
On Two-Dimensional Mesh Networks and Their
Simulation with P Systems

Rodica Ceterchi1 and Mario J. Pérez–Jiménez2

1 Faculty of Mathematics and Computer Science, University of Bucharest,
Academiei 14, 010014 Bucharest, Romania

rc@funinf.cs.unibuc.ro
2 Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,
University of Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
Mario.Perez@cs.us.es

Abstract. We analize in this paper the possibility of simulating the
parallel architecture SIMD-MC2, also known as the two-dimensional
mesh, with P systems with dynamic communication graphs. We illus-
trate this simulation for an algorithm which computes the sum of given
integers. Next, we show how to extend the formalism to the reduction
problem.

1 Introduction

P systems are powerful computational devices, with a high degree of parallelism,
whose functioning is inspired by biological processes at the level of the cells, and
of their membranes ([6], [7]). Among these processes, communication plays an
important role (see [5]).

We have started in previous work ([2], and [3]) to analyze the possibility of
simulating (classical) parallel architectures with P systems. A parallel machine
consists of a large number of processors (each one having an arithmetic logic unit
with registers and a private memory) able to solve problems in a cooperative
way. The “cooperation” (sharing of data among processors) is accomplished via
a specific communication network which characterizes the architecture.

We have considered in [2], and [3], the case of the shuffle–exchange archi-
tecture. In the present paper we deal with a different type of architecture, the
two-dimensional mesh, in which the processors are placed in the vertices of a
2D-lattice in the plane, and communication is possible only between adjacent
processors.

In the course of this study, a new type of P systems has emerged: P systems
with dynamic communication graphs of specific types. They are in a way similar
to tissue-like P systems, the connections between elementary membranes being
described by graph structures, but they have a dynamic behavior: the underlying
graph structures change in time. Moreover, rules, which are generally associated

to regions inside membranes, are in this new version associated to underlying
graphs. This new formalism covers both the simulation of internal processing,
modelled by symbol rewriting rules, and the communication of data, modelled
by symport/antiport rules.

The paper is organized as follows. Section 2 describes briefly the 2D-mesh
parallel architecture. In Section 3 we introduce the P systems with dynamic
communication of 2D-mesh type, the tools with which we accomplish the desired
simulation. Section 4 illustrates an application of the 2D-mesh architecture to
an algorithm for computing the sum of a set of integers, and contains a proof of
its correctness. In Section 5 we discuss several simulations of the sum algorithm
with P systems with dynamic communication of 2D-mesh type. In the next two
sections we give some indications on how to extend the formalism to solve a
general reduction problem.

2 The 2D-Mesh Architecture

Recall that a parallel machine consists of a large number of processors (each one
having an arithmetic logic unit with registers and a private memory) able to
solve problems in a cooperative way; that is, the machine is capable of executing
several instructions in the same time unit.

According to Flynn’s classification of computers (see [4]), a form of synchronous
parallelism is called SIMD (Single–Instruction–Multiple–Data). A SIMD ma-
chine consists of a set of identical processors capable of simultaneously perform-
ing the same instruction issued by a central control unit, on different sets of data,
and in a synchronous manner: each processor executing an instruction in parallel
must be allowed to finish before the execution of the next instruction starts.

Several different methods of connecting processors in a parallel computer
have been proposed. Quinn [8], quoting Ullman [9], mentions six important pro-
cessor organizations, among which the mesh network. In a mesh network the
processors are arranged into a q-dimensional lattice, and communication is al-
lowed only between neighboring nodes, hence interior nodes communicate with
2q other processors. A SIMD machine in which the processors may communi-
cate with each other via a mesh-connected network of dimension q is called in
[8] a SIMD-MCq machine.

We deal in this paper with SIMD-MC2 machines, i.e., a set of processors
working according to the SIMD paradigm, and able to communicate (share)
data among them according to a two–dimensional lattice architecture, which we
will call in the sequel the 2D-mesh architecture.

In general, in a given parallel architecture, we say that two processors are
adjacent if they are directly connected. The distance between a pair of processors
in a given architecture is the smallest length of a path between the processors.
The diameter of an architecture is defined as the largest distance between any
processors in the network. The two–dimensional mesh architecture provides a
network with a large number of communication links connected to each proces-
sor, permitting to reduce the diameter of the network.

In general, we consider a two–dimensional mesh–connected parallel computer
as a SIMD machine consisting of n×m identical processors, P11, . . . , Pnm, placed
in the nodes of a 2D-lattice, or, equivalently, arranged in a 2D array.

Each processor has a local memory consisting of a number of registers, and
it can perform a number of operations on data stored in these registers.

The communication between processors (mainly transmission of values of
local variables) can take place only according to the 2D-lattice structure of the
underlying network. Thus the processor placed in row i and column j, is denoted
by Pi,j , (or Pij) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. If Pi,j is an interior node, i.e.,
i �= 1, j �= 1, i �= n, j �= m, then Pi,j has four neighbors: Pi−1,j and, Pi+1,j on the
same column, j, and Pi,j−1, Pi,j+1 on the same row, i. The rows i = 1 and i = n
are the boundary rows, and columns j = 1 and j = m are the boundary columns.
The nodes at the intersection of a boundary row and a boundary column have
each one precisely two neighbors, and the rest of the boundary nodes have three
neighbors.

3 P Systems with Dynamic Communication Graphs of
2D-Mesh Type

The model we develop here for the simulation of the 2D-mesh architecture is
along the same general lines as the model proposed for the shuffle-exchange
networks in [2] and [3], with some differences which arise inherently from the
differences in the two parallel architectures in question.

