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

(λ,Ak,λ;q)e //

(λ,N,λ;p′)a

²²

/.-,()*+
q

/.-,()*+
p′

(λ,N,λ;r)e ///.-,()*+
r

Fig. 1. Simulating p : (ADD(k), q, r) (left) and p : (SUB(k), q, r) (right).

We now give a more sophisticated proof for the tree-like membrane structure.

Theorem 5. PsSP∗(ins0,0
1 < del0,0

1 ) = PsRE.

Proof. The proof is done by showing that for any register machine M = (n, Q, q0,
h, P ) there is a P system Π ∈ PsSP∗(ins0,0

1 < del0,0
1 ) with Ps(M) = Ps(Π), and

the result follows from the existence of register machines generating PsRE.
Let Q+ (Q−) be the sets of labels of increment (conditional decrement, respec-

tively) instructions of a register machine, and let Q = Q+ ∪ Q− ∪ {h} represent
all labels. Consider a P system with alphabet Q ∪ {Ai | 1 ≤ i ≤ d} ∪ {Y } and the
following structure (illustrated in Figure 2)

µ = [ [ [
∏

p∈Q+

µ〈p+〉
∏

p∈Q−

µ〈p−〉 ]
3

]
2

]
1
, where

µ〈p+〉 = [ [ [ ]p+
3

]p+
2

]p+
1

, p− increment,

µ〈p−〉 = [ [ [ ]
p−3

]
p−2

[ [ ]
p0
3

]
p0
2

]
p−1

, p− conditional decrement.
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/.-,()*+
1

/.-,()*+
2

LLLLLL

for every p ∈ Q+
/.-,()*+

3
iiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+
1

/.-,()*+
p−1

UUUUUUUUUUUU

/.-,()*+
p+
2

/.-,()*+
p−2

/.-,()*+
p0
2

/.-,()*+
p+
3

/.-,()*+
p−3

/.-,()*+
p0
3

_ _ _ _Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â

_ _ _ _

_ _ _ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â

_ _ _ _ _ _ _ _ _ _

Fig. 2. Membrane structure for Theorem 5. The structures in the dashed rectangles are
repeated for every instruction of the register machine.

Initially there is a single string q0 in membrane 3. The rules are the following.

R1 = { 1 :(λ, Y, λ; out)e},
R2 = { 2.1 :(λ, Y, λ; out)a, 2.2 :(λ, Y, λ; in4)e},
R3 = { 3.1 :(λ, p, λ; in

p+
1
)e | p ∈ Q+}∪ {3.2 :(λ, p, λ; in

p−1
)e | p ∈ Q−}

∪ { 3.3 :(λ, Y, λ; here)e, 3.4 :(λ, h, λ; out)e},
For any instruction p : (ADD(k), q, s), Rp+

3
= ∅ and

R
p+
1

= { a.1.1 :(λ, Ak, λ; in
p+
2
)a, a.1.2 :(λ, Y, λ; out)a},

R
p+
2

= { a.2.1 :(λ, q, λ; out)a, a.2.1′ :(λ, s, λ; out)a,

a.2.2 :(λ, q, λ; in
p+
3
)e, a.2.2′ :(λ, s, λ; in

p+
3
)e},

For any instruction p : (SUB(k), q, s), Rp−3
= Rp0

3
= ∅ and

R
p−1

= { e.1.1 :(λ, Ak, λ; in
p−2

)e, e.1.2 :(λ, Y, λ; in
p−2

)a, e.1.3 :(λ, Y, λ; out)e},
R

p−2
= { e.2.1 :(λ, q, λ; out)a, e.2.2 :(λ, q, λ; in

p−3
)e,

e.2.3 :(λ, s, λ; in
p−3

)e, e.2.4 :(λ, Y, λ; here)a},
Rp0

2
= { e.3.1 :(λ, s, λ; out)a, e.3.2 :(λ, q, λ; inp0

3
)e, e.3.3 :(λ, s, λ; inp0

3
)e}.

Configurations (p, x1, · · · , xn) of M are encoded by strings ∆(pAx1
1 · · ·Axn

n Y t),
t ≥ 0, in membrane 3. We say that such strings have a simulating form. Clearly,
in the initial configuration the string is already in the simulating form.

