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Abstract A 2D topology-based digital image processing framework is presented
here. This framework consists of the computation of a flexible geometric graph-
based structure, starting from a raster representation of a digital image I. This
structure is called Homological Spanning Forest (HSF for short), and it is built
on a cell complex associated to /. The HSF framework allows an efficient and
accurate topological analysis of regions of interest (ROIs) by using a four-level
architecture. By topological analysis, we mean not only the computation of Euler
characteristic, genus or Betti numbers, but also advanced computational algebraic
topological information derived from homological classification of cycles. An initial
HSF representation can be modified to obtain a different one, in which ROIs are
almost isolated and ready to be topologically analyzed. The HSF framework is
susceptible of being parallelized and generalized to higher dimensions.
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1 Introduction

One of the main goals of digital image processing and computer vision is the research
and development of flexible and topologically-consistent frameworks for nD image
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processing and object recognition. Roughly speaking, topology in a discrete context
helps to understand the degree of connectivity of subdivided geometric structures.
For subdivided objects, homology is topology measured in terms of linear combina-
tions (called chains) of unit elements or bricks (also called cells), and in terms of a
“boundary operator” describing the connectivity dependencies among these bricks.
Homology depends on the ring of coefficient and it gives an algebraic answer in terms
of formal sums of bricks that have no boundary (for example, closed subdivided
curves or surfaces). These sums are called cycles and homology determines a
representative cycle for each n-dimensional hole or homology generator the object
has (connected components, tunnels, cavities, etc). In this way, homology can be
considered as an specification of the contribution of each brick, to the creation of
the homology representative cycles.

We present here a 2D topology-based digital image processing framework that
is built on a graph-based structure, called Homological Spanning Forest (HSF,
for short). This framework allows an efficient and complete topological region-of-
interest (ROI, for short) analysis (that is to process a single subregion of an image,
leaving other regions unchanged). The proposed framework provides a represen-
tation that can be used for the development of efficient algorithms to compute
analytical, geometrical and topological features of discrete objects.

In order to facilitate the understanding of this idea, we start with an elementary
example of a subdivided object. Given a geometric graph G, the homology informa-
tion in which we are interested can be directly captured by means of a spanning tree
T of G. In fact, we transform T into a directed tree 7 by adding arrows to every edge
in 7, in such a way that at most one arrow comes out from each vertex. Therefore,
there will be only one vertex s of G, called sink, from which no arrow comes out.
Let us take now the simple example of Fig. 1, drawn on R?. Let us now interpret an
arrow ( f, e) in T¢ from the vertex f to the vertex e as an elementary “deformation”
operation “contracting” in a continuous way the vertex f onto e through the edge
(e, f) inside the object. The result of applying (no matter the order we choose)
the set of homology-preserving operations V = {(a, f), (b, ), (c,d), (d,e), ([, e)} on
G is a reduced (in terms of bricks) subdivided structure consisting of only three
bricks: the vertex e, and two loops or “edges” starting and ending at the same
common vertex e (in fact, they represent the cycles {(c, f), (e, f), (d, e), (¢, d)} and
{(a,D), (a, 1), (e, f),(d,e), (c,d), (b, c)} coming from (¢, f) and (a, b), respectively).

a b a b & e b

f C f C f oo——— C

e d e d cee d
a) b) c)

Fig.1 a A geometric graph G drawn on R?, b a directed spanning tree (in red) showing a homological
“deformation” process and ¢ the minimal homological object (in black)
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The directed spanning tree T can be interpreted in dynamical terms, as the way in
which the set of vertices of the graph is “collapsed” to a representative vertex of the
connected component (in this case, the vertex e in black). These three representative
cycles of homology generators (in this case, no matter of the ground ring we use but
heavily dependent on the spanning tree T') are determined by the following bricks of
G (called critical): the edges (c, f), (a, b) belonging to G \ T, and the sink vertex e
belonging to 7. Its integer homology groups are one copy of Z in dimension 0 and
two copies in dimension 1. A Homological Spanning Forest or HSF representation
F(G) for the subdivided geometric structure G is the set of coordinate-based trees
F(G) ={T% T, T,}, where T, and T, are trees composed by only one “vertex”: the
original edges (a, b) and (c, f) respectively.

This “homological representation” has some properties that we will study later
under a more general, rigorous and formal mathematical context:

(a) Non-uniqueness: it is not unique and strongly depends on how the set of bricks
is managed in order to obtain a minimal homological expression.

(b) Local Transformability: a global HSF representation can be transformed into a
different one by using local combinatorial operations.

(¢) Geometric Acuity: the use of coordinate-based trees allows to capture the
geometry of the original object (each node is specified by an ordered pair of
integer coordinates with respect to the square grid of the initial image).

(d) Topological Acuity: it suitably encodes advanced topological features (Euler
characteristic, Betti numbers, classification of cycles, determining the con-
tractibility and transformability of cycles inside the object, numerical invariants
related to cohomology algebra, cohomology operations, ...), due to the fact
that the HSF forest can be automatically rewritten in algebraic terms (with
coefficients in a field) as a chain homotopy operator determining a strong
relationship at chain level (formal sums of bricks) between the geometric
object G and its minimal homological expression; that is, a chain homotopy
equivalence.

(e) Reusability: a HSF representation of a subgraph G’ of G can be derived
automatically from a previously computed HSF representation of G.

We work in this paper with HSF structures within the context of discrete (raster)
2D images. In this highly structured setting, preference will be given to an ambiance-
based digital image processing rather than to an object-based one. Assuming that the
ambiance carrier (cell complex) of a digital image is topologically trivial (i.e., it has
the homology of a point), we extend here to dimension two the homological meaning
(in terms of cell collapse-like operations) of the spanning tree notion over a graph.
In this way, such a combinatorial HSF scaffolding in which the values of the pixels of
a digital image I become the weights for the respective 0-cells fully represent / from
a topological point of view.

Referring to a whole image / of dimension n x m, its associated HSF set of
coordinated-based direct trees can be, initially, independent of the pixel contents
of the digital image /. A HSF representation F (/) leans on an common underlying
continuous analogous for all the images. In 2D, it is a finite cell complex K, , that is
collapsible to a cell (more precisely, cubical) complex version of the Euclidean plane
P, whose 0-cells are the pixels of I, the 1-cells describe the relationships between 4-
adjacent pixels in terms of straight lines, and the closure of 2-cell are squares formed
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by four pixels mutually 8-adjacent. Although this framework works for any different
discrete type of adjacency between pixels (8, 6 or 4 connectedness), we focus here
on 8-connectedness. In this case, K, ,, is a cell complex with elementary “pockets”
(see Fig. 9). Now, starting from a HSF-representation of a digital image, there is
an efficient way to “deform” it to a new one, and to isolate ROIs, in order to, for
example, analyze further topological features on them. Let us emphasize that these
constructions can be built in a parallel setting.

