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Summary. Signal transduction networks are very complex processes employed by the
living cell to suitably react to environmental stimuli. Qualitative and quantitative com-
putational models play an increasingly important role in the representation of these
networks and in the search of new insights about these phenomena. In this work we an-
alyze some graph-based models used to discover qualitative properties of such networks.
In turn, we show that MP systems can naturally extend these graph-based models by
adding some qualitative elements. The case study of integrins activation during the lym-
phocyte recruitment, a crucial phenomenon in inflammatory processes, is described, and
a first MP graph for this network is designed. Finally, we discuss some open problems
related to the qualitative modeling of signaling networks.

1 Introduction

Biological signal transduction is a series of processes employed by the living cell to
convert signals coming from the external environment [17, 1]. Signal conversions
usually involve sequences of chemical reactions among proteins which generate
complex networks. By these mechanisms the cell can suitably react in order to
accomplish its biological functions.

The discovery of hidden interaction mechanisms supports the development of
new medical treatments and drugs for specific diseases, thus, in the last decades
many efforts have been addressed to “decipher” the interactions among the actors
of signaling networks. Despite of the great medical and pharmaceutical interest for
these networks, a lot of them are still completely or partially unknown, because of
their huge size and high complexity. So far, the best results have been achieved at a
qualitative level, by the representation and the analysis of protein interactions [18].
Such results have been mainly reached by means of suitable data structures (mainly
graphs) that support the topological analysis of biological networks, while an open
challenge concerns the modeling of dynamics related to the protein activation. This
could provide significant improvements for the prediction of signaling network
behaviors.
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Both qualitative and quantitative modeling of metabolic and signal transduc-
tion networks have drawn large advantages from the use of computational models,
which disclose new features of these systems by processing a great deal of data
[33]. The most used mathematical models for the dynamical analysis of biologi-
cal networks are the traditional systems of ordinary differential equations (ODE).
They represent a biological system by a set of mathematical equations, where every
equation rules the temporal evolution of a substance. Unfortunately, ODE models
have some drawbacks, such as the hard definition of equations from observed phe-
nomena, since a deep knowledge about microscopic molecular kinetics is required
[20]. Thus, several discrete and bio-inspired models have been proposed, in order
to symbolically describe cellular processes.

P systems, or membrane systems, were introduced in [28] as a new computa-
tional model which takes its inspiration from the structure and functioning of the
living cell. This model is rooted in the context of formal language theory and it is
based on multisets and membranes rewriting for which many computational uni-
versality results have been achieved [29]. This mathematical framework has been
often employed to model biological processes underlying metabolism [2, 5, 27],
pathologies [14, 13] and signaling [12, 26, 32].

Metabolic P systems, shortly MP systems, were recently introduced in [24] and
developed, along with different lines, see for example [6, 21, 22, 23]. The aim of this
non-conventional mathematical framework is properly the modeling of metabolic
dynamics. In fact the development of this model has been based on the mass
partition principle, which defines the transformation rate of object populations,
according to a suitable generalization of chemical laws [20].

Some equivalence results have been proved in [11] and in [9] between MP sys-
tems and, respectively, autonomous ODE and Hybrid Functional Petri nets. The
dynamics of several biological processes has been effectively modeled by means of
MP systems [3], among them: the Belousov-Zhabotinsky reaction (in the Brussela-
tor formulation) [5, 6], the Lotka-Volterra dynamics [5, 24], the SIR (Susceptible-
Infected-Recovered) epidemic [5, 3], the leukocyte selective recruitment in the im-
mune response [5], the Protein Kinase C activation [6], the circadian rhythms [3],
the mitotic cycles in early amphibian embryos [23, 12], a Pseudomonas quorum
sensing model [7] and the lac operon gene regulatory mechanism in glycolytic
pathway [9].

In this work we investigate the possibility to employ MP systems for modeling
signal transduction networks. We point out that some chemical laws which regulate
metabolic processes cannot be applied to signaling processes, and several measure-
ment problems can arise, due to current experimental limitations. With respect to
models of metabolism, the focus has to be moved from substance transformations
(complex creation and disintegration) to protein activation (e.g., phosphorylation
and dephosphorylation).