To prove that system Π correctly simulates M we prove the following claims:

1. For any transition (p, x1, · · · , xn) =⇒ (q, x′1, · · · , x′n) in M there exists a com-
putation in Π from the configuration containing ∆(pAx1

1 · · ·Axn
n Y t) in mem-

brane 3 to the configuration containing ∆(qAx′1
1 · · ·Ax′n

n Y t′), t′ ≥ 0, in mem-
brane 3 such that during this computation membrane 3 is empty in all inter-
mediate steps and, moreover, this computation is unique.
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2. For any successful computation in Π (yielding a non-empty result), mem-
brane 3 contains only strings of the above form.

3. The result (x1, · · · , xn) in Π is obtained if and only if a string of form
∆(hAx1

1 · · ·Axn
n ) appears in membrane 3.

Now we prove each claim from above. Consider a string ∆(pAx1
1 · · ·Axn

n Y t),
t ≥ 0, in membrane 3 of Π. Take an instruction p : (ADD(k), q, s) ∈ P .
The only applicable rule in Π is from group 3.1 (in the future we simply say
rule 3.1) yielding the string ∆(Ax1

1 · · ·Axn
n Y t) in membrane p+

1 . After that rule
a.1.1 is applied yielding string ∆(Ax1

1 · · ·Axk+1
k · · ·Axn

n Y t) in membrane p+
2 . After

that one of rules a.2.1 or a.2.1′ is applied; then rule a.1.2 yields one of strings
∆(zAx1

1 · · ·Axk+1
k · · ·Axn

n Y t+1), z ∈ {q, s}, which is in the simulating form.
Now suppose that there is an instruction p : (SUB(k), q, s) ∈ P . Then the

only applicable rule in Π is 3.2 which yields the string ∆(Ax1
1 · · ·Axn

n Y t) in mem-
brane p−1 . Now if xk > 0, then, due to the priority, rule e.1.1 will be applied
followed by application of rules e.2.4, e.2.1 and e.1.3 which yields the string
∆(qAx1

1 · · ·Axk−1
k · · ·Axn

n Y t′) that is in the simulating form. If xk = 0, then rule
e.1.2 will be applied (provided that all symbols Y were previously deleted by rule
3.3), followed by rules e.3.1 and e.1.3 which leads to the string ∆(sAx1

1 · · ·Axn
n )

that is in the simulating form.
To show that membrane 3 is empty during the intermediate steps, we prove

the following invariant:

Invariant 1 During a successful computation, any visited membrane p+
1 or p−1 is

visited an even number of times as follows: first a string coming from membrane 3
is sent to an inner membrane (p+

2 , p−2 or p0
2) and after that a string coming from

an inner membrane is sent to membrane 3.

Indeed, since there is only one string in the initial configuration, it is enough to
follow only its evolution. Hence, a string may visit the node p+

1 or p−1 only if in the
previous step symbol p was deleted by one of rules 3.1 or 3.2. If one of rules a.1.2 or
e.1.3 is applied, then membrane 3 will contain a string of form ∆(Ax1

1 · · ·Axn
n Y t)

which cannot evolve anymore because all rules in membrane 3 imply the presence
of a symbol from the set Q. Hence, the string is sent to an inner membrane. In
the next step the string will return from the inner membrane by one of rules
a.2.1, a.2.1′, e.2.1 or e.3.1 inserting a symbol from Q. If the string enters an inner
membrane again, then it will be sent to a trap membrane (p+

3 , p−3 or p0
3) by rules

deleting symbols from Q. Hence the only possibility is to go to membrane 3 (a
string that visited membrane p−2 will additionally use rule e.2.4).

For the second claim, it suffices to observe that the invariant above ensures
that in membrane 3 only one symbol from Q can be present in the string.

The third claim holds since a string may move to membrane 2 if and only if
the final label h of M appears in membrane 3. Then, the string is checked for
the absence of symbols Y by rule 2.2 (note that symbols Y can be erased in
membrane 3 by rule 3.3) and sent to the environment by rules 2.1 and 1.
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By induction on the number of computational steps we obtain that Π simulates
any computation in M . Claim 1 and 2 imply it is not possible to generate other
strings and Claim 3 implies that the same result is obtained.