There are in the literature an enormous number of papers dealing with techniques
that reduce the structural shape of a 2D region to a graph (skeletons, shock graph,
cut-graph methods, combinatorial maps, pyramids, ...) (see for example [11, 31, 32]).
A substantial minor number of papers handle a cell complex based representation of
a 2D digital image (see for instance [2, 24, 28, 29]).

Our combinatorial HSF framework for 2D digital image processing can be clas-
sified as a hybrid method that is based on the description of homological information
about cell complexes in terms of directed graphs. The object modeling in this
context can be considered as a combinatorial refinement of the AT-model method
(algebraic-topological method) developed in papers [16-18]. The AT-model is based
in the description of homology in terms of chain homotopies. This idea is not new
(comes back to the Eilenberg-MacLane work on Algebraic Topology [10]) and has
been developed in algebraic-topological methods like Effective Homology [37, 40]
and Homological Perturbation Theory [20] and in the discrete settings in Discrete
Morse [13] and AT-model [15, 33] theories. For example, in Discrete Morse Theory,
the HSF structure can be specified as an appropriate graph description of an optimal
discrete gradient vector field.

The paper is structured as follows: We begin with recalling basic definitions and
results in Section 2. In the following section, we give an introductory idea of the HSF
technique for finite cell complexes. In Section 4 the proposed framework for discrete
2D images is detailed. Homology and cohomology computation based on the HSF
technique are developed in Section 5. We present a parallel homology-based process-
ing using the HSF framework in Section 6, and conclude the paper in Section 7.

Most of the figures of 2D digital images in the paper have been created using the
software developed in [38].

2 Preliminaries

In this section, we introduce some useful concepts for the understanding of the paper.

A digital image I is a function defined on a discrete set D in R” (carrier of the
image) onto a discrete set V in R (usually {0, 1} for binary images or {0, 1, ..., 255}
for gray-level images). The carrier of [ is usually a subset of a uniform regular grid
defining Z*. An object of interest O C D in a digital image I : D — V/, has as image
support function w : D — {0, 1}, which assigns the value 1 to any pixel of O, whereas
each pixel of O¢ = D\ O has the value 0 (O° is named the background).

Let us now recall some definitions from algebraic topology.

A topological space is a set of points X with a definition for the open subsets of
X, usually called neighborhoods. Two topological spaces X and Y are considered
equivalent if there exist a homeomorphism between them, i.e., a continuous bijective
function f: X — Y whose inverse is continuous.
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The goal of a topological map is to partition a topological space up into regions
that are homeomorphic to open balls (see [5, 42]). More formally, for p > 1 define
B ={xeR”:|x| < 1},@p={xeR1’: x| <1}, SP = {x e R x| =1).

A space homeomorphic to B? is called an open p-cell, a space homeomorphic to
B’ is called a closed p-cell, and a space homeomorphic to S” is called a p-sphere. By
convention we say that single points are both open and closed 0-cells. A partition of
a space into open cells is called a CW-complex. Recall that a p-dimensional (finite,
normal, homogeneous) CW-complex K is a pair (X, {K;}7)) where X is a Hausdorff
space and {K;} is a finite partition of X into open cells such that:

— theset K; is the set of all open i-cells with 0 <i < p.

— for every open p-cell, o, there is a continuous map #, : B” - X whose restric-
tion to B? is a homeomorphism onto ¢ and whose restriction to SP~!, called
boundary of o and denoted do, is the union of open cells in K of dimension less
than p. The space h, (B") = 5 is called closure of the open cell o ando = o U do.
In addition it is required that every open cell o is either a p-cell or is in the
boundary of a p-cell. To indicate relationships between cells, we write T > o (or
o < ) and we say that o is a face of 7 if 0 # v and 0 C 7. We write 7 > o if
eithert >o ort > o.

The p-skeleton K(p) of K is the set of all k-cell Urp:0 K,,with0 < k < p.If all the
cells of K are convex sets of the Euclidean p-dimensional space, then each cell can be
represented by a its a new point interior to each cell (commonly, its barycenter) and
K is called convex cell complex. Simplicial, cubical and some polyhedral complexes
are special cases of convex cell complexes. All the complexes in this paper are convex
cell complexes embedded into the Euclidean p-dimensional space.

In this paper the considered ring of coefficients A is the finite field Z/27Z = {0, 1},
but all the results are valid for any commutative field (another finite field, the rational
numbers, the real numbers,...). Let {x|, x2, ..., x,} be a finite set of symbols. The finite
vector space of formal linear combinations Ajx; 4+ AyX2 + ... + ApX,, With A; € A, is
denoted by A[xy, ..., x,].

Given a cell complex K, one can define, for each dimension ¢, the chain vector
space C(K), whose elements, called g-chain, are linear combinations of cells of
dimension g (g-cells). Then, the chain complex C(K) canonically associated to the
finite cell complex K is a differential graded vector space given by a couple (C(K), 9),
where C(K) = {C(K)4}o<¢<a s a finite sequence of chain vector spaces C(K),, and
the differential (bounding relation) 8 = {9;}0<¢<a is a sequence of homomorphisms
g : C(K)q — C(K)4-1, such that the composition of any two consecutive maps is
zero: 9, 0 9;—; = 0forall0 < g < d (and 9y = 0).

For the convex cell complexes and the coefficients ring considered in this paper,
the differential for an open p-cell o can be automatically deduced from its boundary.
If 7;,...,7 are the open (p — 1)-cells belonging to the the boundary do, the
differential for o isthe sum 7y + ... + 7,.

A g-chain ¢ € C(K), is called a g-cycle if 9,c =0. If ¢ = 3,4,b for some b €
C(K)g4+1 then c is called a g-boundary. Denote the vector space of g-cycles and g-
boundaries by Z, and B, respectively. Roughly speaking, the idea of homology is
to analyze the degree of connectivity of cell complexes using formal sums of cells.
Thanks to the nilpotency property of 9, it is true that Z, € B, for all g > 0. Define
the ¢ homology group of the cell complex K (or equivalently, of the chain complex
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C(K)) to be the quotient group Z,/B,. We say that c is a representative g-cycle of the
homology generator ¢ + Bj,.

Elementary chain homotopy operators (that is, linear maps ¢ : C(K), —
C(K).+1) acting on a cell complex K can be used to describe the process of homology
computation for K at chain complex level. In the case of coefficients on a field, it has
been proved (see [15, 22, 33]) that the whole homology computation process can be
exclusively specified by the exhaustive use of these operations. In that case, they are
a chain homotopy equivalence version of the classical cell collapsing operation (see,
for example, [4]).