We have a SIMD-MC2 machine, composed of n × m processors, denoted
Pij , with 1 ≤ i ≤ n, 1 ≤ j ≤ m, organized in a 2D-mesh architecture. To
each processor Pij we will associate a membrane, which we will still denote
Pij . Similarly to tissue-like P systems, we will have a collection of elementary
membranes, connected by certain graphs, at certain moments of their evolution
in time. The graphs we will consider will be sub-graphs of the total graph of the
2D-mesh network, also sub-graphs of the identity graph of the 2D-mesh network,
as we will explain in the sequel.

The contents of each processor Pij will be codified in its associated membrane
with symbol objects. The alphabet of symbols used, V , will depend on the con-
tents of the processors we are simulating (see the applications in the following
sections). If each processor has to contain say r variables with positive integer
values, they can be in principle codified with an alphabet with r letters. In the
case of the applications illustrated further, we will have to represent at most
two integer variables. Their simulation with P systems will use accordingly an
alphabet with two (or four) symbols.

Basically, we have to model:

– Patterns of specific internal processing in each processor: these will be mod-
elled by symbol rewriting rules.

– Patterns of communication between processors.

Recall that in the 2D-mesh architecture the communication between pro-
cessors takes place along edges which connect two neighboring processors. As

we have done in general for parallel architectures, and, in particular, for the
perfect–shuffle architecture in previous work (see [2], [3]), we will speak of the
(underlying) communication graph associated to a given architecture: the ver-
tices of the graph are the processors, and the edges (oriented or not) are the
network connections characteristic of the architecture. In the case of the 2D-
mesh, the underlying communication graph is composed of all edges between
neighboring nodes. We will call it the total graph, and we distinguish between
horizontal edges and vertical edges. We use the following notation:

Gtotal = Gh ∪Gv =
n⋃

i=1

Gi∗ ∪
m⋃

j=1

G∗j ,

where

Gi∗ = {((i, j), (i, j + 1)) | 1 ≤ j ≤ m− 1}, for all 1 ≤ i ≤ n,

G∗j = {((i, j), (i + 1, j)) | 1 ≤ i ≤ n− 1}, for all 1 ≤ j ≤ m.

Gi∗ is the set of all horizontal edges on line i, with 1 ≤ i ≤ n, and G∗j is the
set of all vertical edges on column j, for 1 ≤ j ≤ m.

For every particular algorithm implemented on a 2D-mesh network of pro-
cessors, not all edges of the communication graph are used simultaneously for
transmitting values of local variables, as we will see in the illustrations which
follow. For this reason we will speak of the total virtual communication graph,
and of active sub-graphs of Gtotal, composed of sets of edges along which actual
communication takes place, in parallel, at certain steps of a given algorithm.

For modelling the internal processing steps, in order to have unity of notation,
we will associate the rules to the identity graph: the set of vertices is composed
of all processors/membranes, the set of edges is defined as

Id = {((i, j), (i, j)) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

If an internal processing occurs only in a subset of the processors/membranes,
then we will consider the respective active sub-graphs of Id. For instance, if inter-
nal processing occurs only for processors/membranes on line i, we will associate
it with the active sub-graph

Idi∗ = {((i, j), (i, j)) | 1 ≤ j ≤ m}.

Similarly, if an internal processing occurs only for processors/membranes on
column j, we will associate it with the active sub-graph

Id∗j = {((i, j), (i, j)) | 1 ≤ i ≤ n}.

The P systems which we consider in the sequel, for modelling the 2D-mesh
architecture, similarly to those considered in [2] and [3], depart from the classical
P systems in two respects:

– The connections between individual membranes of a P system, µ, which
was a tree-like structure of membranes (see [6]), and which in tissue-like P
systems becomes a graph structure, is now, a sequence of graphs.

– The rules of a P system, usually associated to membranes, will now be as-
sociated to communication graphs between membranes.

(a) We simulate the internal computations performed by a subset of proces-
sors by the action of symbol or object rewriting rules, at work simulta-
neously inside the corresponding subset of membranes. We will associate
such rules to the corresponding active subsets of Id.

(b) We simulate the exchange of data performed by the processors with
communication rules (symport/antiport rules) between membranes. The
communication rules will be associated to the active sub-graphs of Gtotal.

We will consider the edges to have an orientation which gives meaning to
the in and out of the symport/antiport rules: out means travelling in the sense
of the edge’s orientation, in means travelling in the opposite sense. Thus, rules
such as (a, out), (a, in) function along an oriented edge in the same way they
would function if they were attached to the source vertex of the edge.

As in [2] and [3] (with slight modifications), we will use pairs [graph, rules]
to describe the evolution of a P system which simulates the behavior of a given
algorithm, in the 2D-mesh architecture.

For every particular architecture, its underlying network structure imposes
restrictions on the set Graphs to which the first member of a pair [graph, rules]
can belong. For the 2D-mesh architecture Graphs is either a subset of Gtotal, or
a subset of Id.

The set Rules, of all symbol/object rewriting rules which simulate internal
computations performed by the individual processors, will depend on the par-
ticular algorithm, used to solve a particular problem, within the framework of a
given architecture.

We model deterministic algorithms, each iterative step of such an algorithm
will be modelled by a finite sequence of pairs [graph, rules] (sometimes each pair
simulating the effect of “an instruction”, but not necessarily). The entire execu-
tion of such an algorithm will be modelled by a sequence of pairs [graph, rules],
denoted in the sequel by Rµ.