In section 2 it is presented a qualitative model currently used to represent pro-
tein interactions [18], and some motivations and problems related to quantitative
models are discussed. In Section 3 it is proposed the case study of a signaling
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network involved in the lymphocyte recruitment, while in the last section some
approaches are addressed for modeling the above network by MP systems.

2 From Qualitative to Quantitative Modeling

Several biological systems can be represented, at a qualitative level, by a net-
work of elements connected by functional interactions. Some examples are the
nervous system (physically connected neurons), the immune system (where cells
and molecules are connected with different kinds of interaction) and also signal-
ing systems (physically connected intracellular molecules). These networks can
be symbolically represented by graphs, mathematical structures used to model
pairwise relations (edges) between objects (nodes) from a certain collection. In
signal transduction networks, nodes act as molecules, typically proteins, and arcs
represent the capability of a molecule to activate or deactivate another molecule
(Figure 1).

Fig. 1. A qualitative representation of a signal transduction network by a directed graph.
Nodes correspond to molecules and arcs represent activation or deactivation [18].

Graph theory investigates structural properties of graphs, and these proper-
ties can assume a biological meaning if the graph represents a specific biological
network. Topological analyses based on graph theory often address interesting
questions about single elements of the network, clusters of elements, or the en-
tire network. There exist specific computational tools [31] to visualize networks
and analyze topological properties, such as the node degree (the number of edges
connected to a node), the average degree of the network, the shortest path be-
tween two nodes, the average shortest path of the network, the network diameter,
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clustering coeflicients, the presence of network motifs (e.g., loops) or network sta-
tistical properties [18]. In a signal transduction network, the knowledge of such
properties most of the times allows the identification of substances which regulate
the process.

The qualitative approach described above is valid for a statical analysis of
networks. While structural properties can be found, the temporal evolution of
a network instead cannot be “simulated” to forecast dynamical behaviors (e.g.,
oscillations) occurring under different conditions. Quantitative models aim at ex-
tending qualitative models to achieve this target. They rely on new experimental
methods which support the measurement of real systems (e.g., activation levels or
concentration values), absolutely necessary to validate models. Namely, in the last
decade, the wide improvements of high-throughput data acquisition techniques in
molecular biology have made possible to screen and to analyze the expression of
entire genomes, as well as to assess large numbers of proteins and to character-
ize in detail the metabolic state of a cell population, although several problems
must be still overcome. On the other hand, new mathematical and computational
techniques have been conceived to infer coherent theories and models from huge
amounts of experimental data [33].

Systems of Ordinary Differential Equations (ODE) have been largely used
for the quantitative modeling of signal transduction networks, but lately some
network-oriented and bio-inspired models are overcoming several drawbacks of tra-
ditional ODE models. They allow a new insight about biological processes, which
cannot be obtained using the “glasses” of classical mathematics [2].

In the next section we focus on a cellular process of great immunological inter-
est, with the goal to design a model for this case study. It is a partially unknown
network obtained by long and complex laboratory experiments and proposed very
recently in [8].

3 A Case Study

Inflammatory processes in living organisms activate a tissue-specific recruitment
of leukocytes, that relies on the complex functional interplay between some surface
molecules of leukocytes circulating in the blood and the endothelial cells covering
the blood vessel. Leukocyte recruitment into tissues requires extravasation from
blood, by a process of transendothelial migration. Three major steps have been
identified in the process of leukocyte extravasation: tethering-rolling of free-flowing
white bloods cells, leukocyte activation and their arrest by the adherence to en-
dothelial cells. After the arrest diapedesis happens, namely leukocytes pass from
blood to the tissue beyond endothelial cells [30].

The recruitment process takes place when molecules called chemokines are
produced by the epithelium and by bacteria that have activated the inflamma-
tion. Chemokines bind with receptors located on the leukocyte membrane, then
activating an internal signaling network. The main output of this network is the
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activation of integrins, different receptors that interact with endothelial counter-
receptors slowing down the leukocyte speed, until its arrest. If we call A the initial
state, with leukocytes quickly circulating into the blood, B the state of rolling,
C the state of activation, and D the state of adhesion, three main phases can
be recognized: A — B ruled by receptor-receptor interactions, B — C ruled by
chemokine-receptor interactions, and C' — D ruled by integrin-receptor interac-
tions. This process was modeled by P systems in [14], where the concept of recep-
tor was integrated with objects transformed and moved through membranes by
rewriting systems having rules with priority.