We interpret now some elementary notions of Discrete Morse Theory [13, 14] in
terms of chain homotopy equivalences.

Let K be a finite cell complex and o a cell of K of dimension ¢ (¢ € {1,2}). If
uy,...,u, (r € N) are the (¢ — 1)-cells which form the boundary d(c) of o, let us
take ¢y, » : Z/2Z[K] — Z/27Z[ K] defined by ¢ (1;) = o and zero elsewhere. The map
¢u,.o 18 called cell homology collapsing and is a chain homotopy operator satisfying
the properties: (a) ¢y,.0 © ¢u,.o = 0, (2-nilpotency condition) and (b) ¢y, » 0 d 0 ¢y, 0 =
¢u,.o (chain contraction condition). In fact, this map generates the following chain
homotopy equivalence between differential graded vector spaces (also called a chain
contraction in [10]):

(furoincl, ¢u,q) : (C(K) = Z/2Z[K], 8) — f(C(K)) = (f(C(K)), d") (1)

where f,, :C(K) — f(C(K)) is the map f,o = (k) + 90 du;0 + Pu;.0 09 (be-
ing lek) : C(K) — C(K) the identity function on C(K)), f(C(K)) ={f(c)/ce
C(K)} C C(K), incl: f(C(K)) — C(K) is the linear operator defined by i(z) =
z, Yz € f(C(K)) and 9" : f(C(K))g = f(C(K))4—1 is the differential defined by
8'(f(©)) = f(B(c) = (8 + 8 0y 00)(c). Concretely, f(u) =Yy ux. f6)=0
and if o’ € Cy(K) and d(¢’) =u; + ..., then f(o') =0 +0' and 9'(f(c")) = d(oc +
o). Finally, f is the identity map and 8’ = 9 for the rest of cells. In Fig. 2, a cell
homology collapsing operator (represented with a red arrow) and the result after its
application are shown.

It is straightforward to prove the following properties (guaranteeing in this way
that ¢y, » = (fu,.0, incl, ¢y, ») is a chain contraction):

(a) 1C(K) +incl o ﬁt,,o‘ =do ¢lt;,rr + ¢u;,rr 00
() fu.o oincl =1ycw)
(C) ¢u,,a oincl =0= fui,d o ¢ui,0

Fig.2 A cell homology collapsing and the resulting cell complex
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In particular, these properties mean that the homology groups of the differential
graded vector spaces C(K) and f(C(K)) are isomorphic. If u; belongs to the boundary
of only one cell o ({u;, 0} is also called a free pair), then f(C(K)) = (Z/27Z[K \
{ui, 0}], 0) and this chain contraction is a classical cell collapse (see Fig. 3 for an
example).

A finite cell complex X collapses onto Y if there is a sequence of cell complexes
< Xo, X1, ..., X; > (also called cell collapse sequence) such that Xy = X and X, =
Y, and there is an elementary collapse from X;_; to X;, foralli=1,...,¢. A cell
complex Y C X is called a strong deformation retract if the cell complex X collapses
onto Y. A cell complex X is called collapsible if it collapses onto a cell complex
X{*} made of a single point. In particular, a collapsible cell complex is acyclic, that
is, having the same homology groups as a single point. The elementary collapse
operation from X;_, to X; is specified by a free pair {¢,o} in X;_;. Both u and o
also belong to Xj, due to the fact that at each step, free pairs are considered. In
this way, we can reinterpret the notion of cell collapse sequence at chain complex
level as a sum of chain contractions. This homotopy equivalence is determined by
the chain homotopy operator such that ¢ (1) = o, for all the involved free pairs
{u, o}. In the next section, we determine a method for dealing with elementary chain
contractions ¢, ,, where {u, o'} runs over a discrete vector field V for determining the
global homological structure of an acyclic cell complex in combinatorial terms.

The following notions from Discrete Morse Theory [14] are essential in the sequel:

A discrete vector field V defined on a cell complex K is a pairwise disjoint
collection of sets of two incident cells {a? < PV},

An integral path y for a discrete vector field V is an alternating sequence of cells
a(()p ), ((,p il), () ﬁ(p £ <p ). ..., such that for each pair of consecutive simplexes, one
is a maximal face of the other and the following condition is satisfied: one of the

couples {a”, B} or {7, fﬂ} belongs to V, Vi > 0. If the final simplex in the

path y above is a?, then we say that y has length r. If it ends with ﬂ,p =D then we
say that y has length r— If the cells b; of the path y are of dimension p + 1 and it has
length r>, the integral path y is called upper integral path.

An 1ntegral path is non trivial and closed if » > 1 and the first and last cells in the
sequence are the same. A discrete gradient vector field is a discrete vector field with
no closed integral path.

A cell a is a critical cell of V if it is not paired with any other cell in V. The number
of critical cells depends on the discrete gradient vector field considered. A gradient
vector field is optimal if it has the minimum possible number of critical cells. Forman

.jz Az Az _lz
- 4 3 1 3 14 3 4
Fig. 3 A cell complex and the resulting cell complex after applying the chain homotopy ¢ ((1)) =
(1,2) (on the left) and a cell complex and the result after applying ¢ ((1, 2)) = (1, 2, 3) (on the right)

3
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proved that the topology of a discrete manifold is related to these critical elements,
mimicking the results of Morse in the smooth case.

3 HSF technique for finite cell complexes

In this section, we extract the homological nature of a HSF structure for a finite cell
complex, which is half-way between the combinatorial notion of an optimal gradient
vector field (Discrete Morse Theory) and the classical algebraic concept of chain
contraction (Effective Homology Theory) or even the less elaborate abstraction of a
chain homotopy operator (AT-model theory).

In Fig. 1, it is shown that the spanning tree together with the two critical bricks
can be seen as a non-redundant structure M(G) which combinatorially represents
the geometric graph G. There is a strong algebraic relationship between M(G) and
G that is described by means of a chain contraction between them with a chain
homotopy operator specified by the HSF structure. Denoting by Z/2Z[G] the graded
vector space formed by the finite linear combinations of 0-cells and 1-cells of G, we
can formalize this chain homotopy operator:

bu : Z)2ZIG) — Z)2Z[G] ()

with ¢y(a) = (a, )+ (f,e), opu(b) = (b, c) + (¢, d) + (d, e) and, for the rest of ver-
tices, ¢y (x) is the sum of arrows of the directed path from x to e following the “max-
imal paths” ¢ys(a) or ¢ (D). Concerning the vertex e, ¢p(e) = 0. The evaluation of
¢m on each of the edges of G is zero.