A P system which simulates a particular algorithm in the 2D-mesh architec-
ture will thus be a construct

Π = (V, P11, · · · , Pnm, Rµ),

where P11, · · · , Pnm are elementary membranes, V is an alphabet of symbols
used to codify the contents of the membranes, and Rµ is a finite sequence of
pairs [graph, rules], such that: (i) if graph ⊂ Id, then its rules are rewriting
rules; (ii) if graph ⊂ Gtotal, then its rules are communication rules. We will call
such a system a P system with dynamic communication of 2D-mesh type.

The P system starts in an initial configuration, with its elementary mem-
branes P11, · · · , Pnm simulating the initial configuration of the corresponding

processors. Each application of an element [graph, rules] ∈ Rµ to a configu-
ration consists of considering the (active) graph graph and applying the rules
rules associated to it: (i) if graph ⊂ Id, the corresponding rewriting rules are
applied in the membranes which are vertices of graph; (ii) if graph ⊂ Gtotal,
the corresponding symport/antiport rules are applied along the edges of graph.
This leads to the next configuration. The final configuration is obtained after
the application of the entire sequence Rµ.

Note that the general presentation of a P system with dynamic communi-
cation graph which simulates a given (arbitrary) parallel architecture based on
communication networks (denote it by X) is the same: it specifies an alphabet
of symbols used to codify the contents of membranes, a finite set of elementary
membranes, and, finally, a finite sequence Rµ of pairs [graph, rules]. The specifics
of each architecture X impose certain particular forms for the sets Graphs to
which the first member of a pair [graph, rules] can belong, and for the pairing
[graph, rules]. Further, the specifics of each architecture, and sometimes of an
algorithm implemented on it, govern the structure of the entire sequence Rµ.

Denote by Graphs(X) the active graphs associated to the architecture X.
For X = perfect shuffle SIMD = PS-SIMD we have (see [2], [3]):

Graphs(PS-SIMD) = {Gs, Ge, GId},
and the conditions for pairs are:

1. (i) if graph = GId, then its rules are rewriting rules;
2. (ii) if graph ∈ {Gs, Ge}, i.e., graph is either of type shuffle or of type ex-

change, then its rules are communication rules.

For X = 2D-mesh SIMD = SIMD-MC2 we have:

Graphs(SIMD-MC2) = P(Gtotal) ∪ P(Id),

and the conditions for pairs are:

1. (i) if graph ⊂ Id, then its rules are rewriting rules;
2. (ii) if graph ⊂ Gtotal, then its rules are communication rules.

As for the differences in the structure of the sequence Rµ, in the case of the
perfect shuffle architecture Rµ was periodic, while in the case of the 2D-mesh
architecture it is not necessarily so, as we will see in the example illustrated in
the next section.

4 The Sum on the 2D-Mesh

We compute the sum of n integer numbers a11, a12, . . . , all, where n = l2, using
the 2D-Mesh architecture, each integer held in one processor.

We have n = l2 processors Pij (1 ≤ i, j ≤ l) that possess two local variables:
xij (initialized by aij) and tij (initialized by 0).

The following procedure computes the sum a11 + a12 + · · ·+ all.

procedure sum2D−MESH(a11, a12, · · · , all)
begin

for all i, j where 1 ≤ i, j ≤ l do
xij ← aij; tij ← 0

endfor
for j ← l − 1 downto 1 do

for all i where 1 ≤ i ≤ l do
tij ⇐ xi(j+1)
xij ← xij + tij

endfor
endfor
for i← l − 1 downto 1 do

ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

endfor
end

where tij ⇐ xi(j+1) means that processor Pi,(j+1) links by the mesh with pro-
cessor Pij and communicates the value of variable x, and processor Pij puts it
in variable t.

In order to prove the correctness of this algorithm we reformulate in detail
what is happening in each processor throughout the execution. We denote by
xr

ij and trij the corresponding values of the local variables of processor Pij after
step r of the execution.
The above algorithm can now be reformulated in the following, more detailed,
manner:

procedure sum2D−MESH(a11, a12, · · · , all)
begin

for all i, j where 1 ≤ i, j ≤ l do
x0

ij ← aij; t0ij ← 0
endfor
for j ← l − 1 downto 1 do

for all i where 1 ≤ i ≤ l do
tl−j
ij ⇐ xl−j−1

i(j+1)

xl−j
ij ← x0

ij + tl−j
ij

endfor
endfor
for i← l − 1 downto 1 do

t2l−i−1
i1 ⇐ x2l−i−2

i+1,1

x2l−i−1
i1 ← xl−1

i1 + t2l−i−1
i1

endfor
end

Theorem 1. The formula θ(j) ≡ ∀i (1 ≤ i ≤ l −→ xl−1
ij =

l∑

s=j

ais) is an invari-

ant of the loop “for j ← l − 1 downto 1 do” of the procedure sum2D−MESH.

Proof. By descendant induction on j.