Very recent works have discovered a minimal signaling module activated by
chemokines and controlling the integrin activation during the whole process of re-
cruitment of lymphocytes B and T, two specific types of leukocyte [8]. Figure 2
shows the entire module (in the center) surrounded by the lymphocyte membrane
in which receptors CXCR/ and integrins LFA-1 are placed. Elliptical nodes rep-
resent types of molecules, PA and PIP2 are second messengers, continuous arrows
indicate experimentally demonstrated direct activations (with physical interac-
tions and complex formations), dashed arrows indicate indirect effects, flat line
endings indicate inhibitions, empty circle endings indicate second messenger pro-
duction, the arch ending indicates a direct binding, that is without any enzymatic
activation.

LFA-1
activation

N
Affinity

Intermediate

PIPSKC

Fig. 2. Model of the Rho-signaling module, activated by chemokines and controlling
conformer-specific LFA-1 affinity triggering during the lymphocyte homing [8].
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The Rho pro-adhesive signaling module proposed in [8] and reported in Fig-
ure 2 takes its input from the receptor CXCR/, which is activated by chemokines
CXCL12 and indirectly activates Rho GEFs molecules . In turn, RhoGEF's activate
the three small GTPase proteins RhoA, Racl and CD(C42 inside of the functional
module. RhoA and Racl activate PLD1, thus leading to phosphatidic acid (PA)
accumulation. PIP5KC bind to RhoA and it may be activated by Racl and PA.
At the same time, PLD1 may interact with alpha-actininl (ACTNT1), facilitating
the interaction between ACTN1 and the integrins LFA-1 leading their transition
to intermediate affinity state. LFA-1 transitions among low, intermediate and high
level are depicted from the top to the bottom (they are all integrins) on the right
side of Figure 2. Simultaneously, activated PIP5KC triggers the local accumula-
tion of phosphatidylinositol 1-4-5 phosphate (PIP2), which has a central role in the
transition of LFA-1 from intermediate to high affinity state, and for the leukocyte
firm arrest. The increase of the PIP2 concentration, in fact, may inhibit ACTNI1,
facilitating its detachment from LFA-1, and may activate Talinl (TLN1), driving
the final transition to the high affinity state. We also notice that PIP5KC may
activate directly TLN1, and this may promote direct transition of LFA-1 to the
high affinity state. In this complex context, CDC42 plays a “negative” regulatory
role by preventing LFA-1 activation.

The signaling network reported in Figure 2 is a qualitative representation of
the integrin LFA-1 activation during the lymphocyte homing. An interesting open
problem from the biomedical viewpoint is the discovery of qualitative parameters
which rule the dynamics of the network over time, such as activation speeds or
delays. The development of a qualitative model would allow notable predictions
of system behaviors in presence of normal or abnormal (e.g., pathological and
pharmacological) conditions. However, qualitative models could imply quite a few
experimental problems, because only some quantities are measurable over time,
while most of them cannot be measured by current technologies. Our final goal is
the discovery of regulative mechanisms of the Rho pro-adesive signaling module,
namely starting from the curve of LFA-1 affinity in lymphocytes stimulated by
chemokines, showed in Figure 3.

4 Signaling Networks Modeled by MP Systems

As we hinted in the previous sections, the main difficulties of signaling model-
ing, compared to metabolic modeling, are (i) the lack of stoichiometric coefficients
that rule the ratios of chemical interactions, (ii) the consequent non-applicability of
some chemical laws, such as the mass conservation law, the Avogadro principle and
the Dalton principle, that constrain metabolic models, (iii) the lack of data acqui-
sition techniques to measure activation and concentration levels over time. These
difficulties could make inappropriate several methods yet employed for modeling
metabolic pathways. New meaningful models must be identified to predict signal-
ing network behaviors, hopefully despite the current lack of information about the
underlying phenomena.
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Fig. 3. LFA-1 affinity of a cluster of lymphocytes stimulated by chemokines.