Using ¢y, the following operators can be defined:

1. The flow, defined as fyy =1+ ¢po0d+3do¢y:2Z/22[G] - Z/27Z]G], where
1 and 9 are functions from 7/27[G] to Z/27|G] denoting the identity and the
boundary operator of the graph cell complex G, respectively.

2. Theinclusion operatorincl: 7./2Z[Cy, Cy, C2]1 — Z/27Z[G), where C; (i € {0, 1, 2})
are the homology representative cycles.

In Fig. 1, fu(x) = {Cy = e} for each vertex x of G and fy((x, y)) = 0 for each
edge (x, y) in the spanning tree 7. The flow of the critical edges (a,b) and (f,c)
are, respectively the cycles C; = (a,b) + (b,c) + (¢, d) + (e, f) + (f,a) and C, =
(€ )+ (.d) +d e+

Therefore, under these conditions, any cell ¢ of G can be obtained as a sum of
a homology representative cycle C; (i € {0, 1, 2}) and the homologically inessential
linear combination (3 o ¢y + ¢dar 0 3)(c). The cycles C; (i € {0, 1,2}) are invariant
linear combinations of cells through the flow.

In other words, the triple (fu, incl, ¢p) is a chain contraction from the chain
complex C(G) to M(G) = Z/2Z[Cy, C;, C;], which is entirely determined by the
chain homotopy operator ¢ ;.

For general and higher dimensional cell complexes, the HSF method is more
complicated and needs more explanation (see, for example [35]). We first give the
definition of HSF structure on a general finite cell complex and, later, we focus on
the two-dimensional case, by specifying a priori an optimal gradient vector field on
it, and to cell complexes embedded in a regular Cartesian grid (considering this last
as a cell complex).
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Definition 1 Let K be a finite cell complex. A HSF representation F of K is a set of
coordinate-based directed trees F = {T(F), To(F), ..., T.(F)} (for some positive
integer r) satisfying the following conditions:

(a) Every convex cell of K is a vertex of only one of the trees of F and it is
represented by its barycenter.

(b) The vertices of a tree T;(F) € F (i =0, ... p) are either p-cells (called primary
vertices of T;) or (p + 1)-cells (called secondary vertices of T;). The directed
edges of T;(F) are either upwards F-arrows from a p-cell «'” to a (p + 1)-cell
BT (from which a® is boundary), or downwards F-arrows from a (p + 1)-
cell BP*D to one of its boundary p-cell a'?. T; is called a p-tree of F. T; can
have no directed edges and, in this case, it is a trivial tree with only one vertex.
Each p-tree T; has at least one leave that is a p-cell. The upwards F-arrows
determine a discrete vector field V(F) on K.

(¢) The following equalities hold:

P (F)ododp(F)=¢(F) and dop(F)od=a.

where 9 is the differential of K and ¢(F) : C,(K) — Cy.1(K), called chain
homotopy operator associated to F, is defined by: ¢(F)(cP) is 0if 6 is a p-
cell belonging to a (p — 1)-tree of F; if 0P is a vertex of a p-tree T of F, then
O (F)(eP) = Ei(aimodZ)ﬂi(pH), where ﬁi(pﬂ) runs over all the (p + 1)-cells of
T and g; is the number of upper integral V(F)-paths from o® to g**".

In any HSF-representation of K, if exists, its 0-dimensional homological trees
specify (not considering the arrows) a barycentric subdivision of a spanning forest
of the 1-dimensional skeleton K of K. In some way, this decomposition method
can be seen as a “natural” extension to higher dimension of the graph-based tech-
niques for computing the spanning forest of a graph complex and its corresponding
zero and one dimensional homology groups. For that reason, we have named this
decomposition “Homological Spanning Forest”.

As we later prove, there exists such a tree-based structure in digital context. We
propose here to calculate HSF strutures for digital objects by means of “deforma-
tions” of HSF structures on the ambiance space.

Let K be a finite cell complex such that a cell complex version of a finite regular
Cartesian grid is a strong deformation retract of K. From now on, we name such type
of space as ASDR (Acyclic Strong Deformation Retract) cell complex. Let V be an
optimal discrete gradient vector field installed on K. Therefore, K is homologically
null and all the cells of K are paired by V, excepting a 0-cell s called sink of V. In fact, s
is a representative cycle of the zero dimensional homology group of K and the chain
contraction generated by ¢y connects the chain complex canonically associated to
K with Z/27]s]. In these conditions, K can be “decomposed” into a HSF structure.
Moreover, in this case, due to the fact that the context of ASDR cell complexes is
highly structured and that the vertices of the HSF structure are convex cells deter-
mined by their barycenter, we can talk about HSF representation of digital objects.

In order to prove this result, we take advantage of the algebraic technique of
Homological Perturbation Theory [20, 21] applied to the discrete gradient vector
field ¢y . This idea has already been exploited in a more general setting in the paper
of Romero-Sergeraert [37] for establishing an strong interplay between Effective
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Homology and Discrete Morse Theories. In that paper, starting from an optimal gra-
dient vector field on a general finite cell complex, a chain contraction is determined
using homological perturbation. Focusing on the chain homotopy operator of this
last chain homotopy equivalence, we here give a proof of its graph-based nature.

Lemma 1 [37] Let K be an ASDR cell complex, C(K) be its corresponding chain
complex and ¢y be the chain homotopy operator associated to an optimal discrete
gradient vector field V. Let s be the sink of V. Then, it is possible to construct the
following chain contraction ( fy, gy, ¢y) from (C(K), d') to (Z/27Z[s), 0), such that the
differential 9y : C,(K) — C._1(K) is defined by 9y (o) = v, where (v,,0) € V and
the differential 0 : 7Z/2Z[s] — Z/27]s] is defined by 0(s) = 0. The formulae for f,
and gy are the following ones:

v =140y cdy +¢yody
gv(s) =s

Romero and Sergeraert apply the differential perturbation technique to the
chain contraction (fy, gy, ¢y) from (C(K), dy) to Z/27Z[s], using as differential
perturbation § = 9 — dy, in order to deduce a true chain contraction (f3,, g3, ¢3,)
connecting C(K) (with the original boundary operator) with its homology.

We focus our interest here in the new chain homotopy operator ¢s = ¢y + ¢y o
oy +...+ppodopdyodopy+...toderive a graph structure HSF from it.