– For j = l − 1 we have, for each i such that 1 ≤ i ≤ l:

xl−1
i,l−1 = x1

i,l−1 = x0
i,l−1 + t1i,l−1

= x0
i,l−1 + x0

i,l

= ai,l−1 + ai,l

=
l∑

s=l−1

ais

– Let j > 1 and suppose that the formula θ(j) is true. Let us prove that the
formula θ(j − 1) is also true.
For each i such that 1 ≤ i ≤ l we have:

x
l−(j−1)
i,j−1 = x0

i,j−1 + t
l−(j−1)
i,j−1

= x0
i,j−1 + xl−j

i,j

i.h.= ai,j−1 +
l∑

s=j

ais

=
l∑

s=j−1

ais

��

Theorem 2. The formula ϕ(i) ≡ x2l−i−1
i1 =

l∑

r=i

l∑

s=j

ars is an invariant of the

loop “for i← l − 1 downto 1 do” of procedure sum2D−MESH.

Proof. By descendant induction on i.

– For i = l − 1 we have:

x2l−i−1
i,1 = x

2l−(l−1)−1
l−1,1 = xl−1

l−1,1 + t
2l−(l−1)−1
l−1,1

= xl−1
l−1,1 + xl−1

l,l

=
l∑

s=1

al−1,s +
l∑

s=1

al,s

=
l∑

r=l−1

l∑

s=l−1

ars

– Let i > 1 and suppose that the formula ϕ(i) is true. Let us prove that the
formula ϕ(i− 1) is also true.

For each i such that 1 ≤ i ≤ l we have:

x
2l−(i−1)−1
i−1,1 = xl−1

i−1,1 + t
2l−(i−1)−1
i−1,1

= xl−1
i−1,1 + x2l−i−1

i,1

Th.1+i.h.=
l∑

s=1

ai−1,1 +
l∑

r=i

l∑

s=j

ars

=
l∑

r=i−1

l∑

s=j

ars

��

Corollary 1. At the end of the execution of procedure sum2D−MESH, the vari-
able x of processor P11 contains the value of the sum a11 + · · ·+ all.

Proof. At the end of execution the formula ϕ(1) is true; that is, it is verified
that:

x2l−1−1
11 =

l∑

r=1

l∑

s=j

ars = a11 + a12 + · · ·+ all.

Recall that x2l−1−1
11 is the content of the processor P11 at the end of the execution.

��
Let us note that the above algorithm, although formulated for a square 2D-

mesh, works in the same way on a rectangular mesh, of dimensions n×m, and
only slight changes are necessary in the proofs of the corresponding correctness
results.

The following procedure computes the sum a11 + a12 + · · ·+ anm.

procedure sum2D−MESH(a11, a12, · · · , anm)
begin

for all i, j where 1 ≤ i ≤ n,1 ≤ j ≤ m do
xij ← aij; tij ← 0

endfor
for j ← m− 1 downto 1 do

for all i where 1 ≤ i ≤ n do
tij ⇐ xi(j+1)
xij ← xij + tij

endfor
endfor
for i← n− 1 downto 1 do

ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

endfor
end

Its running time, measured in number of iterative steps, is (n− 1) + (m− 1).

Second loop (j=2) Second loop (j=1)

Third loop (i=1)

3

4

2 8

7

1 9

6

5

6

5

4

8

9

8

9

7 7

8 8

9 9

10

10

10

10

10

10

10

10

10

10

10

10

16

15

16

14

29 29

14

45

7 7

14

Third loop (i=2)

Initialization(First loop)

Fig. 1. The sum on a 2D-mesh

Remark: Note that, in the above procedures, the sequence
tij ⇐ xi(j+1)
xij ← xij + tij

can be replaced by
ti(j+1) ← xi(j+1)
tij ⇐ ti(j+1)
xij ← xij + tij

and the sequence
ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

by
ti+1,1 ← xi+1,1
ti1 ⇐ ti+1,1
xi1 ← xi1 + ti1.

The difference is that, instead of communicating directly the value of xi(j+1)
to the variable tij through a mesh connection between Pij and Pi(j+1), we first
copy in Pi(j+1) the value of xi(j+1) into the auxiliary variable ti(j+1), and we
use the mesh connections to transmit values of only the auxiliary corresponding
variables t. This is an important aspect for the simulations which follow.

In Figure 1 the functioning of the sum algorithm on a 3 × 3 2D-mesh is
illustrated, from the initial configuration (after initialization), through the sub-
sequent ones – each obtained after an iterative step, to the last one (after the
fourth iterative step), in which the sum is obtained in processor P11.

5 Simulation of the Sum

We present a simulation of the sum algorithm on 2D-mesh using P systems with
dynamic communication graphs of the 2D-mesh type. Actually, as we will see,
we will have three possible simulations, depending on the input data, and the
requirements we impose on the “memory” of membranes Pij , with ij �= 11, which
can be considered auxiliary in the process of summation.

As already stated in Section 3, each processor will be simulated by a mem-
brane, and we keep the same labels for membranes as for processors.

Thus, each membrane Pij , for 1 ≤ i ≤ n, 1 ≤ j ≤ m, will have to have
distinct representations for its two internal variables, xij and tij (when both are
necessary). Let us denote by |x| the positive part of any integer x. We codify the
integer values of the local variables xij and tij , in the following manner:

– Let a and ā be the symbols to codify the integer content of the xij variable
of every membrane Pij . Symbol a is used to represent the positive units, and
ā for the negative ones. Suppose xij has integer value aij : if aij is positive,
it will be codified as aaij , if aij is negative, it will be codified as ā|aij |.

– Let b and b̄ be the symbols to codify the integer content of the tij variable of
every membrane Pij , b for positive units, and b̄ for negative ones. They are
used in the same fashion as a and ā are used to codify xij , described above.