We remark that an empty string may be obtained during the proof. This string
can still evolve using insertion rules. If we would like to forbid such evolutions,
it suffices to use a new symbol, e.g., X, in the initial configuration, add new
surrounding membrane and a rule that deletes X from it.

4 Small Contextual Insertion-Deletion P Systems

Although Theorem 5 shows that the systems from the previous section are quite
powerful, they cannot generate RE without control on the place where a symbol
is inserted. Once we allow a context in insertion and deletion rules, they can.

Theorem 6. LSP (ins0,1
1 < del0,0

1 ) = RE.

Proof. We simulate a register machine with WRITE instructions. We implement
this instruction as an ADD instruction, except the added symbol has to be inserted
to the left of a special marker, deleted at the end, as follows:

• Replace any writing instruction p : (WRITE(A), q, s), A ∈ T , of the machine
by instructions p : (ADD(A), q, s), considering output symbols A like new
dummy registers. Construct the system Π as in Theorem 5.

• Change the initial string in membrane 3 to q0M ;
• Replace rules a.1.1 ((λ,A, λ; inp+

2
)a ∈ Rp+

1
) by (λ,A,M ; inp+

2
)a for A ∈ T ;

• Surround membrane 1 by a new skin membrane s and add to it the following
rule Rs = {(λ,M, λ; out)e}.

It is easy to see that the above construction permits to correctly simulate the
register machine with writing instructions.

Taking M in the left context yields the mirror language. Since RE is closed with
respect to the mirror operation we get the following corollary:

Corollary 2. LSP (ins1,0
1 < del0,0

1 ) = RE.

A similar result holds if contextual deleting operation is allowed.

Theorem 7. LSP∗(ins0,0
1 < del1,0

1 ) = RE.

Proof. As in Theorem 6, we use the construction from Theorem 5. However, an
additional membrane is needed to simulate the writing instructions.

We modify the construction of Theorem 5 as follows. Let Qs be the set of labels
of WRITE instructions of a register machine. We add the following substructures
µ〈ps〉 inside membrane 3 (shown in Figure 3):
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µ = [ [ [
∏

p∈Q+

µ〈p+〉
∏

p∈Q−

µ〈p−〉
∏

p∈Qs

µ〈ps〉 ]
3

]
2

]
1
, where

µ〈p+〉, µ〈p−〉 are defined as in Theorem 5 and,

µ〈ps〉 = [ [ [ [ [ ]ps
7

]ps
4
[ ]ps

6
]ps

3
[ ]ps

5
]ps

2
]ps

1
.

/.-,()*+
3

VVVVVVVVVVVVV

/.-,()*+
ps
1

/.-,()*+
ps
2

qqqqqq

/.-,()*+
p−5

/.-,()*+
ps
3

qqqqqq

/.-,()*+
p−6

/.-,()*+
ps
4

qqqqqq

/.-,()*+
ps
7

_ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

_ _ _ _ _

structure
µ from

Theorem 5

Fig. 3. Membrane structure for Theorem 7.

As in Theorem 5 the initial configuration contains a single string q0 in region 3.
The system contains sets of rules R1, R2, Rp+

1
, Rp+

2
, Rp+

3
, Rp−1

, Rp−2
, Rp−3

, Rp0
2
, Rp0

3

defined as in Theorem 5. There are also following additional rules for instructions
p : (WRITE(A), q) (the ruleset R′3 shall be added to R3).

R′3 = { 3.5 :(λ, p, λ; inps
1
)e | p ∈ Qs},

Rps
1

= { w.1.1 :(λ, M, λ; inps
2
)a, w.1.2 :(λ, M, λ; out)e},

Rps
2

= { w.2.1 :(λ, M ′, λ; inps
3
)a, w.2.2 :(λ, M ′, λ; out)e}

∪ { w.2.3 :(M, x, λ; inps
5
)e | x ∈ O},

Rps
3

= { w.3.1 :(λ, A, λ; inps
4
)a, w.3.2 :(λ, Y, λ; out)a}

∪ { w.3.3 :(x, M, λ; inps
6
)e | x ∈ O \ {M ′, q}},

Rps
4

= { w.4.1 :(λ, q, λ; out)a, w.4.2 :(M ′, M, λ; inps
7
)e},

Rps
5

= ∅, Rps
6

= ∅, Rps
7

= ∅.