Forag-cella (¢ = 1,2),8(a) = u; + ...+ u, such that each u; is not paired with a

by means of V.
For a g-cell ay, the value ¢5(ag) isasum of (1 +r, + ...+ 1) (g + 1)-cells ¢ (ap) =
bo’l, ¢O(SO¢(CI0)=b1’2+...+br2’2, ey (¢05)t71O(ﬁ(ao):bl’,—i-...—i-b,h[. In

fact, So¢p(ap) = ain+ ...+ a2, With ¢py(ai2) =b1o, ..., ¢v(a,2) = by, 2. Analo-
gously, (8 o #)(ag) = aii+ ...+ ap, with ¢p(ar) =b 4, ..., dv(ar,) = b, . On
the other hand, ¢s(C(K)) is an acyclic graded vector space. It is combinatorial in
the sense that it admits a basis formed by cells of K. If ¢y (a) = b, then b also
belongs to ¢s(C(K)). Let us note that ¢s(a) = ¢y (a) + ¢s(8(b)) and therefore b =
$5(a) — $5(5(b)).

With all these results at hand, ¢s(ap) =bo1+bi2+...+bpo+...+b1i+
...b,, can also be expressed as a directed tree Ty 4, having as vertices V(Ty, ap)
all the p and (p + 1)-cells

{ap = ao,1, bo,l,al,z, ceey apy 2, b1,27 B br2,27 cees iy oy Qrpgy bl,z, . ubr,,z},

previously described. The set of edges E(Ty ) is formed by arrows from a;; to
b;j, Vi, j, and from a (q + 1)-cell b;; with a g-cell a;, belonging to its boundary.
Moreover, any path starting from a( and finishing in a (p + 1)-cell is an upper integral
path for V. In fact, {ag} U ¢s(ap) is homotopy equivalent to Ty ,, (see Fig. 4).

It can occur that there are two cells a,da’, with a # a’, for which V(Ty ,) N
V(Ty ) # 9. In this case, the union of the corresponding associated trees is again
a new tree containing the previous ones. Finally, from this data it is immediate to
establish a HSF structure accomplishing all the conditions of Definition 1.

In Fig. 5, an optimal gradient vector field for a cubical complex K and the upper
integral path starting from the edge e are shown. In fact, this path can also be seen as
sums of cells ¢;s(e). The 2-cells forming the sum ¢;(e) are represented by blue thick
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Fig. 4 HSF representation in

which the sum of 2-cells ¢ (e) is

colored in white. Its associated

homological tree Ty . is

colored in black 1

Fig. 5 An optimal gradient
vector field for a cubical
complex and the upper
integral path starting from the
edge e. The homological tree
Ty, or in this case ¢ (v), is
colored in black

Fig. 6 An optimal gradient
vector field for a cubical
complex
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Fig. 7 HSF representation

where the tree 0-dimensional
tree is colored in red and the
1-dimensional trees in yellow

points. Then, it is possible to construct a HSF structure on the ASDR cell complex
K from ¢s(C(K)).

In Fig. 6, an optimal discrete gradient vector field is described for the acyclic
cubical complex K. In Fig. 7, a HSF representation of K is shown.

Theorem 1 Let K be a finite 2-dimensional ASDR cell complex and suppose that
there is an optimal discrete gradient vector field V on it. Then, there is a HSF structure
FV uniquely associated to V. Reciprocally, a HSF graph structure on K produces in
a natural way an optimal discrete gradient vector field. Moreover, one of the discrete
gradient vector fields associated to a HSF structure coming from an initial optimal
discrete gradient vector field V is V itself.

The first part of the previous theorem has already been proved. Now, a HSF
configuration on a general cell complex generates discrete gradient vector fields,
which can be not optimal. The acyclicity of an ASDR cell complex allow to guarantee
the optimality. The arrows from a i-cell to an (i + 1)-cell (i=0,1) of the HSF
forest produce the corresponding vectors in the gradient vector field. This strong
relationship between these two important notions for ASDR cell complexes supports
the existence of a homology-based digital image processing framework in this setting.

In the next section, we also confirm a good behavior of the HSF configurations un-
der local transformations within a ASDR cell complex. We also highlight the power
of this representation for advanced topological sequential or parallel computation.

4 HSF and 2 D digital image processing

Throughout this section, we describe the functional architecture of our 2D digital
image processing framework. This schema has four levels: Device, Logical or Cellu-
lar, Conceptual and Continuous Level. In the Device Level we represent the objects
in a computer screen, that is, as digital images. In this paper, this representation is
exclusively restricted to that of a digital image based on square pixels. The carrier
of all the digital images is defined on the planar cartesian grid. The pixels of the
digital image are the vertices of the grid. We mainly use the raster representation
of images at Device Level. The Logical or Cellular Level models the connectivity
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relationships among pixels using a cell complex structure. The only restriction is that
the ambiance cell complex must be an ASDR complex. We have demonstrated in the
previous section that for this kind of subdivided spaces, optimal gradient vector fields
can be identified with HSF representations (see Theorem 1). The Conceptual Level
deals with the homological information of the previous cell complex codified in terms
of coordinated-based direct acyclic graphs or “homological spanning trees”. Finally,
the Continuous Level is used to find a continuous solution. We follow the general
organization of the digital framework of [3], integrating essentially new proposals for
the logical and conceptual levels.

The models for the Device and Continuous Levels are well known and do not
need more explanation. We focus our interest on the Cellular and Conceptual Levels
of the framework. It is in these levels of digital content where the HSF graph-based
structure becomes a true geo-topological (geometric and topological) representation
of digital objects. The representation of the vertices of the HSF in terms of the
coordinates (in IR?) of the barycenter of the cells, allows us to fully reconstruct the
cell complex from the HSF structure.

4.1 Cellular level

In order to propose a general topological framework for digital images in which most
of their properties or features correspond to topological properties in R”, two main
different types of methods have been developed in the literature: those based on the
adjacency graph (see for instance [6, 25, 36, 39]) and those based on 2-dimensional
cell complexes (see for example [23, 26, 28, 29, 41]). The method proposed here is a
hybrid model in which the image is processed using and modifying a set of directed
trees in the whole image. Any ASDR complex could be valid, and we can choose
the most suitable one, depending on the application and the processing we want to
execute.

First, we model in a semi-continuous way a topology of the Euclidean plane. To
do this, and supposing that the 2D image is defined on a discrete set D C R?, the
usual idea is that D is identified with the set of 2-cells of the complex and the lower-
dimensional cells have to be generated additionally. In [27, 30], D = Z? (standard
case) is identified with the set of 2-cells of a uniform planar square cell complex /C,
called Kovalevsky’s cell complex.

We present here an extension of this technique, taking into account that the
discrete carrier D C R? is also the uniform square planar grid Z?. The Cellular Level
consists in principle of a cell complex £ simple homotopically equivalent to R2.
Its construction starts with a cell complex K (equivalent to the Kovalevsky’s cell
complex K) such that the points of D are the 0-cells of K., its 1-cells are the segments
connecting 4-adjacent points and its 2-cells are the squares having as corners to four
mutually 8-adjacent points (see Fig. 8).