If the data are arbitrary integers, the contents of the processors will be codified
with symbol objects over the alphabet V = {a, ā, b, b̄}. If the data are always
positive integers, the contents of the processors can be codified with symbol
objects over the smaller alphabet V = {a, b}.

Let us illustrate how addition of two integers can be performed using two
(adjacent) membranes: consider Px and Py two membranes, each containing an
integer, x, and respectively y, codified as az, for z ≥ 0 and/or as āz for z < 0,
z ∈ {x, y}. Suppose both integers are positive, thus the initial configuration is
Px : ax, and Py : ay.

Suppose moreover that we are interested in obtaining the result of the addi-
tion in Px, and that we are not interested if we loose the original initial value of
Py. Then, using an active edge (Py, Px) together with the symport rule (a, out),
i.e., the pair [(Py, Px), (a, out)] accomplishes our desired objective: precisely y
occurrences of a travel ”along” the edge, and we will have x + y occurrences of
a in Px.

If our integers are arbitrary, i.e., we can have any of the four combinations
of initial configurations, Px : either ax or āx, Py : either ay or āy, if we are
interested in obtaining the result of the addition in Px, and we are not inter-
ested if we loose the original initial value of Py, then, we can use an active
edge (Py, Px) together with the symport rules {(a, out), (ā, out)}, i.e., the pair
[(Py, Px), {(a, out), (ā, out)}], followed by [IdPx , (aā −→ λ)]. The last internal
rewriting step taking place in Px ensures us that the addition is correctly per-
formed, positive and negative units annihilate themselves in pairs.

If we do wish to keep however also the contents of Py, additional rewrit-
ing steps are necessary, and the use of symbols {b, b̄} becomes apparent. The
sequence

[IdPy , {a −→ ab, ā −→ āb̄}], [(Py, Px), {(b, out), (b̄, out)}],
[Id, {b −→ a, b̄ −→ ā, aā −→ λ}],

accomplishes the task of having x + y represented in Px and y still in Py: by the
first set, the a’s, respectively ā’s, in Py are duplicated also as b’s, respectively
b̄’s; by the second set of rules all the b’s, respectively b̄’s, get from Py into Px;
by the third set, the b’s, respectively b̄’s in Px get rewritten as a’s, respectively
ā’s, and the rule aā −→ λ ensures the proper addition of positive and negative
units, if it is necessary. The result of adding x + y is represented as ax+y or
ā|x+y| in Px; in Py we have the same content as before, since all b’s, or b̄’s have
travelled by the second rule into Px, and thus none of the rules of the third set
are applicable in Py.

Let us go back now to our system of membranes Pij , for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
seen as the nodes of a (virtual) 2D-lattice of dimension n×m.

Suppose, for the sake of simplicity, that we deal only with positive integers,
and that we are only interested in obtaining the result of the addition a11 + · · ·+
anm in membrane P11, loosing the initial and intermediate values in all the other
membranes.

For our system of membranes and the problem stated above we will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, every membrane Pij

contains aaij , and no b’s.
– The sequence of horizontal subgraphs: For the first m− 1 iterative steps, we

will consider, at each step j = m−1, · · · , 1, the subgraphs {((i, j+1), (i, j)) |
1 ≤ i ≤ n} composed of all horizontal edges connecting column j + 1 to
column j, and we consider them oriented edges. Along each such edge, we
have to perform the addition of variables xi(j+1) and xij , and put the result in
xij . If we are not interested in preserving the values (initial or intermediate)
of every processor (with the exception of processor P11 which collects the
final result), we can simply use the rule (a, out) along each such (oriented)
edge. Along each edge ((i, j + 1), (i, j)), xi(j+1) occurrences of symbol a will
travel into membrane Pij where they will increase the number of a’s, so that
it will be precisely xi(j+1) + xij (and the codification for variable xi(j+1) in
processor Pi(j+1) is lost).

– The sequence of vertical subgraphs: For the last n − 1 iterative steps, we
will consider, at each step i = n− 1, · · · , 1, the subgraph (((i + 1), 1), (i, 1))
composed of an oriented vertical edge connecting on column 1 line i + 1
to line i. Along each such edge, we have to perform again the addition of
variables x(i+1)1 and xi1, and put the result in xi1. Again, we can use the
rule (a, out) along each such (oriented) edge.

Note that we have used an alphabet of only one symbol, {a}, and that there
are no internal computation steps in the form of rewriting taking place in any
subset of membranes.

Theorem 3. Consider the P system with dynamic communication of 2D-mesh
type

Π1 = ({a}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rµ1),

where Rµ1 is the following sequence of pairs [graph, rules]:

Rµ1 = {[{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, (a, out)], j = m− 1, · · · , 1,

[(((i + 1), 1), (i, 1)), (a, out)], i = n− 1, · · · , 1}.
Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
where all aij are positive integers, the application of the sequence Rµ1 will lead
to the final configuration P11 : aS, where S = a11 + · · ·+ anm, and Pij : ∅ for all
ij �= 11.

Let us consider now the case in which we have to sum arbitrary integers, and
suppose that we do not wish to keep the initial or intermediate contents of any
other membrane but P11. We will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, for aij ≥ 0 every
membrane Pij contains aaij , and for aij < 0 every membrane Pij contains
ā|aij |.