We simulate the WRITE instruction as follows. Suppose the configuration of
register machine is pAx1

1 · · ·Axd

d and the word a1 · · · an is written on the output
tape. The corresponding simulating string in Π will be of form p∆w, where w =
∆(Ax1

1 · · ·Axd

d Y t) t⊥ a1 · · · an, t ≥ 0. After the deletion of the state symbol p, a
marker M is inserted in the string by rule w.1.1. If M is not inserted at the right
end of the string, in the next step rule w.2.3 is applicable and the string enters the
trap membrane ps

5. In the next step symbol M ′ is inserted in the string. If it is not
inserted before M , then the string is sent to membrane ps

6 by rule w.3.3. Hence, at
this moment the contents of membrane ps

3 is wM ′M . If rule w.3.2 is used, then the
string Y t⊥ w reaches membrane 3 and no rule is applicable anymore. Otherwise,
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symbol A is inserted by rule w.3.1. If it is not between M ′ and M , then rule w.4.2
is applicable and the string enters membrane ps

7. After that q is inserted between
A and M , otherwise the trapping rule w.3.3 is applicable. At this moment, the
configuration of the system consists of the string wtM

′AqM in membrane ps
3. Now

if the rule w.3.1 is used, then the string is sent to the trap membrane by rule
w.4.1. Otherwise, rule w.3.2 should be used followed by the application of rules
w.2.2 and w.1.2, leading to string Y t⊥ wAq in membrane 3. Hence, the symbol A
is appended at the end of the string. At the end of the computation, all symbols
from O − T are deleted and a word generated by M is obtained.

Since RE is closed with respect to the mirror operation we obtain:

Corollary 3. LSP (ins0,0
1 < del0,1

1 ) = RE.

We remark that the contextual deletion was used only to check for erroneous
evolutions. Therefore we can replace it by a context-free deletion of two symbols.

Theorem 8. LSP∗(ins0,0
1 < del0,0

2 ) = RE.

Proof. We modify the proof of Theorem 7 as follows.

• Replace rules w.2.3 ((M, x, λ; inps
5
)e ∈ Rps

2
) by rules (λ,Mx, λ; inps

5
)e,

• Replace rules w.3.3 ((M, x, λ; inps
6
)e ∈ Rps

3
) by rules (λ, xM, λ; inps

6
)e,

• Replace rules w.4.2 ((M ′,M, λ; inps
7
)e ∈ Rps

4
) by rules (λ,M ′M, λ; inps

7
)e.

The role of the new rules is the same as the role of the rules that were replaced.
More exactly, the system checks whether two certain symbols are consecutive and
if so, the string is blocked in a non-output region.

We mention that the counterpart of Theorem 8 obtained by interchanging para-
meters insertion and deletion rules is not true, see Theorem 2.

5 Conclusions

We showed several results concerning P systems with insertion and deletion rules
of small size. Surprisingly, systems with context-free rules inserting and deleting
only one symbol are quite powerful and generate PsRE if the priority of deletion
over insertion is used. From the language generation viewpoint such systems are
not too powerful and no language specifying the order of symbols can be generated.
To be able to generate more complicated languages we considered systems with
one-symbol one-sided insertion or deletion contexts. In both cases we obtained
that any recursively enumerable language can be generated. The same result holds
if a context-free deletion of two symbols is allowed. The counterpart of the last
result is not true, moreover Theorem 2 shows that the insertion of strings of an
arbitrary size still cannot lead to generating languages like a∗b∗.

We also have considered one-symbol context-free insertion-deletion P systems
without the priority relations and we showed that in terms of Parikh sets these
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systems characterize the PsMAT family. However, in terms of the generated lan-
guage such systems are strictly included in MAT .

Most of results above were obtained using rules with target indicators. It is
interesting to investigate the computational power of systems with non-specific
target indicators in or go. Another open problem is to replace the priority relation
by some other mechanism without decreasing the computational power.
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