After that, triangular 2-cells connecting three mutually 8- ad]acent points are
added to K. The intersection of each 2-cell ¢; of this type with K is formed by two
perpendicular 1-cells having in common a point of D. The third 1-cell belonging to
the boundary of ¢, is that joining two 8-adjacent diagonal points in D and it is a
free edge (it belongs to only one 2-cell, that is, ¢;). In this way, the triangular 2-cells
add elementary “pockets” to K and specify the morphology of L. The possible cell
configuration for an object of interest in the subset Ng C D of any four points of
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Fig.8 A 2 x 2 digital image
based on square pixel and its
corresponding initial ASDR
complex. O-cells are colored in
blue, 1-cells in red and 2-cell
(square) in green

D mutually 8-adjacent are (up to isometry) shown in Fig. 9. The underlying idea
behind the integration of a planar structure with elementary “pocket” defects at the
cellular level is twofold: to automatically obtain optimal gradient vector fields for the
ambiance space and to express all the previous point configurations suitably in terms
of vectors at conceptual level.

Summing up, the Logical level has been determined in terms of a cell subcomplex
of £ In this schema, some geometric information (for example, diagonal edges)
appears as elementary cellular perturbation of the topology of the Euclidean plane.
This is the way in which Geometry is integrated in this topological schema. Notice
that in practice, the cell complex £, having four triangular micro-pockets for each
square 2-cell in the plane, is the maximal (in terms of cells) ambiance cell complex
in our framework. The next conceptual level for a digital image determine the
concrete ambiance space, with each triangular pocket at cellular level specified by
a corresponding diagonal arrow at conceptual level.

4.2 Conceptual level: tree-based homology information

The Conceptual Level briefly consists of installing homology information on terms
of a HSF representation on a ASDR cell subcomplex £ of £ and handling this
information in a combinatorial way. More precisely, we manage and modify at a
cell level, the vector space produced by the image of a chain homotopy operator
describing the acyclicity of the cell complex £'. In other words, we apply graph-based
techniques for transforming a HSF representation of an image into another via local
operations at conceptual level.

In order to develop a consistent and reusable framework for homology-based 2D
digital image processing, we take advantage of an ambiance-based image processing

Fig. 9 Cell complex showing
the four “pockets”
corresponding to four
mutually 8-adjacent points.
The edges forming the
triangular cells are:

((a,d), (d, ¢), (¢, m)),

((a, b), (b, d), (d,a)) (in red)
and ((a, b), (b, ¢), (c, a)),

(e, b), (b, d), (d,c)) (in blue)
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and the one-to-one mapping between HSF representations and optimal discrete
gradient vector fields in ASDR cell complexes.

We subdivide this section into two parts: (a) Possible HSF-models for the square
subdivided topological plane £ with triangular micro-pockets; and (b) Local inter-
changing operations in the HSF-model of a digital image /: D — V. From now
on, taking into account that we work here with ASDR cell sub-complexes of £, we
identify optimal discrete gradient vector fields and its corresponding combinatorial
chain homotopy operators (see Theorem 1) with HSF representations. These notions
are suitably mixed in the following statements and results.

4.2.1 Homological initial state for the ambiance space

Let us install on the ASDR cell complex K defined in Section 4.1, an initial optimal
gradient vector field F. It is an easy task to create such vector field. In fact,
it describes the acyclicity of the cell complex and can be identified with a HSF
representation F of K (see Theorem 1). The construction of the HSF structure from
the optimal gradient vector field has been detailed in the previous section. In Fig. 7,
the forest 7 is expressed in terms of the vector field V' (in yellow) and the tree F is
colored in red (note that we have avoided the vertices of this last tree corresponding
to the edges of K, and therefore .7-"(}} becomes a “spanning tree”).

4.2.2 Local operations involving combinatorial chain homotopies

Using an ambiance-based approach, problems related to the “measurement” of
topological phenomena (like holes or tunnels of a 3D digital image), can be solved
in a satisfactory way. On the other hand, topological invariants (in particular,
homology) are global characteristics of the object, and a consistent framework for
topology-based image processing must give a quick and correct answer for extracting
this topological information when an elementary local “deformation” is applied.
We demonstrate here that some elementary local changes on the corresponding
HSF representation, have an automatic translation to the global setting. These local
changes are seen in terms of chain homotopy operators (or, equivalently, in terms
of discrete vector fields) involving a reduced subset S of neighbors cells. In fact, the
only constraint for S is that it must be closed by the concrete discrete vector field
installed on £. In 2D we put the emphasis on three types of HSF operations: (a)
Arrow reversing (b) Edge Rotation and (c) Face Rotation. We do not give a proof
here of the following results, that can be easily proven.

Algorithm 1 (Arrow Reversing) Let F = {Ty, T», ..., T,} be a HSF representation
of an ASDR cell subcomplex of L. Let cy, c; be two 0-cells, such that c, is the sink
vertex in F and there is a directed path p of 1-cells ¢y : ey, ez, ..., e, : ¢y in F from
co to c;. Then, we can construct a new HSF-representation F' that is identical to F,
except for the O-cells belonging to the path p. In fact, the new pairs in the resulting
HSF-representation are {c, e,} and those pairs from 0-cells to 1-cells in the directed
pathc : ey, eni,...,e1:co. InF', cyis the new sink vertex.
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Fig. 10 Arrow reversing example where the blue point represents ¢y and the green one represents ¢,

In Fig. 10, an arrow-reversing operation is shown (see the path drawn in red).
Arrow-reversing operations for 1-cells are not allowed due to the fact that each 1-
cell that does not belong to the 1-forest F; of the HSF F is paired with a 2-cell.

Algorithm 2 (Edge Rotation) Let ¢y be a 0-cell, ¢, and c| be two 1-cells and c, a 2-cell
of an ASDR cell subcomplex L' of L. Let F = {Fy, F1} be a HSF-representation of
L' with associated combinatorial chain homotopy operator ¢. Working at Conceptual
Level, if {cy, 1} is an arrow in the O-tree F, {c|, c2} is an arrow in the 1-forest F| and
¢o, ¢1 and ¢ belongs to the boundary of c,, then we can generate a HSF-representation
F' with associated combinatorial chain homotopy operator ¢ defined by ¢(c) = ¢(c)
for any cell c dif ferent from cq and c;, q;(co) =c| and ¢~5(cl) = 0.

In the Edge Rotation transformation, the underlying cellular structure can be
modified. We can not guarantee that the final HSF representation belongs to the
original cell complex £'. In Fig. 11, we show some elementary examples of edge
rotations.