– The sequence of horizontal subgraphs – communication followed by internal
computations: For the first m − 1 iterative steps, we will consider, at each
step j = m − 1, · · · , 1, the subgraphs {((i, j + 1), (i, j)) | 1 ≤ i ≤ n} com-
posed of all horizontal edges connecting column j + 1 to column j, and we
consider them oriented edges. To each such edge we associate the symport
rules {(a, out), (ā, out)} which ensure that either positive or negative units,
depending on the case, travel all into membrane Pij . (The codification for
the value ai(j+1) in membrane Pi(j+1) is lost). In order to ensure proper ad-
dition of integers with different signs on column j, we will use an internal
computation step modelled as [Id∗j , aā −→ λ], where Id∗j is the subgraph
of the identity graph associated to column j.
The sequence [graph, rules] which models this stage will thus be

Rh
j = [{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, {(a, out), (ā, out)}], [Id∗j , aā −→ λ],

for j = m− 1, · · · , 1.
– The sequence of vertical subgraphs – communication followed by internal

computations: For the last n − 1 iterative steps, we consider, at each step
i = n − 1, · · · , 1, the subgraph ((i + 1, 1), (i, 1)) composed of an oriented
vertical edge connecting on column 1 line i + 1 to line i. Along each such
edge, we use the rules {(a, out), (ā, out)}. After such a communication step,
we have an internal computation step, which we model with [Idi∗, aā −→ λ],
where Idi∗ is the subgraph of the identity graph associated to line i. (We
could have used only the subgraph Idi1.)
The sequence [graph, rules] which models this stage will thus be

Rv
i = [{((i + 1, 1), (i, 1))}, {(a, out), (ā, out)}], [Idi∗, aā −→ λ],

for i = n− 1, · · · , 1.

Theorem 4. Consider the P system with dynamic communication of 2D-mesh
type

Π2 = ({a, ā}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rµ2),

where Rµ2 is the following sequence of pairs [graph, rules]:

Rµ2 = Rh
m−1 · · ·Rh

j · · ·Rh
1 ·Rv

n−1 · · ·Rv
i · · ·Rv

1.

Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤
m, aij ≥ 0}, and {Pij : ā|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m, aij < 0}, where all aij

are arbitrary integers, the application of the sequence Rµ2 will lead to the final
configuration P11 : aS, where S = a11 + · · ·+ anm, and Pij : ∅ for all ij �= 11.

Consider now the most general case: we have to sum arbitrary integers, and
we do not wish to destroy the contents of any membrane when it links by mesh to
another membrane and transmits the value of a variable. We will use for trans-
mission only the auxiliary variables tij , codified over the set of symbols {b, b̄}.
Some more internal processing in the form of rewriting will be necessary, both
before, and after the communication step. (Note that in the previous versions,
we did not have to simulate in our membranes the auxiliary variables t.) The
simulation which follows resembles the modified version of the algorithm as in
the Remark of Section 4.

We will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, for aij ≥ 0 every
membrane Pij contains aaij , and for aij < 0 every membrane Pij contains
ā|aij |. There are neither b’s, nor b̄’s (the t variables are all initialized to 0).

– The sequence of horizontal subgraphs – communication and internal compu-
tations:
Consider the sequence [graph, rules]:

Rh
j = [Id∗(j+1), {a −→ ab, ā −→ āb̄}],

[{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, {(b, out), (b̄, out)}],
[Id∗j , {b −→ a, b̄ −→ ā, aā −→ λ}],

for j = m−1, · · · , 1. Each sequence Rh
j simulates the j iterative step of the

first part of the algorithm. By the first set, in column j + 1 simultaneous
rewriting take place, simulating copying the contents of variable xi(j+1) into
ti(j+1). By the second set, the b’s (respectively b̄’s) travel along the active
horizontal edges of the mesh, from column j + 1 to column j on each line
i. By the third set, another internal computation takes place, in column j,
simulating the addition of the auxiliary variable tij to aij and putting the
result in aij . (Again, the tij ’s will be zero.)
The sequence obtained by catenation

Rh = Rh
m−1 · · ·Rh

j · · ·Rh
1

simulates the sequential execution of the first m − 1 iterative steps of the
sum algorithm.

– The sequence of vertical subgraphs – communication and internal computa-
tions:
Consider for each i = n− 1, · · · , 1, the sequence [graph, rules]:

Rv
i = [Id(i+1)1, {a −→ ab, ā −→ āb̄}],

[{((i + 1, 1), (i, 1))}, {(b, out), (b̄, out)}],
[Idi∗, {b −→ a, b̄ −→ ā, aā −→ λ}].

It functions in a similar way to the sequences associated to the horizontal
subgraph. By catenation we obtain the sequence

Rv = Rv
n−1 · · ·Rv

i · · ·Rv
1

which simulates the last n− 1 iterative steps of the algorithm.

Theorem 5. Consider the set {aij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} of arbitrary integers,
and consider the P system with dynamic communication of 2D-mesh type

Π3 = ({a, ā, b, b̄}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rµ3),

where Rµ3 is the following sequence of pairs [graph, rules]:

Rµ3 = Rh ·Rv = Rh
m−1 · · ·Rh

j · · ·Rh
1 ·Rv

n−1 · · ·Rv
i · · ·Rv

1,

with Rh
j and Rv

i as defined previously.
Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤

m, aij ≥ 0}, and {Pij : ā|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m, aij < 0}, the application
of the sequence Rµ3 will lead to a final configuration in which P11 : aS, where
S = a11 + · · ·+ anm, and Pij :�= ∅ for all ij �= 11 (with the possible exception of
those containing integer 0).