In the following we propose a representation of the network of Figure 2 by
means of MP systems, since it is a network-oriented quantitative model which has
several features in common with the graph-based qualitative models described in
Section 2. Petri nets have been also employed to “graphically” model signaling
networks from a qualitative point of view [25], in fact their equivalence with MP
systems has been proved in [9].

MP systems are deterministic P systems developed to model the dynamics of
biological phenomena related to metabolism. They naturally extend graph-based
models because they consist of (i) a set of substances X, each one associated
to (concentration or activation) quantity when observed, (ii)a set of reactions
R, that move substances, (iii) a set of parameters V (such as pressure, tem-
perature,...) each equipped with an evolution function, and (iv)a set @ of flux
regulation maps, which state the amount of substances consumed/produced by
every reaction in any system transition. The dynamics § of this model is repre-
sented by the evolution of substances and parameters in every temporal interval
7 starting from the initial state og.

A graphical representation of MP systems by means of MP graphs has been
introduced in [23]. MP graphs depict biochemical reactions as bipartite graphs with
two levels, in which the first level describes the stoichiometry of reactions, while
the second level expresses the regulation which tunes the flux of every reaction
(i.e. the quantity of chemicals transformed at each step) depending on the state
of the system (see for example Figure 4).

Recent works aim at deducing MP models from suitable macroscopic obser-
vations of given metabolic behaviors along a certain number of steps [21, 19]. In
order to assist biologists in the simulation of MP systems we implemented a Java
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Fig. 4. An example of MP graph visualized by the MPsim 3 graphical user interface.
Frame labels point out MP system elements in the MP graph representation.

tool called MPsim [4]. The current release of the software employs a friendly user
interface to define MP models by means of MP graphs [23], and it produces the
plotting of curves given by the system dynamics. The last developments of the soft-
ware involve a new plugin framework for solving parameter estimation, analysis,
visualization and importation tasks in order to increase the system capabilities.

Figure 5 shows an MP graph representation of the signal transduction network
depicted in Figure 2. For every chemical involved in the network we set a substance
node (ellipses) and a linked reaction node (circles), which update the substance
quantity at each step. We model the quantities associated to PA and PIP2 as
concentrations, and the quantities associated to the other substances as activation
levels. The activation level of a protein expresses its capability to activate other
chemicals in the signaling cascade, therefore it is a very important feature for
qualitative modeling. Instead, second messengers such as PA and PIP2 tune their
interaction with other chemicals depending on their concentration.

Every reaction node is linked to a flur node (squares) which computes the
quantity added or removed by the reaction at each step, depending on the system
state. Dashed arcs from a substance node x to a flux node ¢, (which regulates
the substance y) indicates that x is a “regulator” of y. For instance, the activation
arc from RhoA to PLD1 in Figure 2 is mapped to the “regulation” arc from
the substance node RhoA to the flux node F6, because the updating of PLD1
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Fig. 5. An MP graph representation of Rho-signaling module activated by chemokines
and controlling conformer-specific LFA-1 affinity.

activation level over time depends on the RhoA activation level. All the arcs of
Figure 2 have been mapped to MP graph dashed arcs in this way.

The mapping of a qualitative model to an MP graph seems quite a simple task
though a crucial problem keeps open: the definition of significant activation speeds
and delays which suitably fit the observed dynamics of the system (Figure 3).
These parameters affect the regulation functions @ of the MP system and they
would allow good predictions of the system behaviors.

As a future research, we intend to attack this problem by bio-inspired method-
ologies, like neural networks, and evolutionary techniques, like genetic program-
ming, already proposed by John R. Koza in [16] for the automatic synthesis of
metabolic pathways and genetic networks. The latter computational technique
could suggest solutions even for the topology validation of qualitative models. In-
deed, activation arcs of qualitative models (as that in Figure 2) are drawn when an
experiment proves the interaction between two molecules. However, the topology
we have of a network is possibly not complete, because some interactions have not
been discovered yet. In these cases quantitative computational models, which are
based on wide data observations, can point out interaction lacks and suggest new
experiments to discover different networks.
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