Fig. 11 Edge rotation examples
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Fig. 12 Face rotation example

Algorithm 3 (Face Rotation) Let ¢} and ¢} two (both square or both triangular)
2—cells of an ASDR cell subcomplex L' of L, sharing a common edge e} = e2. Let
F be a HSF representation of L' and ¢ an associated combinatorial chain homotopy
operator. Working at Conceptual Level, if all the cells of the subcomplex C(c},c3)
generated by the closures of ¢y and c5 can be grouped by pairs of the gradient vector
field F, then we can generate a new acyclic combinatorial chain homotopy operator
é. Using the labeling indicated in Fig. 12, its HSF representation F agrees with F
excepting for the pairs of C(c}, ¢3). For such pairs and fori, j € {1, 2} withi # j, {v}, €}}
belongs to a O-tree of F if (v}, €]} belongs to a O-tree of F and (e, ¢} belongs to a 1-tree
of F if (e}, c}} belongs to a 1-tree of F (see Fig. 12).

Let I: D — R be a digital image with an 8-connected object of interest O € D.
Then, it is possible to modify an initial HSF representation (and its corresponding
combinatorial chain homotopy operator) by means of the previous local operations,
in such a way that the result is a new HSF representation, called HSF-representation
of I based on O, in which a finite set of edges (called bridge edges) link the object of
interest with the background.

This homology-based transformation is processed in two steps: (a) for each pixel
in the inner boundary of O (that is, belonging to O and having a pixel not in O as
8-neighbor) we select, if possible, an arrow connecting this pixel with other neighbor
pixel of the inner boundary of O (by using an elementary edge rotation); (b) for each

a) b)

Fig. 13 Examples of HSF-representation based on objects of interest
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pixel in the outer boundary of O (that is, belonging to the complementary of O and
having a pixel in O as 8-neighbor) we select, if possible, an arrow connecting this
pixel with other neighbor pixel of the outer boundary of O (by using an elementary
edge rotation). At the end of this process, we have almost “isolated” (along its crack)
the object O from the background, excepting the existence of a set of edges in
the new HSF representation, called bridge edges, that connect O with its comple-
mentary. In Fig. 13, some HSF-representations based on an object of interest are
shown.

5 Homology and cohomology of objects of interest

Let I: D — R be a2D digital image and O € D be a (non-necessarily 8-connected)
object of interest. Let F = {Fy, F1} be a HSF representation based on O and ¢ :
L — 7Z/27[L'] be its corresponding acyclic combinatorial chain homotopy operator
over an ASDR cell subcomplex L’ of L. It is possible to deduce homology groups
and generators of the cell subcomplex L(O) C L generated by the pixels of O (it is
called the homology of O with coefficients in Z/27) from the HSF representation F.
In other words, the 8-connected components and holes of the object of interest can
be easily determined from this HSF representation. In other words, it is possible to
deduce a HSF representation for a digital object from one of the ambiance space, by
doing some minor local modifications (Fig. 14).

The idea is to consider the sub-forest 7’ of the forest F, corresponding to the
subcomplex L(O) (that is, the HSF representation of the object O).

Fig. 14 Example of HSF
representation based on two
ROIs (set of black pixels in the
image). The O-tree is
represented by a spanning tree
and the -tree of the HSF
structure is determined by a
vector field

1
|
1
1
1
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Letus denote 7' = (T1.1, ... T1ns Tty - .. Top,), where Ty, are O-trees (with x €
{1,...,m}) of " and T, are I-trees (with x € {1, ..., ny}) of F'. Let us suppose that
the sink s is not in O. Then, the following results hold:

(a) the (unpaired) vertices in O (also called critical vertices) are representative
cycle generators of the corresponding connected components of O. Therefore
c is the number of connected components in O.

(b) any unpaired 1-cell (u, v) (also called critical edge) gives rise to a 1-homology
generator fitting geometrically with the outer or some inner boundary of O. In
fact, this homology cycle is obtained by the formula {u, v} + ¢ (1) + ¢ (v). If the
complementary of O has h connected components (including background), the
number of critical edges is & — 1. Associated to each critical edge, there is a 1-
tree of F'. The number of 1-cells corresponding to critical edges of a 1-tree of
F’ can be greater than one.

Each critical edge can be “moved” along its associated tree T, ,, in order to
get different representative cycles of the corresponding 1-homology generator. This
translation of the critical edge can be done using reversing-arrow operations. It is
clear that a HSF-representation based on an object of interest O is also suitable for
obtaining homology information about the complementary of O.

In Fig. 15 two different HSF representations of an object of interest are shown.
The black edge represents the 1-homology generator of the hole in the object. The
homology cycle is colored in blue.

—_— . —

a)

o —

b)

Fig. 15 Two different examples of HSF-representations and the resulting homology generator (in
blue) computed for the same object of interest
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Moreover, we can easily deal with cohomology information starting from a HSF
representation of an object. For example, the tree T}, ,, associated to each critical
edge (1, v) determines in a straightforward manner a representative cocycle cr of a
cohomology generator of dimension 1. This cochain cr : {1 — cells € L(O)} — Z /27
is not null only for the vertices (that is, the 1-cells of L(O)) belonging to the tree T}, ,.
In Fig. 16 we show how cohomology can be equivalent to a type of paths in the HSF
representation such that if we “cut” the object through this path, the resulting object
has one hole less than before.

We have asserted in the abstract that the HSF framework produces algorithmic
answers to certain problems related to the homological classification of cycles (i.e.,
a sum of cells having zero boundary). The main important ones in the area of
discrete image processing are the shortest cycle, contractibility and transformability
problems. The shortest cycle problem is a generalization of the well-known shortest
path problem [8] and can be stated as follows: Given a cycle ¢ on a cell complex
version K of a ROI, what is the shortest cycle on K homologically equivalent to it?
The contractibility problem consists of checking wether a cycle can be contracted to
a point and the transformability problem analyses wether two cycles can be trans-
formed into each other. These problems have significant connections with another in
computational topology: to determine the fundamental group of K or, equivalently,
to construct a polygonal schema (cut a closed genus g surface to a canonical polygon
with 4g edges). The work of Gouillard [19] gives a very complete account of the state
of the art about these questions, treating them under a homotopical perspective.

We limit ourselves to demonstrate that contractibility and transformability prob-
lems can be automatically solved using the chain contraction ( fr,, g, ¢r,) canoni-
cally associated to an HSF structure Fx of a ROI K.