We end this section with some remarks on the three versions of simulations
we have proposed. We believe that discussing them, versus the parallel algorithm
implemented on the 2D-mesh in Section 4, illustrates similarities and differences
between “communication” and “internal computations” as understood, on one
hand in parallel architectures, and on the other hand, in their simulation with
P systems.

First, let us note that the third version, in Theorem 5, can be considered
a complete simulation of the algorithm in Section 4, in the sense that each
membrane Pij , even with ij �= 11, will have, in a codified form, the same content
as processor Pij .

If we concentrate only on the result, i.e., on membrane P11 which must fi-
nally contain the sum, we note that, in the simulation with P systems, we can
almost obtain it with only “communication” rules: rewriting is necessary only in
Theorem 4, and only because the input data may contain integers with differ-
ent signs. Moreover, both “communication” and “internal computations” steps

in the parallel architecture, were modelled with “communication-only” rules in
the P systems simulation (the case of Theorem 3). In the first two simulations,
Theorem 3 and Theorem 4, there was no need to even represent the auxiliary
variable t, a local memory essential for the functioning of the parallel algorithm.
This implies that the notion of “communication” in P systems is stronger than
the corresponding notion in classical parallel models, of course, at the cost of
“local memory loss”.

6 The Reduction on the 2D-Mesh Architecture

Let (A, ∗, 0) be a commutative monoid, i.e., A is a set, ∗ is a binary associative
and commutative operation over A, and 0 is the neutral element of ∗.

Let a0, . . . , ak−1 be elements of this set. The reduction (see [8], Section 2.3.1)
is the process of computing a0 ∗ · · · ∗ ak−1.

The 2D-mesh architecture can be used to solve the reduction problem. Let us
suppose that the total number of elements is k = (2m + 1)× (2n + 1). Consider
k = (2m+1)× (2n+1) processors connected by a 2D-mesh network. The nodes
of the network will be labelled by pairs (i, j) (or simply ij), with i the row index,
−m ≤ i ≤ m, and with j the column index, −n ≤ j ≤ n. The set of elements to
which we want to apply the reduction is

{a(−m)(−n), . . . , a(−m)(n), . . . , a00, . . . , am(−n), . . . , amn}.

Processor Pij , with label ij, −m ≤ i ≤ m, −n ≤ j ≤ n, possesses two local
variables: xij (initialized by aij) and tij (initialized by 0).

The following procedure computes

a(−m)(−n) ∗ · · · ∗ a(−m)(n) ∗ · · · ∗ a00 ∗ · · · ∗ am(−n) ∗ · · · ∗ amn,

and puts the result in processor P00:

procedure reduction2D−MESH(a(−m)(−n), . . . , a00, . . . , amn)
begin

for all i, j where −m ≤ i ≤ m, −n ≤ j ≤ n, do
xij ← aij; tij ← 0

endfor
for j ← n− 1 downto 0 do

for all i where −m ≤ i ≤ m do
tij ⇐ xi(j+1)
xij ← xij ∗ tij

endfor
endfor
for j ← −n + 1 to 0 do

for all i where −m ≤ i ≤ m do
tij ⇐ xi(j−1)
xij ← xij ∗ tij

endfor
endfor
for i← m− 1 downto 0 do

ti0 ⇐ xi+1,0
xi0 ← xi0 ∗ ti0

endfor
for i← −m + 1 to 0 do

ti0 ⇐ xi−1,0
xi0 ← xi0 ∗ ti0

endfor
end

The second and fourth for loops are iterative steps, one responsible for per-
forming the ∗ operation on columns from n to 0, the other for performing the ∗
operation on rows from m to 0, similarly to the algorithm for sum in section 4.

However, this algorithm has some improvement over the one in section 4. The
third for loop is the “mirror image” of the second one: a sequence of iterative
steps, performing the ∗ operation on columns, this time from −n to 0. Note that
the execution of iterative step j in the second loop can be done in parallel with
the execution of iterative step −j of the third loop. Similarly, the fifth for loop
is the “mirror image” of the fourth one: a sequence of iterative steps, performing
the ∗ operation on rows, this time from −m to 0. Note that the execution of
iterative step i in the fourth loop can be done in parallel with the execution of
iterative step −i of the fifth loop.

This ensures that the running time of this algorithm, (if we apply the par-
allelism mentioned above), measured in iterative steps is (2m + 2n)/2, i.e., this
algorithm takes

√
k/2 steps, compared with

√
k steps required by the previous

algorithm for sum. The simulation which follows makes use of this enhanced
parallelism.

7 Simulation of the Reduction

In order to simulate the algorithm for reduction presented in section 6 with P
systems with dynamic communication of 2D-mesh type, we have to work under
the following supplementary assumptions:

1. The elements aij on which the operation ∗ is performed can be codified inside
each membrane Pij over a finite alphabet, say Vx; the alphabet will be used
to codify all values of variable xij , both initial and intermediate;

2. Using the same codification, the values of local variables tij are codified
inside each membrane Pij over a finite alphabet, say Vt;

3. Vx and Vt are in bijective correspondence: to each a ∈ Vx there corresponds
a symbol a′ ∈ Vt;

4. There exists a set of symbol rewriting rules on Vx ∪ Vt, denoted r∗, which
simulates performing the operation xij ∗ tij inside each membrane Pij ; the
value of the result xij ∗ tij is codified over Vx as the new value of xij .