Given a contractible g-cycle ¢ on K, then we have:

¢+ gk fr(c) = 0kpk(c) + Pk Ik (c)

Since dg(c) =0 (c is a cycle) and fx(c) = 0 (because c is contractible and its
associated homology generator is zero), we reduce the previous equality into the
following one:

¢ = dgPk(c)

That means, that ¢ (c) is the (¢ 4+ 1)-chain whose boundary is ¢ (Fig. 17).

o —

Fig. 16 A HSF-representation (on the left) and the path (on the right picture, in black) representing
cohomology
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Fig. 17 An acyclic scenario,
one cycle c in blue, and the
corresponding sum of 2-cells
¢k (c) in strong green color

Given now two g-cycles homologically equivalent ¢ and ¢/, then:
¢+ gk fx(c) = 0xPpx(c)
'+ gk fx(c') = dxpk(c)
If we subtract one equation from another, we have:

c+c =dxpg(c—c)

Fig. 18 A simple scenario of
acyclic ambiance, two cycles ¢
and ¢’ in blue and grey,
respectively and the sum of
2-cells composing ¢k (¢ + ) in
strong green color
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due to the fact that gk fx(c) = gk fx(c’). That means that ¢x(c + ¢') is the (g + 1)-
chain whose boundary is the difference between the original cycles (Fig.18).

6 Parallel homology-based processing

Within this context of homology-based processing, it is possible to exploit data
parallelism. Although the methods designed here open the possibility to a parallel
processing, we are still far from devising a realistic and practical parallel approach.

Being n the number of pixels or 0-cells in L, the idea is to decompose the cell
complex L into n subsets of cells, each of them included into the neighborhood of a
concrete vertex.

We consider as many Processing Elements (PE) as pixels the image has. A PE(v)
in this architecture consists of a subset E of cells having a pixel v with integer
coordinates (x, y) as element of its boundary. More concretely:

E={{, )} {(x,y), x = Ly+ D} {(x, y), x = L,y + D}, {(x, ), (x + 1, )},
{r,y), x =1Ly, x=1Ly+Dh{(x ), x=1y+1),(x y+ D},
{69, (6 y+ DG ), e+ Ly + DY {(x ), (+ 1Ly + 1),
(e, y+ D, (x+Ly+DE{Gy), 6+ Ly, x+ 1, y+ D},
(), x4+ 1, ), x+1,y+ D, (x,y+ D}}

where (x, y)* indicates the respective upper (+) and lower (—) diagonal edges.

In order to clarify this idea, a PE is shown on the left image of Fig. 19. The pixel
P is represented in green, the six 1-cells in blue, the four triangular-like 2-cells in
yellow, and the one square 2-cell in orange.

As itis shown in the middle image of Fig. 19, we consider that the cells {(x, y), (x —
I,y+ 1)}~ and {(x, y), (x — 1, y), (x — 1, y + 1)} are always paired.

Given a pixel which is not the sink, the task consists of pairing the vertex P with
an edge of E, being paired the rest of cells in E in a straightforward manner. For
example, if we pair P with the edge {(x, y), (x — 1, y + 1)}T, then the pairing of the
rest of cells is (see right image of Fig. 19):

{{y), oy + DY A y). (x— Ly + 1), (x, y + D)),

{6, y), x4+ 1,y 4+ DY {(x, ), (6, y+ 1), (x 4+ 1,y + D)),

(G, y), x+1Ly+ D} {(x, y), x+ 1L, y), x+ 1, y+ D},
Ay, c+ Ly, c+ Ly, e+ Ly+ 1), (x,y+ DD}

Fig. 19 A PE on the /eft and a pairing example on the right
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This procedure is specified in the following algorithm:

Algorithm 4 (Parallel optimal discrete gradient vector field) PE(v) is a unit process-
ing element “centered” at pixel v.
for each PE(v) parallel do
Choose one edge e having as source the vertex v.
Establish the pair {v, e}.
Pair the rest of incident edges and 2-cells in PE(v).
end

Taking n processors (as many as pixels the image has), the speedup S,,, measuring
how much the parallel algorithm of establishing a random acyclic combinatorial chain
homotopy operator ¢ is faster than the corresponding sequential algorithm, is ideal.
That means that S, = § = n and its efficiency is 1. We suppose here that the sink of
¢ is always a priory known pixel.

7 Conclusions

Several applications in digital imagery are in need of a flexible and topologically-
consistent framework for nD object analysis and recognition. We have presented
here a new 2D digital image processing framework based on chain homotopies
determining an advanced topological analysis of cell complexes. The main notion
in this framework is called Homological Spanning Forest (or HSF, for short) for a
digital object due to the fact that it can be considered as a suitable generalization to
higher dimensional cell complexes of the topological meaning of a spanning tree of
a geometric graph. This new model for a digital object O is a set of directed forests,
which can be constructed under an underlying cell complex format K (/) of the image.
Taken as initial data, a 2D digital image 7 and a set of ROIs R, R», ..., R, previously
determined by means of an image processing algorithm, we follow the sequence:

(1) To construct an initial HSF representation for a whole 2D digital image I that
is independent of the pixel contents of it and that “suits” well with the concrete
task we want to do.

(2) To construct a new HSF configuration “adapted” to the ROIs, from which new
HSF structures for the last ones can be almost automatically obtained and a
subsequent topological analysis of them can be done.

This schema focus on transforming conceptual level information starting from
relevant logical level knowledge. It is also possible to deduce new logical level
structures from the data at pixel level, remaining “untouched” the HSF system that
is fixed at the very beginning. In this case, the result at conceptual level could be
interpreted in highly hierarchical terms (quad-trees, pyramids,...).

In the immediate future, we have the intention of progressing to the following
directions:

(a) A short-term objective is to extend this method to higher dimensions. This
would allow a fast topological-controlled processing of big images like for
example medical 4D images. Whereas the study of 2D and 3D digital images
has been very fruitful, in the study of 4D-phenomena many research questions
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(b)

(©)
(d)

related to the topology are still fully open. 4D-images analysis is an important
next step, because it adheres to the dimensionality of what is the physical reality.
We also intend to achieve parallelism in this context.

The application of the HSF schema brings many advantages for fast geometrical
transformations of images, and for implementing flexible and reliable methods
for structural image analysis (see for instance [12]). Depending of the appli-
cation we want to deal with, it seems possible to modulate the potential full
flexibility of the proposed framework, in such a way that its conceptual descrip-
tion would be suitable for a concrete topological task (skeletons, thinning, Reeb
graphs, mathematical morphology, etc).

To integrate in the HSF framework persistence homological techniques [9],
discrete differential forms methods [7] and Morse Homology descriptors [1].

A carefully study about cycle transformability questions and others related
to relative homology and advanced algebraic topological information (coho-
mology algebra, homology A(co)-coalgebra, cohomology operations,....) in 3D
or 4D HSF context will also be done in a future work. The computational
homological algebra framework developed in [34] for HSF operators will be
essential for advancing in this area.
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