Under these assumptions, the rest of the model follows the general lines of
the models for sum in Section 5. Copying the value of xij into tij is done by the
set of symbol rewriting rules {a −→ aa′ | a ∈ Vx}. Since the codifications for
x’s and t’s are the same, the effect is the desired one. Transfer of values for t’s
over the appropriate edges can be accomplished with the set of symport rules
{(a′, out) | a′ ∈ Vt}. Finally, the set r∗ will compute xij ∗ tij and put the result
in xij .

We construct now the sequences of pairs [graph, rules] which simulate the
iterative steps of the reduction algorithm. To simplify the notation we write all i
instead of −m ≤ i ≤ m.

For each j = n, . . . , 1 (the horizontal steps), we take

Rh
j = [Id∗j ∪ Id∗(−j), {a −→ aa′ | a ∈ Vx}],

[{((i, j), (i, j − 1)) | all i} ∪ {((i,−j), (i,−j + 1)) | all i}, {(a′, out) | a′ ∈ Vt}],
[Id∗(j−1) ∪ Id∗(−j+1), r∗].

For each i = m, . . . , 1 (the vertical steps on column 0), we take

Rv
i = [Idi0 ∪ Id(−i)0, {a −→ aa′ | a ∈ Vx}],

[{((i, 0), (i− 1, 0))} ∪ {((−i, 0), (−i + 1, 0))}, {(a′, out) | a′ ∈ Vt}],
[Idi0 ∪ Id(−i)0, r∗].

Let (A, ∗, 0) be a commutative monoid, and consider the following set of
elements of A:

{a(−m)(−n), . . . , a(−m)(n), . . . , a00, . . . , am(−n), . . . , amn}.

Assume that every element of A can be codified over an alphabet Vx, and that
there exists a set of rewriting rules r∗ which simulates performing operation ∗
on two elements of A, one codified over Vx, the other over Vt, and the result of
the computation is again codified over Vx. Consider the P system with dynamic
communication of 2D-mesh type

Π∗ = (Vx ∪ Vt, {Pij | −m ≤ i ≤ m,−n ≤ j ≤ n}, Rµ∗),

where Rµ∗ is the sequence of pairs [graph, rules]:

Rµ∗ = Rh
n · · ·Rh

j · · ·Rh
1 ·Rv

m · · ·Rv
i · · ·Rv

1,

with Rh
j and Rv

i as defined previously.
Then, starting from an initial configuration in which each membrane Pij

contains a codification of the value aij over Vx, for all −m ≤ i ≤ m, −n ≤ j ≤ n,
the application of the sequence Rµ∗ will lead to a final configuration in which
P00 contains a codification of S ∈ A, where

S = a(−m)(−n) ∗ · · · ∗ a(−m)(n) ∗ · · · ∗ a00 ∗ · · · ∗ am(−n) ∗ · · · ∗ amn.

8 Conclusions

We have analyzed in this paper the possibility of simulating the parallel archi-
tecture known as the 2D-mesh with a new version of P systems, P systems with
dynamic communication graphs.

In Section 3 a comparison is made between dynamic communication graphs of
2D-mesh type, introduced here, and dynamic communication graphs of shuffle–
exchange type, introduced in previous work. We believe this illustrates the power
of this new version of P systems as tools for formalizing other network architec-
tures as well.

We have illustrated the proposed simulation with the particular algorithm
for computing the sum of a given set of integers. Discussing several possible sim-
ulations of the sum algorithm has given us the opportunity to compare “commu-
nication” as understood in P systems, and communication in classical parallel
architectures.

We have further presented an algorithm to solve the reduction problem im-
plemented on a 2D-mesh, and discussed its simulation with P systems with
dynamic communication graphs, simulation possible under some supplementary
assumptions.

References

1. R. Ceterchi, C. Mart́ın–Vide, P Systems with Communication for Static Sorting. In
M. Cavaliere, C. Mart́ın–Vide and Gh. Păun (eds.), Proceedings of the Brainstorming
Week on Membrane Computing, Report GRLMC 26/03, 2003, 101–117.

2. R. Ceterchi, M.J. Pérez–Jiménez, Simulating Shuffle–Exchange Networks with P
Systems. In Gh. Păun, A. Riscos–Núñez, F. Sancho–Caparrini and A. Romero–
Jiménez (eds.), Proceedings of the Second Brainstorming Week on Membrane Com-
puting, Report RGNC 01/04, 2004, 117–129.

3. R. Ceterchi, M.J. Pérez–Jiménez, A Perfect Shuffle Algorithm for Reduction Pro-
cesses and its Simulation with P Systems. In I. Dzitac, T. Maghiar, C. Popescu
(eds.), Proceedings of the International Conference on Computers and Communica-
tions ICCC 2004, May 27-29, 2004, Baile Felix Spa – Oradea, Romania, Editura
Univ. Oradea, 2004, 92–97.

4. M.J. Flynn, Very High-Speed Computing Systems, Proceedings of the IEEE 54, 12
(1966), 1901–1909.

5. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computers, 20, 3 (2002), 295–306.

6. Gh. Păun, Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

7. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
8. M.J. Quinn, Parallel Computing. Theory and Practice, McGraw–Hill Series in Com-

puter Science, 1994.
9. J.D. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockville,

MD, 1984.

	Introduction
	The 2D-Mesh Architecture
	P Systems with Dynamic Communication Graphs of 2D-Mesh Type
	The Sum on the 2D-Mesh
	Simulation of the Sum
	The Reduction on the 2D-Mesh Architecture
	Simulation of the Reduction
	Conclusions

